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Abstract

A Brain-Computer Interface, BCI, can decode the brain signals corresponding to the

intentions of individuals who have lost neuromuscular connection, to reestablish com-

munication to control external devices. To this aim, BCI acquires brain signals as

Electroencephalography (EEG) or Electrocorticography (ECoG), uses signal processing

techniques and extracts features to train classifiers for providing proper control instruc-

tions. BCI development has increased in the last decades, improving its performance

through the use of different signal processing techniques for feature extraction and arti-

ficial intelligence approaches for classification, such as deep learning-oriented classifiers.

All of these can assure more accurate assistive systems but also can enable an analysis

of the learning process of signal characteristics for the classification task. Initially, this

work proposes the use of a priori knowledge and a correlation measure to select the most

discriminative ECoG signal electrodes. Then, signals are processed using spatial filtering

and three different types of temporal filtering, followed by a classifier made of stacked-

autoencoders and a softmax layer to discriminate between ECoG signals from two types

of visual stimuli. Results show that the average accuracy obtained is 97% (+/- 0.02%),

which is similar to state-of-the-art techniques, nevertheless, this method uses minimal

prior physiological and an automated statistical technique to select some electrodes to

train the classifier. Also, this work presents classifiers analysis, figuring out which are

the most relevant signal features useful for visual stimuli classification. The features and

physiological information such as the brain areas involved are compared. Finally, this

research uses Convolutional Neural Networks (CNN) or Convnets to classify 5 categories

of motor tasks EEG signals. Movement-related cortical potentials (MRCPs) are used as

a priori information to improve the processing of time-frequency representation of EEG

signals. Results show an increase of more than 25% in average accuracy compared to a

state-of-the-art method that uses the same database. In addition, an analysis of CNN or

ConvNets filters and feature maps is done to find the most relevant signal characteristics

that can help classify the five types of motor tasks.
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Chapter 1

Introduction

1.1 Motivation

The human brain is known as the master controller of our body functions. Through

the nervous system, it can send information to perform specific tasks. So when commu-

nications are interrupted and are not that easy to restore, people are limited in their

daily activities and it can deteriorate their quality of life. A solution may be to acquire

brain information and translate it, to control external devices, computers, and robotic

prostheses, among others. To achieve this goal, brain information can be obtained as

electrical activity in the form of neural signals recorded by electrodes. Signal processing

techniques and classifiers altogether may extract relevant signal features to decode brain

messages and provide control instructions. Everything described above is performed by

a Brain-Computer Interface or BCI. BCI development has increased in the last decades,

improving its performance through the use of artificial intelligence approaches, such as

deep learning-oriented classifiers, in order to provide more accurate assistive systems,

but also to enable an analysis of relevant brain signal characteristics used by the BCI

for the classification task.

1.2 BCI or Brain-Computer Interface

BCI refers to the communication and interaction between the human brain and external

devices using neural signals and without the use of output pathways such as peripheral

nerves and muscles. BCI research and development is important due to its application

as assistive technology for disabled people with severe neuromuscular disorders or as a

therapeutic tool for people with an impaired neuromuscular function [1]. In the first

case, BCI can supply a way of direct communication and control of the environment or

alternative locomotion (an electric wheelchair for example), in order to provide more
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independence and quality of life for a disabled person and the ones who take care of the

patient [2; 3; 4; 5; 6; 7]. In the second case, BCI can be useful for helping people to

relearn basic motor functions through neurorehabilitation therapy [7; 8; 9].

1.3 BCI components

BCI systems have basic steps or components: signal acquisition, signal processing, and

classification.

1.3.1 Signal acquisition

Brain signals are acquired using electrodes. Then, the signal is amplified and digi-

tized. BCI can use different types of neural signals. Electrical, magnetic, metabolic,

and hemodynamic (blood movement) activities of the brain are useful to extract in-

formation. Some of the acquisition techniques more popular in BCI applications are

magnetoencephalography (MEG) [10], functional magnetic resonance imaging (fMRI)

[7], near-infrared spectroscopy (NIRS) [11], positron emission tomography (PET) [12],

electroencephalography (EEG), electrocorticography (ECoG) and intracortical methods.

Nevertheless, electrophysiological signals acquisition methods of EEG and ECoG have

more widespread clinical applications. Also, the development stage of BCI based on

these methods is more advanced than the ones based on other types of signals. In

the specific case of EEG, a bigger amount of experimental data is available due to the

moderate portability and cost of the acquisition equipment [11].

1.3.1.1 Electroencephalography EEG

EEG is a non-invasive signal acquisition method that uses electrodes placed on the

scalp to obtain a spatial and weighted sum of neural electrical activity. This electrical

activity comes from synaptic excitations of neuron dendrites in the cortex of the brain.

Synaptic currents are produced within dendrites when neurons are activated; this current

generates an electric field over the scalp that is recorded through the electrodes and

translated to potential differences [13]. Due to the location of EEG electrodes, artifacts

from power line interference, signals from cranial muscles activity, and even electrical

activity from the heart can affect EEG signal fidelity [14]. Also, frequency range and

topographical resolution of signal is not wide (EEg signal is a ), raw EEG effective

bandwidth is limited to approximately 100 Hz with amplitudes from 10 uV to 100 uV

[13]. However, EEG signal acquisition method is safe, simple to use and can help to

develop BCI portable systems [7; 15; 16; 17; 18].
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1.3.1.2 Electrocorticographic ECoG

Compared to EEG, ECoG is an extremely invasive method that acquires signals from

the surface of the neural cortex, beneath the skull and over the cortical surface, through

electrode arrays that must be surgically implanted usually in epileptic patients [7]. For

that reason, experimental data for ECoG studies is not easy to obtain. On the other

hand, ECoG signal has a wider frequency range, from DC to 200 Hz, better topographical

resolution and signal fidelity because of a closer location from the electrodes to the brain

and better isolation from external electrical disturbances compared to EEG signal [19].

1.3.1.3 Brain waves

Inside brain signals some waves can be recognized due to their different frequency ranges.

The Delta wave is defined from 0.5 Hz to 4 Hz and corresponds to human deep sleep.

Theta wave can be found in the range between 4 Hz and 7.5 Hz and represents activities

related to the human unconscious, deep meditation, and creative inspiration. Alpha wave

is defined from 8 Hz to 13 Hz and describes awareness but without concentration. Beta

wave lies between 14 Hz and 26 Hz and represents active attention and thinking, focus

and process of solving concrete problems. Gamma waves with frequencies between 30 Hz

to 45 Hz are useful for detection of certain brain diseases but also can be a good indicator

of event-related synchronization (ERS) [13]. An additional wave named broadband or

high gamma comes from ECoG signal [20]. As ECoG electrodes are located deeper in

the brain and away from the skull which behaves as a low-pass filter, ECoG SNR is

better than EEG. Also, gamma waves can reflect event-related activity [21; 22; 23].

1.3.2 Signal processing

Brain signal features that can explain the intent of a person is extracted. Signal in-

formation can be represented in the time domain, in the frequency domain, or in the

time-frequency domain [24; 25]. Time domain provides signal information about the

amplitude variations in specific periods of time. Brain signal features usually used for

analysis can be linear such as statistics such as mean, maximum and minimum, vari-

ance, skewness, and kurtosis, or non-linear features such as Hjorth parameters, entropy,

or fractal dimension [26]. Power spectral density (PSD) estimates the signal power of the

different brain waves, in order to extract useful features in the frequency domain. EEG

time-frequency analysis can be accomplished with the Short Time Fourier Transform

(STFT) or the Continue Wavelet Transform (CWT), extracting brain signal features

from spectrograms or scalograms [27].

In addition, ECoG and EEG signals may contain relevant information about the tasks

that a person executes. For instance, increases/decreases in power in particular signal
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frequency bands are related to motor tasks or imaginary motor tasks [28], alpha (8-12

Hz) and beta (16 - 26 Hz) bands have been extensively used in the design of BCIs based

on EEG and ECoG [29; 30]. Additionally, modulation of signal components in the band

from 70 - 200Hz, High-Frequency Components (HFC), have been found to be correlated

with responses to visual stimulation [20], auditory stimulation [31], and motor activity

[32]. These brain signal features are extracted and used to train classification algorithms

that are able to determine the intention of the subjects.

1.3.3 Classification Methods

Extracted signal features must be translated to control a desirable output from an as-

sistive device. Classification techniques help to provide a proper output based on an

adaptive and robust analysis of brain signal features. Classification methods used in

BCI systems could be part of machine learning techniques such as Linear Discriminant

Analysis (LDA) and Support Vector Machine (SVM), but also artificial intelligence tech-

niques are used as Artificial Neural Networks (ANN) and Deep Learning [7].

1.3.3.1 Linear Discriminant Analysis LDA

LDA is part of a group of classification algorithms that use linear functions to separate

classes. LDA uses hyperplanes to divide data from different classes. When there are

only two classes, the expression of the hyperplane is presented in Equation (1.1):

g(x) = θx + θ0 , (1.1)

where θx is a weight vector, and θ0 is a bias.

The expression above is useful to allocate data in one class when x makes g(x > 0) and

in the other class when x makes g(x < 0).

Parameters of hyperplane are estimated by searching for the projection in which the

distance between the inter-class means is maximum and the intra-class variance is mini-

mum. Normal distribution of data and equal covariance matrix for both classes must be

assumed. In the cases where there are more than two classes, multiple hyperplanes are

used [33; 34]. LDA has been widely used as the classifier for different BCI applications

[35; 36; 37; 38; 33].
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1.3.3.2 Support Vector Machine SVM

SVM also uses hyperplanes to divide data from different classes, but it works in cases

where the classes may not be separable by a linear boundary. SVM is able to find the

distance between data groups, using the hyperplane to maximize the gap between them.

A mathematical expression for a hyperplane could follow the equation Equation (1.2):

g(x) = W Tx+ b, (1.2)

where W is a vector of coefficients that represent the slopes of the hyperplane [33; 39].

SVM classifier has been applied in numerous BCI applications [40; 41; 42]. SVM leads

to a generalization that is less affected by overtraining. However, a SVM disadvantage

is that some of its parameters have to be defined manually [33].

1.3.3.3 Artificial Neural Network ANN

ANN is part of the group of nonlinear classification methods and belongs to artificial

intelligence techniques. ANN is an assembly of several units (artificial neurons) that

provide a general parameterized non-linear mapping between inputs and outputs. Basic

ANN usually has a network conformed by an input layer with its units, an output layer

and a middle layer(s) called the hidden layer(s) [34; 43]. The network has connections

between each input unit and the output of the previous layer, in such a way that the

units of the output layer determine the class of the input feature vector. ANNs are

applied to numerous problems, including BCI systems because they are flexible and

adaptive classifiers where feature extraction is more automated and less arbitrary than

in LDA and SVM [44; 45; 46].

1.3.3.4 Deep Learning

Depending on the number of hidden layers in ANN, the classifier can be a shallow neural

network (few hidden layers) or a deep neural network (plenty of hidden layers). Hidden or

intermediate layers can be useful to construct multiple levels of feature abstraction, which

can be an important advantage in the learning process to solve complex classification

problems. However, deep neural networks are harder to train because of the intrinsic

instability associated with learning by its gradient descent, which stops the training

process in some layers.

Deep Learning models like Stacked-autoencoders (SAE), Convolutional Neural Networks

(CNN or ConvNets), Recurrent Neural Networks (RNN), and others have been used as

classifiers for BCI systems and other applications [43; 47; 48].
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Also, since ANN is a black box concerning the model insides, Deep Learning techniques

such as CNN or ConvNets can provide clues about the signal or image characteristics

used for decision-making. In other words, CNN or ConvNets can improve performance

but also offer information about relevant characteristics used for the predictions [49; 50].

Translated brain information is used to control different external devices such as spelling

software [51], move a cursor [52], control an electrical wheelchair [53], or use a neuro-

prosthesis [54].

1.4 Overview contributions in publications

The thesis contributions in terms of publications are:

1.4.1 Research papers in journals

Title: ConvNets for EEG decoding of attempted arm and hand movements of people

with spinal cord injury

Journal: Advanced Intelligent Systems

Impact factor of 7.298, classified as Q1 in ISI and Scopus

Authors: Sandra Cancino, Juan Manuel López, Jaime F. Delgado Saa y Norelli Schettini

Submitted in february 20th 2023 Status: Accepted with minor revisions – waiting for

publication

1.4.2 Participation in international conferences

Title: Electrocorticographic signals classification for brain computer interfaces using

stacked-autoencoders

Conference: SPIE Optics + Photonics 2020

Authors: Sandra Cancino, Jaime Delgado Saa

Date: 24-28 August 2020 (online)

Proceedings Volume 11511, Applications of Machine Learning 2020; 115110J (2020)

https://doi.org/10.1117/12.2568996

Title: Classification of visual stimuli from electrocorticographic recordings using stacked

autoencoders

Conference: Neuroscience 2016

Authors: Sandra L. Cancino, Jaime F. Delgado Saa

Date: 12-18 November 2016 (San Diego – USA)
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1.5 Thesis Organization

In Chapter 2, there is an overview of Deep learning-based applications in different re-

search areas. Also, some BCI research that uses Deep Learning techniques is described.

The problem statement and the hypothesis are shown in Chapter 3 and Chapter 4.

Chapter 5 presents the first application in this research: Deep learning-based BCI that

classifies ECoG signals produced by visual stimuli. This work is focused on the classi-

fication performance comparison between the use of the Stacked-autoencoder technique

and other state-of-the-art techniques such as SVM.

Chapter 6 presents the second application in this research: Deep learning-based BCI

that classifies ECoG signals produced by visual stimuli. This one address the analysis

of characteristics learned and used by the Stacked-autoencoder classifier to accomplish

predictions.

Chapter 7 presents the third application in this research: Deep learning-based BCI for

motor cortex classification of five classes. Here, the proposed method uses some EEG

signal processing techniques to enhance time-frequency domain representations, that

are used to feed a CNN-based classifier. In addition, the performance of the proposed

method is compared to other state-of-the-art research. Finally, an analysis of character-

istics learned by the CNN classifier is done.

Finally, Chapter 8 concludes the research work and presents some considerations for pos-

sible future work based on the advantages and also limitations of the proposed methods

for the described BCI applications.



Chapter 2

Background

2.1 Deep Learning in other applications

Deep Learning techniques have been used in the signal processing area, with applications

in speech and audio recognition, computer vision, and physiological signal classification

[55; 56]. Applications in speech and audio recognition include speaker and language

identification [57], music classification tasks [58], and music recognition [59]. CNN ar-

chitecture is oriented to computer vision, image classification tasks [60; 61], and scene

recognition as a context for object detection [62]. Also, SAE and Deep Belief Networks

(DBN) have been used for handwritten single-digit recognition [63; 64]. On the other

hand, RNN have been used in character-level language modeling [65], and in designing

models that analyze the contents of images and their representation in the domain of

natural language in order to provide images descriptions [66].

2.2 Deep Learning in BCI

Since classifiers based on Deep Learning models are used to deal with the numerous vari-

ations of brain signals over time and across subjects, its classification performance can

be equivalent or superior to state-of-the-art algorithms. Also, Deep Learning classifiers

are more automated and do not need the use of handmade features as inputs, as some

state-of-the-art classifier algorithms do. But, on the other hand, it is possible to include

in the model prior knowledge that is directly related to the problem for reducing model

parameters and training time. Finally, Deep Learning techniques can give information

from relevant signal characteristics used in the classification BCI stage.

Cecotti et al. [67] propose to use weights of the first hidden layer of a trained CNN

to obtain information about the most relevant electrodes, using information from layer

features.

11
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Sturm et al. [68] propose a Deep Neural Network (DNN) for classification tasks related

to motor-imaginary BCI. Average accuracy from DNN across subjetcs is 74.9% and

is comparable to state-of-the-art classifiers however, Layer-wise relevance propagation

(LRP) technique [69] is applied to explain DNN classifier decisions through a relevance

value for every EEG channel at each time sample named as relevance maps, which are

very similar to scalp patterns.

Mirowski et al. [70] proposed CNN for epileptic seizure prediction from invasive EEG

signals. Method performance is 100%, better than other techniques as SVM and logistic

regression techniques. In this work, the performance is evaluated through false positives

per hour and sensitivity estimation. Even though sensitivity results of the three tech-

niques are very similar, CNN has the best performance regarding false positives in the

evaluated dataset.

In Jingwei et al. [71], multi-scale deep CNN is used for high-level feature representation

in imagined motor EEG. Results show that extracted features are dissimilar between

different imagined motor tasks, but they are very similar within the same task across

the trials. Classification accuracy from multi-scale deep CNN and Bayesian LDA is the

same (100%) but training using the first technique is twice faster.

Drouin-Picaro et al. [72], present CNN and Multi Layer Perceptron (MLP) used for

classification of basic saccade directions (up, down, left and right) from frontal EEG

data for cursor control without the use of a separate eye tracking device. This work

shows an improvement in accuracy results (72.92% and 70.94%) for proposed models

compared to two benchmark techniques.

Prior Supervised Convolutional Stacked Auto-encoders (PCSA) to decode finger flexion

from ECoG signals is proposed in Wang et al. [73]. Target prior definition complements

feature learning of the task of finger flexion. Results show that features learned by PCSA

have better performance, in terms of correlation coefficient, than state-of-the-art hand

features based on heuristics.

In Martin et al. [74], Deep Belief Nets (DBNs) models use physiological signals of EEG,

EOG and EMG for sleeping rate classification. DBNs models use either raw data or

handmade features; with a classification accuracy of 72.2%, which is higher than two

state-of-the-art algorithms. Authors also show that some learned features in EEG and

EMG from raw data DBNs correspond to the handmade selected features.

In Wulsin et al. [75], DBNs with handmade features are used to classify five clinically

significant EEG waveforms and measure anomalies. DBNs model has performance com-

parable in terms of F1 score and classification time to other high-performing classifiers

such as SVMs and K-Nearest Neighbors (KNNs).

In Ma et al. [76], a combination between Deep Learning with compressed sensing is

applied to obtain motion-onset visual evoked potentials (mVEP) features to perform BCI
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task classification. In this work, researchers compare their approach with amplitude-

based mVEP feature extraction technique, finding a classification accuracy of 87.5%. A

summary of these results can be seen in Table 2.1.

Table 2.1: Average accuracy from state-or-the-art research works of BCI using deep
learning techniques

Research work Subjects Method Average Accuracy

Cecotti et al. [67] 2 CNN and Multi-CNN 32% and 41%

Sturm et al. [68] 10 DNN 74.9%

Mirowski et al. [70] 21 CNN 100%

Jingwei et al. [71] 1 multi-scale deep CNN 100%

Drouin-Picaro et al. [72] 2 MLP and CNN 72.92% and 70.94%

Martin et al. [74] 25 DBN 72.2%

Ma et al. [76] 11 DL features 87.5%



Chapter 3

Problem Statement

BCI has been a rapidly growing research area, but performance levels are not adequate

for BCI applications to reach the reliability of natural communication between human

brain and muscle-based function. Therefore, a widely BCI-based clinical application has

not been accomplished yet [77]. Specifically, most of the time, research work does not

consider prior knowledge as a physiological restriction. Also, in the BCI signal processing

stage, there is a wide spectrum of techniques that could be worth exploring to obtain

relevant signal information for the next stage. The use of the attributes mentioned

above, could provide more relevant signal information as input to the classifier and

reduce computational resources and time needed for its training. These could help to

accomplish a BCI performance improvement. Finally, there is not much emphasis in the

analysis of the extracted features during the classification stage, for most BCI related

research.

We propose the design of a deep-neural network based BCI system, that incorporates

prior information about brain functionality and proper brain signal processing, before

the classification stage; not only to help improve BCI performance, but also to take

advantage of the extracted features, used for classification purposes, and further use

them to gather more information about signal characteristics, such as frequency range

or time-frequency patterns, that can convey meaning about the processes of interest.

14



Chapter 4

Hypothesis

BCI systems based on Deep Learning techniques that make use of prior physiological

information and proper signal processing techniques can provide better performance

than state-of-the-art approaches in terms of classification accuracy. Also, the network

can provide insight on what the classifier learns in terms of brain signal features and

their relations to the processes of interest.

15



Chapter 5

Application 1, Deep

learning-based BCI with visual

stimuli: Stacked-autoencoders

with ECoG

This chapter is based on the poster titled “Classification of visual stimuli from Elec-

trocorticographic recordings using stacked auto-encoders” [78], and the research paper

titled “Electrocorticographic signals classification for brain computer interfaces using

stacked-autoencoders” [79].

5.1 Introduction

The use of deep learning classification techniques has been incorporated in the BCI

community [68; 80], aiming to improve its performance. In [81] a method based on

stacked autoencoders or SAE was used to improve the detection of Event-Related Po-

tentials (P300 ERPs) showing a significant improvement (accuracy of 69.2%) compared

to traditional methods like LDA and multilayer perceptrons (MLP). In [82], authors

describe a classifier with stacked autoencoders for EEG-based emotion recognition. The

results show higher accuracies of valence and arousal of 49.52% and 46.03%, respectively,

compared to SVM and naive Bayes techniques.

ConvNets or CNN have been used for BCI applications. Kwak et al. [83] proposed to

used them for steady-state visual evoked potentials (SSVEPs) classification paradigm.

Results showed an accuracy of 99.28% and 94.03% in the static and ambulatory con-

ditions, higher than other techniques like Canonical correlation analysis (CCA). Xie et

al. [84], used CNN and RNN for individual finger flexion decoding, and obtained an

16
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accuracy of 33% in the test set. Tabar et al. [85] used CNN and SAE in combination

to classify EEG Motor Imagery signals. A significant performance (accuracy of 77.6%)

compared to other decoding techniques such as SVM and separately CNN and SAE was

obtained.

In the training process, stacked-autoencoders can learn a more compact representation

of input signal, with an increasing abstraction as the network depth also increases [47].

This way, an analysis of this compact representation can give information on useful signal

characteristics employed for the classification process. A summary of these results can

be seen in Table 5.1.

ConvNets or CNN are also useful for this analysis, but their computational cost is signif-

icantly bigger because they require millions of parameters and operations in the training

process [86; 87]. Nevertheless, there are some techniques like transfer learning that allow

the use of pre-trained models in order to reduce training time and the computational

resources needed for the process [88]. This approximation will be further explored in

Chapter 7.

Table 5.1: Average accuracy from state-or-the-art research works of BCI using deep
learning techniques as SAE and ConvNets or CNN

Research work Subjects Method Average Accuracy

Vareka et al. [81] 15 SAE 69.2%

Jirayucharoensak et al. [82] 32 SAE (valence/arousal) 49.5% and 46%

Kwak et al. [83] 7 CNN (SSVEPs) 99.3% and 94%

Xie et al. [84] 3 CNN and RNN 33%

Tabar et al. [85] 9 CNN and SAE 77.6%

Despite the fact that traditionally deep learning techniques require a considerable amount

of data to perform well given the number of parameters that need to be learned; this

application and the others described above show that with a limited amount of data, it

is possible to obtain similar or sometimes a significant improvement compared to state

of the art approaches.

5.2 Method

5.2.1 Dataset Description

Ethics statement: All patients participated in a purely voluntary manner, after pro-

viding informed written consent, under experimental protocols approved by the Institu-

tional Review Board of the University of Washington (#12193). All patient data was

anonymized according to IRB protocol, in accordance with HIPAA mandate. These
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data originally appeared in the manuscript “Spontaneous Decoding of the Timing and

Content of Human Object Perception from Cortical Surface Recordings Reveals Comple-

mentary Information in the Event-Related Potential and Broadband Spectral Change”

published in PLoS Computational Biology in 2015 [20].

The selected dataset consists of brain electrical activity acquired from ECoG arrays

located on the sub-temporal cortical surface of epileptic patients. Brain signals were

recorded when visual stimuli were presented to patients. An amount between 31 and 60

electrodes were used for every subject. A random sequence of gray-scale images from

faces and houses was presented in intervals of 400ms, with 400ms blank screen inter-

stimulus interval. There were 3 experimental trials for each subject, with 100 visual

stimuli in each trial (50 different house images and 50 different face images). Patients

performed a basic visual stimuli discrimination task and ECoG potentials were recorded

at a sample rate of 1000 Hz. A bandpass filter with cut frequencies between 0.15 to 200

Hz was used for signal pre-processing As information from blank screen inter-stimulus

interval is not useful for our system, we only used the 400 ms interval where visual

stimuli are shown to patients. See Figure 5.1 for the time diagram description in the

experiment.

...
...

400ms

400ms

blank screen
inter-stimulus

 interval

blank screen
inter-stimulus

 interval

400ms

400ms

visual stimulus
 interval

visual stimulus
 interval

Figure 5.1: Time diagram in the experiment.

5.2.2 Signal Processing

5.2.2.1 Spatial Filtering

Spatial filtering was applied to ECoG signals through common average reference (CAR).

CAR calculates the signal average across the whole set of electrodes and subtracts it

from each of them (see Equation (5.1)) :

x(t) = s(t)−
∑N

i=1 si(t)

N
, (5.1)
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where s(t) = s1(t), s2(t), . . . , sN (t) are the different electrode signals, and N is the

number of channels or electrodes.

5.2.2.2 Temporal Filtering

Temporal filtering was done to extract High Frequency components (HFC) and Low

Frequency Components (LFC) from signals x(t). A band-pass butterworth filter of 4th

order with cut frequencies between 70 Hz and 170 Hz was selected to obtain HFC. Other

types of IIR filters like chebyshev and elliptic with different parameters were tested, but

the 4th order butterworth filter showed a magnitude and a phase behavior appropriate

for our application. Then, signal envelope from HFC was estimated through the absolute

values of the analytic signal xanalytic(t) (see Equation (5.2)):

xanalytic(t) = xbandpass(t) + jH{xbandpass(t)}, (5.2)

where H represents the Hilbert transform.

A low-pass butterworth filter of 4th order with a cut frequency of 20Hz was used to

smooth HFC signal envelope, downsampled by a factor of 10 corresponding to a sufficient

sample rate according to Nyquist-Shannon sampling theorem. The low-pass filtering is

done in order to have a smoothed version of HFC signal envelope, to make its comparison

with the other signals easier, thus aiding the classifier to discriminate these signals

among classes. Since filtering restricts the signal’s highest frequency, it is possible to

downsample it.

5.2.2.3 Electrode Selection

Electrodes were selected in accordance with physiological priors and a discriminability

measure based on the coefficient of determination. First, brain areas related to visual

processing were selected based on the literature [89; 90; 91], which led to the selection

of electrodes in the fusiform gyrus, lingual gyrus, and inferior occipital gyrus for each

subject. In Fig. 5.2, there is a graphical and not quantitative example corresponding

to subjects 1 and 6. The trial average for each of the two classes is presented on the

top-left (subject 1) and on the bottom-left (subject 6). It can be seen that the trial

average shows different characteristics from one class to the other.

Following this procedure, the degree of discriminability between classes based on the

signals of each of the selected electrodes was determined using the coefficient of deter-

mination r2. The r2 was calculated across trials for each time point on each electrode

and it is an indication of the linear relationship between the variations in the signal

magnitude and the classes of stimulus presented. Only electrodes with significant dif-

ferences in r2 between the baseline and post-stimulus periods were selected. For this, a
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paired t-test with p < 0.05 was used. Also, in Fig. 5.2, we can see a graphical and not

quantitative example corresponding to subjects 1 and 6. The r2 coefficient for electrode

47 and subject 1 is shown on the top-right, and the r2 coefficient for electrode 26 and

subject 6 is observed on the bottom-right of the figure. In each graphic, y-axis shows

the r2 coefficient amplitude and x-axis shows experiment time in ms. It can be seen that

r2 amplitude increases after the first 200ms (baseline) and after the visual stimulus is

presented (last 200ms).

Figure 5.2: Brain areas selected for our proposed method. Trial average signal for the
two classes and r2 values for the best discriminative electrode in subject 1 and subject

6.

5.2.3 Classification

Stacked-autoencoders are a specific structure of neural networks that use unsupervised

learning (training samples without labels). If x1, x2, x3, . . . , xi are i training samples

or inputs to the network, an autoencoder uses the same inputs as target values in the

backpropagation process, that is yi = xi. The autoencoder learns then an approximation

to the identity function h(W,b)(x) ≈ x. Autoencoders can estimate a more compact

representation of input data if the number of hidden units is lower than the input size

[81; 47].
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This work proposes a system with two stacked-autoencoders followed by a softmax layer

which classifies ECoG signals in two classes of different visual stimuli: houses or faces

(see Fig. 5.3). This architecture was first proposed for an example of image classifica-

tion in [92]. Nevertheless, some architecture modifications were tested until finding the

best classification performance in terms of accuracy. The characteristics of the selected

classifier are described below.

If the input to the system is of dimension n, the first autoencoder has n/2 units and

the second autoencoder has n/4 units. For instance, if the number of electrodes selected

for a subject is 6, the number of inputs n to the first autoencoder is 240 (40 sample

points per electrode, representing 400 ms of data). The number of hidden units in the

first autoencoder will be 120 (n/2) and 60 (n/4) for the second autoencoder. In order

to show the robustness of the presented method, the results were based on a 10-folds

cross-validation procedure.

Figure 5.3: Network architecture description. Two stacked-autoencoders were trained
independently. A softmax layer was added in the model fine-tuning step.

5.3 Results and Discussion

The best average accuracy across subjects obtained was 97% (+/- 0.02%). Nevertheless,

this result was similar to state-of-the-art techniques as SVM (see Table 5.2), a big

advantage is that a minimum prior information about which features is required for the

classification process. Also, the classification accuracy using the different types of spatial

filtering in each subject was estimated. The highest result corresponded to the spatial
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filtering which works with both LFC and HFC from signals. See Figure 5.4 for these

accuracy classification results.

Table 5.2: Average accuracy across subjects pf state-or-the-art method SVM and our
method

Method Accuracy %

SVM 93.7%

Our method 97%

Figure 5.4: Accuracy classification results using LFC, HFC or both.

In addition, a confusion matrix was used to estimate other classification performance

metrics that could give more specific information about results in each of the two classes.

It can be seen in the confusion matrix from the classification using spatial filtering with

LFC, that the algorithm classified 4.8% of visual stimuli from house images (class 1) as if

they were from face images (class 2). But on the other hand, just a 2.4% of face images

are classified wrongly as houses (see Figure 5.5). The same situation is shown in the

confusion matrix from the classification using spatial filtering with HFC (see Figure 5.6).

This difference in the error percentage between classes could be happening because the

human brain has specific areas specialized in face recognition.

When LFC and HFC are used altogether (see Figure 5.7), the algorithm eliminated the

error of visual stimuli classification from class 1 (houses). Also, it reduced the error

of classifying visual stimuli from class 2 (faces) to 1.9%. The total error of 1.9% was

the smallest one. It shows that the combination of LFC and HFC improves global

classification performance, but it also shows that the classifier behavior for each class

differs when just one of the frequency components is used.
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5.4 Conclusions

The proposed Deep-learning-based algorithm using stacked-autoencoders with ECoG

recordings showed good performance for visual stimuli classification just as state-of-the-

art-based techniques. However, this method used minimal prior physiological and an

automated statistical technique to select the most discriminative brain signals to train

the classifier. However, to the best of our knowledge, little or no effort is spent on the

understanding of the parameters learned by the classifier. That was the principal reason

to explore this analysis in the next chapter.
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Chapter 6

Application 2, Deep

learning-based BCI with visual

stimuli: Analysis of

Stacked-autoencoders with ECoG

This chapter is based on the research paper titled “Electrocorticographic signals classi-

fication for brain computer interfaces using stacked-autoencoders” [79].

6.1 Introduction

The same dataset from the last chapter is used here and most of the proposed methods

that were explained already. Nevertheless, this chapter explores the possibility that

Deep learning-based BCI can give an insight into what features the algorithm uses to

classify and how this is related to basic neurophysiology. An analysis of the classifier’s

learned parameters is done to achieve this goal and is described in the next sections.

6.2 Method

6.2.1 Dataset Description

A summary of the dataset description is presented as follows.

Electrocorticographic (ECoG) arrays were placed on the subtemporal cortical surface of

epileptic patients. Experimental setup characteristics are:

25
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• 7 subjects

• Intervals from 400ms for inter-stimulus and 400ms for visual stimulus

• 31 to 60 electrodes

• 3 trials with 100 visual stimuli

• Random sequence of grayscale images from houses and faces is shown to the sub-

jects

Electrical potentials from the patient’s ventral temporal cortical surface were recorded

[93]. Electrocorticographic (ECoG) arrays were placed on the subtemporal cortical sur-

face of epileptic patients (see Fig. 6.1).

Figure 6.1: Experiment description. A random sequence of gray-scale images from
faces and houses was shown to patients in intervals of 400ms, in order they could

perform a visual stimuli discrimination task. ECoG potentials were recorded.

6.2.2 Signal Processing

Spatial filtering was applied to ECoG signals through common average reference (CAR).

CAR is a signal processing technique used to improve signal-to-noise ratio. CAR esti-

mates a signal average across all electrodes and subtracts it from each of them, as follows

in Equation (7.1):

x(t) = s(t)−
∑N

i=1 si(t)

N
, (6.1)

where s(t) = s1(t), s2(t), . . . , sN (t) are the different electrode signals, and N is the

number of channels or electrodes.
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High Frequency Components HFC were extracted from the signals x(t). A band-pass

butterworth filter of 4th order with cut frequencies between 70 Hz and 170 Hz was used to

obtain HFB. Then, the signal envelope from HFC was extracted through the calculation

of absolute values of the analytic signal xanalytic(t), as follows in Equation (6.2):

xanalytic(t) = xbandpass(t) + jH{xbandpass(t)}, (6.2)

where H represents the Hilbert transform.

A low-pass butterworth filter of 4th order with a cut frequency of 20Hz was used to

smooth HFC signal envelope. Finally, the result signal was downsampled by a factor of

10 which corresponds to a sufficient sample rate according to Nyquist-Shannon sampling

theorem.

6.2.3 Electrode Selection

As in the proposed method described in chapter 5, electrodes located in three specific

brain regions were used to feed the classifier. Fusiform, Lingual, and Inferior occipital

gyrus are brain areas related to face recognition tasks. Also, the electrode selection was

based on a t-test (non-paired) between the correlation values in the signal’s baseline and

the correlations in the time when visual stimuli occurred, to find the most discriminative

electrodes and organized them from the most discriminative to the less one.

6.2.4 Network Architecture

As in the last chapter, two stacked autoencoders and a softmax layer were used to classify

the two classes of visual stimuli (house and face images) using HFC signal features as

inputs. Classifier architecture was selected in such a way that if the input to the system

is of dimension n, the first autoencoder has n/2 units and the second autoencoder has

n/4 units. For instance, if the number of electrodes selected for a subject was 6, the

number of inputs n to the first autoencoder was 240 (40 sample points per electrode,

representing 400 ms of data). The number of hidden units in the first autoencoder might

be 120 (n/2) and 60 (n/4) for the second autoencoder. Also, the results were based on

a 10-folds cross-validation procedure.

6.2.5 Neural Network Coefficient Analysis

In order to analyze the features learned by the neural network, the coefficients for each

of the autoencoders were observed, finding out that the signal that maximized the acti-

vation of each neuron. For this, we extracted for each subject, the most discriminative
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electrode in terms of the r2 value and the first one in the organized list obtained in the

previously already explained electrode selection stage. In addition, the autoencoders

were trained in the same fashion described above. The set of coefficients that maximally

activated each neuron was determined by the following equation (6.3):

xj =
Wijl√∑n
j=1(W

l
ij)

2
(6.3)

Where xj is the maximum activation value for input j, W is the weight coefficients

matrix in layer l, and i is the number of neuron layer l [47].

6.3 Results

The average responses to faces or houses were calculated for each subject, as well as the

r2 values in the brain regions of interest. Fig. 5.2 shows an example of a representative

subject of the activity in the fusiform gyrus and the lingual gyrus. It can be seen that

the determination coefficient was higher for the post-stimulus period compared to the

baseline (t < 150).

The selected electrodes were then used to train the proposed network architecture based

on stacked autoencoders. We compared the result to a well-known classifier, SVM

(C parameter was calculated using cross-validation and grid search). The results are

displayed in Table 6.1.

Table 6.1: Comparison between classification accuracy for HFB signal using Neural
Network and SVM

Subjects NN SVM

S1 0.99 0.97

S2 0.86 0.81

S3 0.94 0.93

S4 0.99 0.99

S5 0.95 0.95

S6 0.92 0.91

S7 0.99 1.00

p-value 0.172

The proposed method and SVM provided a performance accuracy above the 94%. Even

though, the proposed method offered higher accuracy, a paired t-test showed that the

differences were not statistically significant at p < 0.05 level. However, the proposed

method allowed the analysis of the coefficients which shed light on the features that are

being learned by the classifier.



Chapter 6. Application 2, Deep learning-based BCI with visual stimuli: Analysis of
Stacked-autoencoders with ECoG 29

Results of the analysis of the network coefficients of the hidden units in the first au-

toencoder revealed that the signal of maximum activation for each subject is correlated

with the average trial response to the stimulus in areas related to visual processing in

the brain (see Table 6.2 for a list of the location of the most discriminative electrode in

each subject). This suggested that the classifier aimed to find the input sequence with

the minimum distance to the average brain activation observed in the training set. The

correlation between the class-dependent trial average and the coefficients learned by the

classifier (unit with maximum activation) are shown in Table 6.3.

Table 6.2: Number, location and brain region of the best discriminative electrode for
each subject.

Subjects Electrode Brain Region

S1 47 Fusiform Gyrus

S2 25 Lingual Gyrus

S3 3 Fusiform Gyrus

S4 24 Fusiform Gyrus

S5 16 Fusiform Gyrus

S6 26 Lingual Gyrus

S7 39 Fusiform Gyrus

Table 6.3: Biggest absolute value of correlation between trial average from each class
and maximum input activation signal for units of first autoencoder in every subject.

Subjects Units Correlation P-Value Class

S1 6 0.62 < 0.0001 houses/faces

S2 2 0.77 < 0.0001 faces

S3 8 0.65 < 0.0001 faces

S4 18 0.79 < 0.0001 faces

S5 8 0.93 < 0.0001 houses

S6 1 0.88 < 0.0001 houses

S7 8 0.63 < 0.0001 faces

Also, results in Table 6.3 show that signal of maximum activation for subjects 2, 3, 4,

and 7 is significantly correlated with the average trial from the visual stimulus of faces,

and in subjects 5 and 6 the signal of maximum activation is significantly correlated

with the average trial from the visual stimulus of houses. Subject 1 shows the same

correlation for the two classes of visual stimuli.

In the case of analysis of the weights of the second auto-encoder, results show that the

signal that maximally activates all the neurons is highly correlated.
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6.4 Discussion

An approach for classifying brain signals using stacked autoencoders was proposed.

Physiological information was used to select initially the set of electrodes that were

placed in areas related to the visual task executed by the subjects, followed by a sec-

ond stage of electrode selection based on the coefficient of determination r2 which could

quantify the separability of signals in a particular region when two different types of

stimulus were presented. The autoencoders aimed to produce a compact representation

of the inputs while preserving as much information as possible. A final layer based on

softmax was used to produce a discrete output indicating the class to which the pre-

sented stimulus belonged. The proposed approach provided a classification rate of 95%

using a 10-fold cross-validation.

A comparison between performance results from the proposed approach and SVM tech-

nique was obtained. It is shown that numerical results are in favor of the proposed

method, but the results are not statistically significant (p > 0.05), meaning that the two

approaches perform equally well. However, the proposed method allows the analysis of

the weights learned by the network to inquire about what features were being extracted

and used to produce the classification output.

The weight analysis is based on the calculation of the input signal that provided the

maximum output for each one of the neurons of the first autoencoder. The results showed

that the neurons were maximally activated when the input signal corresponded to the

trial average of a specific class. This suggests that the task learned by the classifiers

was to assign the class label based on the similarity between the input and the average

brain response observed in the training set. Furthermore, the results suggested that the

classifier showed a bias towards the class that presented lower intra-trial variance. This

would explain the fact that for different subjects the signals that maximally activated the

neurons were assigned to different classes. The intra-trial variability can be explained

since the localization of the electrodes was subject-dependent. Electrodes in the fusiform

gyrus could be closer to the face area representation [94] or to the place/object area

representation [91] for different subjects.

Finally, results from analysis of the weights of the second autoencoder suggested that the

second layer could not compress further the output of the first autoencoder. This type

of analysis could be used to determine empirically the deepness required for a particular

application.

6.5 Conclusions

In this work, an autoencoder-based method that is capable to decode with high accu-

racy brain signals acquired during the presentation of two different visual stimuli was
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presented. The proposed method also allowed the analysis of the learned weights, to

determine the input signal that maximally activated the neurons in the hidden layers.

Furthermore, we make emphasis the use of prior information from physiology for the

selection of the electrodes of interest, aiming to generate results that were interpretable,

rather than combining signals from different areas not related to the task in question.

Future work could be focused on the use of CNN or ConvNets aiming to discover more

descriptive features from the brain signals that may help to improve the classification

performance and allow for a richer interpretation of the patterns learned by the classifier.

Chapter 7 explores this possibility.



Chapter 7

Application 3, Deep

learning-based BCI for motor

cortex classification of five classes

This chapter is based on the research paper titled ”ConvNets for EEG decoding of at-

tempted arm and hand movements of people with spinal cord injury” Submitted and

accepted with minor revisions –waiting for publication [95]. Also, this chapter explores

the use of pre-trained ConvNets models along with transfer learning to improve per-

formance classification with a moderate computational cost. Results in this final ap-

proximation show that a significantly better performance can be achieved compared to

state-of-the-art techniques, but also better insights can be gathered from deeper analysis

of the ConvNet model layers.

7.1 Introduction

Some BCIs oriented to upper limb disabilities rely on the information that the Move-

ment Related Cortical Potentials (MRCPs) may have. MRCPs are the motor cortex

potentials that take place during a movement performance or effort (motor imaginary)

and are more notorious in EEG signals from electrodes located in central and middle

regions of the head [96]. In their work, Xu et al. [97] tried to classify reach-and-grasp

movements: palmar, pinch, push, twist, plug and a final class corresponding to resting

state. They used MRCPs and analyzed the difference in cortical EEG features and net-

work structures of the different classes. They projected MRCP into a source space and

used its average amplitudes in regions of interest as classification features. In addition,

functional connectivity was calculated by means of the phase locking value. Results

showed that they could get a similar average accuracy of 49.35%, using source features

32
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with a reduced number of EEG channels. In their research, Wang et al. [98] tried to es-

tablish the difference between EEG signals from two different classes of hand movement.

Decoding was based on non-linear dynamic parameters of the MRCPs, and classifica-

tion was achieved using Linear Discriminant Analysis (LDA) model. Results showed

significant differences in MRCPs between the different hand movement classes, with an

average binary decoding accuracy of 89.5%. Schwarz et al. [99] used EEG recordings

from participants who performed self-initiated reach-and-grasp actions toward a glass

(palmar grasp) and a spoon (lateral grasp). Their results showed that a multiclass-

based decoding approach, including a rest state and MRCPs as inputs to a shrinkage

LDA (sLDA) classifier model, could yield a maximum average peak accuracy of 62.3%

for a water-based electrode acquisition system.

The EEG and MRCPs decoding process requires an appropriate feature extraction stage

along with a classification model, which needs to be trained through an optimization

process. Over the last decade, Deep Learning models have been proposed for these tasks

due to their outstanding performance [4]. However, the training process of Deep Learning

models, such as Convolutional Neural Networks (ConvNets), requires a considerable

amount of data due to the number of parameters that need to be estimated. A strategy

to deal with this limitation is called Transfer learning [100]. Transfer learning uses

a pre-trained network as an efficient approach for small datasets [101]. The learned

features from the pre-trained network can be transferred to the training process with

the new dataset, requiring only the manipulation of a smaller set of parameters of the

model. This manipulation is called ”fine-tuning” and requires fewer samples while is

less computationally expensive compared to a complete training process. In addition,

the fine-tuning of the model may provide good results in terms of generalization.

In a related study, Kumar et al. [102] presented an EEG-based winking signals clas-

sification using transfer learning with different architectures for feature extraction in

combination with a fine-tuned Random Forest (RF) classifier. Their results showed that

the Inception ResNetV2 transfer learning model with the Random Forest classifier had

an accuracy of 100% on the training and validation datasets. Also, Sinam et al. [103]

proposed a P300 detection-based BCI model using information from a single channel.

They used scalogram features from EEG signals to enhance the classification perfor-

mance. They also used transfer learning with a pre-trained AlexNet as the classifier.

Results showed their proposed BCI had a high average information transfer with rates of

13.23 to 26.48 bits/min for disabled people. In their work, Bressan et al. [104] used two

datasets with hand movements such as touching, grasping, palmar grasping, and lateral

grasping. They used MRCPs as inputs to train a ConvNet model. They compared

ConvNet classification performance with an sLDA and an RF model. Results showed

that ConvNet had a good performance in both datasets, with an accuracy of 70% and

64%, similar or higher to the LDA and RF models, but with a faster pre-processing. Re-

searchers Khademi et al. [101] proposed hybrid models with pre-trained ConvNets and
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Long-Short Term Memory (LSTM) neural networks, for motor imagery classification.

Pre-trained ConvNets such as ResNet-50 and Inception-v3 were used to employ more

complex features for classification tasks. Transfer learning and data augmentation tech-

niques were adequate for the small dataset they were using, called ”BCI Competition

IV dataset 2a” [105]. Furthermore, researchers used EEG time-frequency representation

obtained from the Continuous Wavelet Transform (CWT) as input images for the Con-

vNet. The performance results showed a maximum average mean accuracy of 92%. A

summary of these results can be seen in Table 7.1.

Table 7.1: Related state-or-the-art research works

Research work Subjects Features and Classifier Average Accuracy

Xu et al. [97] 8 MRCP and sLDA 49.35%

Wang et al. [98] 14 MRCP and LDA 89.5%

Schwarz et al. [99] 15 MRCP and sLDA 62.3%

Kumar et al. [102] 5 CWT and RF 100%

Sinam et al. [103] 5 and 4 CWT and ConvNet 92.7% and 93.5%

Bressan et al. [104] 11 and 15 MRCP and ConvNet 70% and 64%

Khademi et al. [101] 9 CWT and ConvNet/LSTM 92%

Another advantage of using ConvNets is the possibility to visualize the learned features of

the classification model as a way to understand the decision process of the classifier [100].

Nevertheless, to the best of our knowledge, little effort has been spent on understanding

this information in BCI applications.

The pre-trained ConvNet AlexNet [106] is used, in conjunction with a Transfer learning

technique, to classify EEG time-frequency information (scalograms) from five different

types of hand movements of the BNCI Horizon 2020 database [107]. A novel strategy

was proposed, consisting of the MRCPs estimation for its removal from the EEG signals

employing an absolute difference; therefore, our approach did not use the MRCPs to clas-

sify the different movements. Moreover, we include visualization of the features learned

by the model to provide insight into the relevant characteristics for the classification

task.

7.2 Materials and Data Processing

7.2.1 Dataset Description

We used BNCI Horizon 2020 database from Ofner et al. [107]. It consists of attempted

arm and hand movements in persons with Spinal cord injury (SCI) (accession number
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001–2019). It has Electroencephalography (EEG) data from 10 participants with suba-

cute and chronic cervical spinal cord injury in a rehabilitation center (AUVA rehabilita-

tion clinic, Tobelbad, Austria). Participants were asked to execute or attempt different

hand movements based on their residual motor abilities. The group of participants was

formed by 9 males and 1 female from ages between 20 and 69 years.

EEG signals were recorded using four 16-channel g.USBamps biosignal amplifiers and a

g.GAMMAsys/ g.LADYbird active electrode system (g.tec medical engineering GmbH,

Austria) with a sampling frequency of 256Hz. The acquisition system preprocessed

signals with a band-pass filter from 0.01Hz to 100Hz (8th order Chebyshev filter). Power

line interference was eliminated with a notch filter at 50Hz. A total of 61 electrodes

covering frontal, central, parietal and temporal areas were used in the signal acquisition.

Additionally, electrooculogram (EOG) signals were recorded with 3 electrodes placed

above the nasion and below the outer canthi of the eyes. Reference was placed on the

left earlobe and ground on AFF2h.

In the experiment, each of the participants sat in front of a computer screen where

specific instructions were given. At the trial start, a fixation cross and a beep sound

were presented. Participants were asked to focus their gaze on the cross which was

displayed during the whole trial period of 5 s to avoid eye movements. The class cue

was displayed 2 s after the trial started and, for 3 s until the end of the trial. The

class cue could be one of 5 different classes of hand movement: pronation, supination,

palmar grasp, lateral grasp, or hand open. Subjects were asked to exclusively execute

or attempt the corresponding movement immediately when the class cue was displayed.

Finally, there was a break period between trials of 1 s to 3 s. The dataset has recordings

of 9 runs with 40 trials per run, and in total 72 trials per class for each of the 10

participants. See Figure 7.1 for the experiment description.

Figure 7.1: Experiment description.
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7.2.2 Signal Processing

7.2.2.1 Noise Removal

Common Average Reference (CAR) was used for noise removal and improving the signal-

to-noise ratio in the 61 EEG channels. CAR estimates a signal average across all elec-

trodes and subtracts it from each of them, as follows in Equation (7.1):

y(t) = x(t)−
∑N

i=1 xi(t)

N
, (7.1)

where y(t) is the denoised signal after CAR, x(t) = x1(t), x2(t), . . . , xN (t) are the differ-

ent electrode signals, and N is the number of channels or electrodes.

Additionally, EEG signal length was restricted to 2 seconds after the subject executed

or attempted the corresponding movement.

7.2.2.2 Movement-related cortical potential MRCP

MRCP has been used as a control signal for BCIs. Previous works have shown that

MRCPs can provide meaningful information about different kinds of movements of the

same limb (hand open and close, different grasp types, among others). In the specific

case of a person with SCI, information on EEG signals from movement attempts or

execution could be used by the BCI to control output devices [108]. In their work,

Ofner et al. [107] showed that the trial averaged signal on the central electrode Cz

presented the typical pattern of MRCPs for movement attempts. In addition, they

found that characteristics in MRCPs as the positive and negative peaks could contain

discriminative information about the movement class, as well as was found by Zhang et

al. research [109]. This fact indicated that information in MRCPs patterns could be

used for preparing signals before using them as inputs to the classifier model, to improve

its performance. Thus, in our proposed method, we divided the whole dataset into a

training set of 80% of data, and a test set of 20% of data. We only used the training set

to estimate the average of central electrode Cz signals over trials. In that fashion, we

obtained information about MRCPs for each of the 5 classes of attempted movements

in each subject. Figure 7.2 is a graphical explanation of the procedure described in this

section for the specific subject 2. The average of Cz signals over trials for this subject

and for each of the 5 classes is also shown at the bottom-left of this figure. It can be

observed that every average signal has MRCP’s characteristic peaks no matter to which

class it belongs. It is also important to say that the difference between Cz trial average

signal amplitudes, for the different classes, is not used as part of the proposed method.
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Figure 7.2: MRCPs estimation for each class.

7.2.2.3 Independent Component Analysis ICA

Independent Component Analysis (ICA) uses a generative model that describes how

the measured signals are produced. In the specific case of EEG, electrode signals or

EEG channels are the measured signals. ICA model represents EEG electrode signals

as a linear combination of the independent sources of meaningful specific neural activity

[110]. ICA model is described in Equation (7.2):


x1(t)

x2(t)
...

xn(t)

 = A


s1(t)

s2(t)
...

sn(t)

 (7.2)

where s is the source signals vector, A is the mixing matrix composed by constant

elements, and x is the electrode signals vector.

In this case, the number of EEG channels was the same number of independent sources.

However, there are also some cases in which the number of channels is bigger than the

number of sources. In those cases, techniques that reduce dimensionality as Principal

Components Analysis (PCA) can be applied before using ICA.

In this work, 10 independent components were extracted from the training and test

set of the 61 EEG electrode signals already preprocessed with CAR. The number of

independent components was experimentally estimated, meaning that more and less than

10 independent components were tested, but the highest classification performance in

terms of accuracy was obtained with 10 components. After that, the absolute difference

between the estimated 10 independent components and trial averaged signal of Cz was

performed for each class and for each subject, to enhance the information not related
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to MRCPs in the independent components. Figure 7.3 is a graphical explanation of the

procedure described in this section for the specific subject 2 and for the specific classes

of palmar grasp and hand open. The difference between the average of Cz signals over

trials for this subject and for the two specific classes, is also shown at the bottom of this

figure. Also, the differences between the signal amplitudes, for the two specific classes,

are not used as part of the proposed method.

Figure 7.3: Preprocessing with ICA and MRCPs.

7.2.2.4 Continuous Wavelet Transform CWT

Continuous Wavelet Transform (CWT) provides a signal representation in the time-

frequency domain called scalogram. CWT is widely used in biomedical signal processing

because of its advantages in comparison to other time-frequency domain representations

as the Short-Time Fourier Transform (STFT). CWT uses time-limited basis functions

to decompose and analyze the time-limited events of a signal, rather than using periodic

time-unlimited functions as in the STFT, a characteristic that can be useful for the

non-stationary nature of biomedical signals as the EEG [111].

In the present investigation, CWT was used to obtain the scalograms of the 10 pre-

processed independent components already estimated in the previous step. We used
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the Morlet mother wavelet, as it has been widely used for biomedical signal processing

[102][112][113]. Also, we established the frequency limits between 0.5 and 100Hz. The

10 scalograms were concatenated over their horizontal axis and saved into a normal-

ized grayscale image. In Figure 7.4, it is shown a graphical explanation of the previous

description of CWT stage for the specific subject 2 and specific supination class.

Then, the grayscale image was modified to have a squared size and an RGB color scheme,

which were the image characteristics that the selected ConvNet used as input. That was

how we obtained a training set and a test set of scalogram images to be used in the next

step.

Figure 7.4: Concatenated scalogram image from the 10 preprocessed Independent
Components.

7.2.3 Feature extraction and Classifier: Transfer Learning

In our method, Transfer learning using AlexNet was done. AlexNet is a pre-trained

ConvNet with a training set the of over a million images classified into 1000 classes.

AlexNet contains 5 convolutional layers and 3 fully connected or dense layers customized

for classifying the original 1000 categories [106]. Through extensive training, Alexnet

convolutional layers have learned a big amount of image feature representations. On

the other hand, the dense layers have learned image representations that are specific to

the 1000 classes of the original model [100]. In our work, a fine-tuning of AlexNet was
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done using the training set of scalogram images, in order to modify the dense layers and

fit the new classification task of the 5 categories of arm and hand movements. AlexNet

network architecture can be seen in Figure 7.5.

Figure 7.5: AlexNet network for classification of 5 types of arm and hand movements.

7.2.4 ConvNet learning visualization

Contrary to other Deep Learning techniques, ConvNets have the advantage of allowing

visualization and interpretation of learned image representations. Three techniques were

used:

1. Visualization of ConvNet filters: shows a visual pattern each layer filter in a

ConvNet is maximally responsive to.

2. Visualization of layer activations: shows the layer activation or output with

a specific input image. It provides information about the input decomposition in

different feature maps that are the result of applying the layer filters [100].

3. Gradient-weighted Class Activation Mapping (Grad-CAM): uses the gra-

dient of the classification score regarding the ConvNet learned features, to produce

a heatmap with the regions of an input image that led to a specific classification

result [114].

7.3 Experimental Results and Discussion

7.3.1 Movement Related Cortical Potential MRCP

MRCP characteristic peaks can be observed in the trial averaged signal on the central

electrode Cz for each of the five classes. Around the first 0.5 ms after the cue class, the
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trial averaged signal shows a positive peak, followed by a negative peak at around 1 s.

This morphology was described by Ofner et al. [107]. Figure 7.6 shows the trial averaged

signal in Cz electrode and across subjects for each of the five-movement classes. It can be

observed in this figure, that these signals exhibit the already mentioned characteristics

of MRCPs, which were used as part of the processing in the Independent Component

stage. It is important to mention, that the information of statistical signal differences

between classes, is not employed in the proposed method.

Figure 7.6: Grand averages of electrical potentials in Cz electrode for each class.

7.3.2 Performance Evaluation

For the performance evaluation of the classification model, the scalogram test set was

used. The computation of the classification accuracy was carried out. It indicates the

ratio between the number of accurately predicted observations and the total number

of observations. In addition, we used a confusion matrix, which provided two more

performance metrics: precision and recall (sensitivity). The precision metric measures

the ratio between true positive observations and the total number of predicted posi-

tive observations. The recall or sensitivity measures the ratio between true positive

observations and the sum of true positive and negative observations [115].

7.3.2.1 Movement classification

The classification of movements by the proposed method showed a maximum mean

accuracy of 76%. This is a significant improvement over the results obtained by Ofner
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et al. [107], which had a maximum average accuracy of 45.5%. In addition, a better

classification performance in each of the five classes was accomplished (see confusion

matrix in Figure 7.7). For more details about the performance comparison between the

two methods for each class, see Table 7.2.

Figure 7.7: Confusion matrix using the method proposed for classifications of 5 types
of arm and hand movements.

Table 7.2: Performance comparison between state-or-the-art method and our method
proposed for the five arm and hand movement classes

Precision %

Method Pronation Supination Open Palmar Lateral

sLDA [107] 47% 42% 47% 43% 45%

Our method 74% 70% 72% 76% 88%

Recall (Sensitivity) %
sLDA [107] 47% 42% 46% 43% 46%

Our method 71% 83% 78% 79% 71%

Other researchers used different datasets related to movement attempts. Their results

can be seen in Table 7.3.
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Table 7.3: Characteristics and average accuracy from other state-or-the-art methods
that used different datasets

Research work Signals Classes Method Accuracy

Aly H. et al. [116] EEG/EMG 5 wrist and hand mov. LSTM 95.2%

Bressan et al. [104] EEG 2 datasets - 4 hand mov. ConvNet 70% and 64%

Wang et al. [117] EEG 7 upper limbs motor imagery VS-LSTM 76.2%

Xu et al. [97] EEG 6 hand mov. sLDA 49.4%

Our method EEG 5 hand mov. ConvNet 76.0%

7.3.3 ConvNet Learning Visualization

7.3.3.1 Visualization of ConvNet filters

It was possible to visualize the filter patterns of the convolutional layers of our model.

This visualization shows how a ConvNet layer can decompose its inputs as a combi-

nation of learned filters. Additionally, filter patterns were more complex as one went

deeper into the model. Thus, filters from the first layer can encode edges in different

directions. Deeper layers learn filters that encode textures made from combinations of

edges. Finally, the deepest layer will have the task of encoding more complex textures

that can characterize the whole scalogram. Figure 7.8 shows the first 16 filter patterns

for layers one, three, and five.

Figure 7.8: (a) First 16 filter patterns for first convolutional layer, (b) filter patterns
for third layer and, (c) filter patterns for fifth layer.
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7.3.3.2 Visualization of layer activations

With a specific scalogram image input, the display of its decomposition into feature maps

can be accomplished in the different convolutional and pooling layers of the ConvNet.

Figure 7.9 shows some feature maps for the convolutional layers one, three, and five.

The selected input is the scalogram number 72 from subject 10 for the supination class.

In addition, Figure 7.10 presents the maximum activation for the same scalogram in the

first, third, and fifth convolutional layers.

Figure 7.9: (a) Input image: scalogram 76 from subject 10 for the supination class,
(b) first 16 feature maps for convolutional layer one, (c) third and (d) fifth layer.

7.3.3.3 Gradient-weighted Class Activation Mapping (Grad-CAM)

We used Grad-CAM visualization to make heat maps of class activation over specific in-

put scalograms. Grad-CAM was helpful for understanding which regions of a scalogram

are relevant to the model. In Figure 7.11, we can observe the original scalograms and

Grad-CAM visualization for pronation and palmar grasp in the same subject. Addition-

ally, in Figure 7.12, we can see the original scalograms and Grad-CAM visualization for

supination in two different participants.

7.3.4 Discussion

MRCPs were extracted, and the information contained in the signals has some dis-

criminative patterns, according to Ofner et al. [107]; however, these patterns cannot
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Figure 7.10: (a) Input image: scalogram 76 from subject 10 for the supination class,
(b) maximun activation for the input image in first, (c) third and, (d) fifth convolutional

layer.

Figure 7.11: (a) Scalogram 1 corresponding to pronation in subject 5, (b) Grad-
CAM visualization of scalogram in (a), (c) Scalogram 1 corresponding to palmar grasp

in subject 5, (d) Grad-CAM visualization of scalogram in (c).

be accurately estimated unless a large set of samples is available. On the other hand,

Zhang et al. [109] performed a statistical analysis and found, in some cases, a significant
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Figure 7.12: (a) Scalogram 10 for supination in subject 5, (b) Grad-CAM visualiza-
tion of scalogram in (a), (c) Scalogram 1 for supination in subject 10, (b) Grad-CAM

visualization of scalogram in(c)

difference for the negative peak amplitude, but not the same for the positive peak ampli-

tude for each motion. Therefore, an additional processing step is needed before passing

the data to the classification model to improve the performance. The method proposed

in this paper shows a different approach, where the MRCP information is disregarded

(using the absolute difference), and only the remaining information is analyzed. The re-

sults exhibited an increase of more than 25% in average accuracy, compared to Ofner et

al. [107] demonstrating that the most relevant features in the EEG, for hand movement

commands, might not be present in the MRCPs.

Similar approaches to arm and hand movement or motor imagery decoding were con-

ducted by Bressan et al.[104], Wang et al.[117], Xu et al. [? ], and Aly et al. [116].

The performance of their models was similar to or inferior to the one presented in this

paper for the studies using only the EEG signal. When a combination of EEG and

electromyography (EMG) is used, accuracy improved up to 95.2%. Additionally, Wang

et al. [117] showed an accuracy of 96.6% for a binary classification problem (motor im-

agery vs. rest); however, for a multiclass problem, they achieved an acceptable average

performance of 78% for the upper limbs motor imagery detection using MRCPs (elbow

flexion/extension and forearm supination/pronation) while for the hand imagery (hand

open/close), the average accuracy was 72.5%. These results indicate two things: the

first one is that binary classification can be achieved successfully from EEG features,

but when the decoding of specific hand commands is desired, the same features might

not provide the necessary information. Contrary to the other research works shown
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in Tables 7.2 and 7.3, we think that MRCPs might be interfering negatively in the

multiclass classification process, as our results showed.

Filters in the ConvNet might be related to specific frequency components for the first

layers (see Figure 7.8 (a)). However, a change over the x-axis can be observed: there are

no horizontal patterns, only diagonal and vertical patterns. For deeper layers (Figure 7.8

(b) and (c)), more complex patterns are observed, where time locations and narrower

frequency bands are more relevant. A direct comparison of these patterns and the

MRCPs cannot be accomplished, due to the ICA process and the concatenation of the

scalograms to form the images that feed the ConvNet. Further analysis might provide

insightful information about the physiological process but, to the best of our knowledge,

there are no other related works to compare with.

Maximum activation of a specific scalogram for the first convolutional layer showed

some vertical edges (Figure 7.10 (a) and (b)), but it changed for the third layer, showing

the maximum activation relied on the high frequencies of the independent components

(Figure 7.10 (c)), and in the case of the fifth layer is related to the low frequencies (Figure

7.10 (d)). Additionally, these characteristics remained all along the 10 independent

components.

From the Grad-CAM results, we can infer that the time-frequency areas in the scalo-

grams vary with the type of movement and participant. Figure 7.11 indicates that in the

case of subject 5, for pronation, the low-frequency components at the beginning of the

scalogram were the most important in the classification process, while for the palmar

grasp, the medium-frequency and high-frequency components were the most important.

Something similar is presented in Figure 7.12, in this case with the two different subjects,

for the same class: Grad-CAM indicates that for supination, scalograms from subjects

5 and 10 have different regions of interest in the classification problem.

7.4 Conclusions and Future work

Using time-frequency representation along with pre-trained ConvNets as Alexnet, could

be a better tool to classify brain signals related to different hand movements. Scalo-

grams, an image representation of EEG, assisted the ConvNet to learn significant spatial

patterns useful for the classification process. Also, a priori information related to MR-

CPs as part of signal processing helped to extract relevant information that led to a

significant improvement in the classification performance.

On the other hand, Grad-CAM revealed that independent components and their region

of interest changed for every subject and every hand movement class.

For future research work, we would like to use other pre-trained ConvNets architectures

to compare classification performance and find the best fit for our method. In addition,
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we would like to use our method in a dataset of hand movements attempted by healthy

subjects, so that we can compare it with the dataset of subjects with SCI. Furthermore,

we want to use information coming from Grad-cam and activations, to accomplish a

more detailed analysis from a physiological point of view.



Chapter 8

General Conclusions and Future

Work

The main objective of this thesis was to establish that BCI systems based on Deep

Learning techniques, that make use of prior physiological information and proper signal

processing techniques could provide better performance than state-of-the-art approaches

in terms of classification accuracy. Also, to perform a classifier analysis based on its

ability to provide information about relevant learned brain signal features and their

relations to the processes of interest.

To address this objective, this thesis presented the use of an autoencoder-based method

that was capable to decode with high accuracy brain signals acquired during the pre-

sentation of two different visual stimuli. Also, it used a few prior physiological and

correlation information to select a reduced number of discriminative electrodes to train

the classifier.

In the next step, this work showed the analysis of the weights learned by the stacked-

autoencoders, to determine the input signal that maximally activated the neurons in

the hidden layers. Furthermore, it was shown that the use of prior information from

physiology for the selection of the electrodes of interest, aimed to generate results that

are interpretable, rather than combining signals from different areas not related to the

studied tasks.

Finally, it was shown that using time-frequency signal representation as scalograms and

pre-trained ConvNets as Alexnet could accurately classify EEG signals related to differ-

ent hand movements. Moreover, this image representation of EEG, helped the CNN or

ConvNet to learn significant spatial patterns useful for the classification process. Fur-

thermore, MRCPs information used as part of the signal processing led to significantly

improved classification performance.

49
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For future research, we would like to use other pre-trained CNN or ConvNets archi-

tectures and other signal processing techniques to evaluate their classification accuracy

and their potential to allow for a richer interpretation of the patterns learned by the

classifier. Also, we want to use information coming from Grad-cam and activations, to

accomplish a more detailed analysis from a physiological point of view. Additionally,

it would be worth trying other deep-learning-based techniques such as RNN to include

temporal features for classification tasks followed by network analysis.
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