841 research outputs found

    A tight security reduction in the quantum random oracle model for code-based signature schemes

    Get PDF
    Quantum secure signature schemes have a lot of attention recently, in particular because of the NIST call to standardize quantum safe cryptography. However, only few signature schemes can have concrete quantum security because of technical difficulties associated with the Quantum Random Oracle Model (QROM). In this paper, we show that code-based signature schemes based on the full domain hash paradigm can behave very well in the QROM i.e. that we can have tight security reductions. We also study quantum algorithms related to the underlying code-based assumption. Finally, we apply our reduction to a concrete example: the SURF signature scheme. We provide parameters for 128 bits of quantum security in the QROM and show that the obtained parameters are competitive compared to other similar quantum secure signature schemes

    Quantum attacks on Bitcoin, and how to protect against them

    Get PDF
    The key cryptographic protocols used to secure the internet and financial transactions of today are all susceptible to attack by the development of a sufficiently large quantum computer. One particular area at risk are cryptocurrencies, a market currently worth over 150 billion USD. We investigate the risk of Bitcoin, and other cryptocurrencies, to attacks by quantum computers. We find that the proof-of-work used by Bitcoin is relatively resistant to substantial speedup by quantum computers in the next 10 years, mainly because specialized ASIC miners are extremely fast compared to the estimated clock speed of near-term quantum computers. On the other hand, the elliptic curve signature scheme used by Bitcoin is much more at risk, and could be completely broken by a quantum computer as early as 2027, by the most optimistic estimates. We analyze an alternative proof-of-work called Momentum, based on finding collisions in a hash function, that is even more resistant to speedup by a quantum computer. We also review the available post-quantum signature schemes to see which one would best meet the security and efficiency requirements of blockchain applications.Comment: 21 pages, 6 figures. For a rough update on the progress of Quantum devices and prognostications on time from now to break Digital signatures, see https://www.quantumcryptopocalypse.com/quantum-moores-law

    Wave: A New Family of Trapdoor One-Way Preimage Sampleable Functions Based on Codes

    Get PDF
    We present here a new family of trapdoor one-way Preimage Sampleable Functions (PSF) based on codes, the Wave-PSF family. The trapdoor function is one-way under two computational assumptions: the hardness of generic decoding for high weights and the indistinguishability of generalized (U,U+V)(U,U+V)-codes. Our proof follows the GPV strategy [GPV08]. By including rejection sampling, we ensure the proper distribution for the trapdoor inverse output. The domain sampling property of our family is ensured by using and proving a variant of the left-over hash lemma. We instantiate the new Wave-PSF family with ternary generalized (U,U+V)(U,U+V)-codes to design a "hash-and-sign" signature scheme which achieves existential unforgeability under adaptive chosen message attacks (EUF-CMA) in the random oracle model. For 128 bits of classical security, signature sizes are in the order of 15 thousand bits, the public key size in the order of 4 megabytes, and the rejection rate is limited to one rejection every 10 to 12 signatures.Comment: arXiv admin note: text overlap with arXiv:1706.0806

    The problem with the SURF scheme

    Get PDF
    There is a serious problem with one of the assumptions made in the security proof of the SURF scheme. This problem turns out to be easy in the regime of parameters needed for the SURF scheme to work. We give afterwards the old version of the paper for the reader's convenience.Comment: Warning : we found a serious problem in the security proof of the SURF scheme. We explain this problem here and give the old version of the paper afterward

    CRYSTALS-Dilithium: A lattice-based digital signature scheme

    Get PDF
    In this paper, we present the lattice-based signature scheme Dilithium, which is a component of the CRYSTALS (Cryptographic Suite for Algebraic Lattices) suite that was submitted to NIST’s call for post-quantum cryptographic standards. The design of the scheme avoids all uses of discrete Gaussian sampling and is easily implementable in constant-time. For the same security levels, our scheme has a public key that is 2.5X smaller than the previously most efficient lattice-based schemes that did not use Gaussians, while having essentially the same signature size. In addition to the new design, we significantly improve the running time of the main component of many lattice-based constructions – the number theoretic transform. Our AVX2-based implementation results in a speed-up of roughly a factor of 2 over the previously best algorithms that appear in the literature. The techniques for obtaining this speed-up also have applications to other lattice-based schemes

    Attacking post-quantum cryptography

    Get PDF
    • …
    corecore