
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Zain, Sara

Title:
Machine-checked verification of digital signature schemes in EasyCrypt

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.
Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•Your contact details
•Bibliographic details for the item, including a URL
•An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



Machine-checked verification of digital signature
schemes in EasyCrypt

Sara Zain

Department of Computer Science
University of Bristol

A PhD dissertation submitted to the University of Bristol
in accordance with the requirements of the degree of

Doctor in Philosophy in the Faculty of Engineering.

June 2022

Word count: 42404



Abstract

The signature schemes based on the discrete logarithm problem often suffer from their
length. Their security reduction usually involves either rewinding [1] (leading to loose-
ness) or complex reasoning (requiring non-standard assumptions) [2, 3, 4, 5]. At EURO-
CRYPT ‘03, Goh and Jarecki presented a signature scheme (EDL), a discrete logarithm-
based scheme with tight security in the random oracle model. The EDL signature
size is lengthier than the traditional ones (more exponentiations). At CRYPTO ‘05,
Chevallier-Mames proposed a new signature scheme (CM) where he shortened the size of
the EDL scheme. The scheme benefitted from a tight discrete logarithm-based reduction
in the random oracle model. Later in 2007, Goh, Jarecki, Katz and Wang [6] (GJKW)
proposed an efficient signature scheme, and the scheme is also a discrete logarithm-
based scheme with tight security. Moreover, the last two decades have witnessed that
the cryptographic proofs in the provable security are complicated and only focus on
algorithmic definitions rather than the implementation, which automatically increases
vulnerabilities. The gap between cryptographic engineering and provable security can
be addressed with machine-checked frameworks.

This thesis aims to formalise and presents the first machine-checked security proofs of
three digital signatures (EDL, CM and GJKW) and shows that the schemes are the first
discrete logarithm-based schemes with tight security, produced using EasyCrypt proof
assistant. Although the pen and paper proofs of all three schemes have differences,
the core principles that make them secure in EasyCrypt are the same as the EasyCrypt
formalisation allows one to identify the proof principles. This research shows that proofs
extracted from all three signature schemes have a generic proof structure and also have
the technique of reducing the local proof effort. One can adopt the technique and the
proof pattern to other related existing or new constructions of discrete logarithm-based
schemes to obtain proof of tight security.

Key words: Machine-checked proofs, Formal verification, EasyCrypt Proof assistant,
Digital signature scheme, CDH assumption, Tight security.
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Chapter 1

Introduction

Modern cryptography has developed into a systematic technique where the crypto-
graphic proofs are analysed and developed through schemes. The schemes have rigor-
ous proofs in which the ultimate goal is to prove that the given construction is secure.
Over the past several decades, the proofs for cryptographic schemes have evolved into
complex proofs that rely on the unproven algorithmic hardness of some mathematical
assumptions. So, the increasing concern is not just that the cryptographic proof relies
on unproven assumptions but also that the proofs in the schemes are not checked. The
reason for not checking the proofs in detail is because the security proofs are lengthy
and complicated and might be due to laziness. The proof errors are mostly oversight
which automatically increases vulnerabilities. Finding vulnerabilities in cryptographic
schemes has become one of the main challenges many cryptographers face. Therefore,
in 2005, Halevi [7] advocated designing a machine-checking framework to help cryptog-
raphers build and verify the proofs.

Since then, many have designed and contributed to the development of machine-checked
tools, which support checking the cryptographic proofs step by step and provide confi-
dence and high assurance in the security proofs. Many tools and proof assistants are de-
signed to deliver computer-supported proofs; examples are [8, 9, 10, 11]. The approach
of verifying and building the security proofs whilst utilising state-of-the-art verifica-
tion tools, SMT solvers, and interactive proof assistants aims to ensure the correctness
of the program and its reasoning steps. This thesis gets the aid of a state-of-the-art
EasyCrypt proof assistant [12, 13], which is an interactive proof assistant that aims to
verify computational security proofs of the cryptographic constructions. The EasyCrypt
operates with the Probabilistic Relational Hoare Logic (pRHL), Why3 Software veri-
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2 CHAPTER 1. INTRODUCTION

fication platform, Satisfiability Modulo Theories (SMT) solvers and theorem provers
for the verifications, where the semantics of languages are formalised in the Coq proof
assistant [14]. The language of EasyCrypt includes the assertions of assignments, ran-
dom samplings, while loops, conditionals, and calls to the functions. One can say that
the expression language of EasyCrypt is based on higher-order strongly typed functional
language. The proofs in the EasyCrypt are developed using the game-playing technique.

This thesis uses the methodology of the game-playing technique [15], which gives explicit
mathematical statements, referred to as games, and security statements are expressed as
a sequence of games. The proofs are developed by defining the game, where a successful
attack on the security properties leads to winning the game and later defining the
advantage. For instance, letting an imaginary adversary play game in security proof. If
one can show that a game can not be won, the underlying scheme is secure, and this can
be done by transforming the initial game into a new game (Gamen ... Gamen+1). If the
difference between the initial and subsequent game is small enough, it is sufficient to
prove that Gamen+1 can not be won, and this technique can be applied to a long chain
of games. So, if the advantage of a game is small, then this implies that the chance to
attack the security property successfully has to be small. In the end, such transitions
of games enable one to analyse a game through the properties of another game, and
finally, one can prove the security of a scheme.

A central motivation for this research is to explore and learn the skills of the emerging
approach of machine-checking security proofs. This approach is challenging and requires
one to be consistent and stubborn, but the joy of proving goals is undefinable. Another
motivation is to close the gap between the cryptographic proofs and the implementations
of the proofs in the proof assistant by extracting the techniques so one can re-use the
technique for related schemes.

1.1 Aims and Contributions

This thesis aims to formalise and machine-checked three digital signature schemes Goh
and Jarecki (EDL) [16], Chevallier-Mames (CM) [17] and Goh et al. (GJKW) [6], using
the EasyCrypt proof assistant. The security of the schemes is tightly related to the
Computational Diffie-Hellman problem (CDH) in the random oracle model (ROM).

The research begins with the formal verification of the pen and paper proof of Goh
and Jarecki’s scheme [16] (EDL). In the random oracle model, they show a signature
scheme that is existentially unforgeable under a chosen-message attack (EUF-CMA). The
scheme is constructed over a group where the reduction is based on the hardness of the
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CDH problem. The EDL scheme was firstly presented by Chaum and Pedersen [18] and
Jakobsson and Schnorr [19]; however, their schemes did not include the security analysis.
The scheme remained neglected until Goh and Jarecki proposed the security analysis,
and that is because it was viewed as a modification of the Schnorr signatures [20] before.
To our knowledge, this thesis presents the first machine-checked verification of the EDL
signature scheme using EasyCrypt. During the formalisation of the signature scheme,
the thesis encountered minor mistakes and found overlooked steps in Goh and Jarecki’s
pen and paper proof [16], leading the thesis to imprecise security bounds. However, the
thesis reports a very close bound instead, which is suggested by Chevallier-Mames for
the EDL scheme [17].

After machine-checked formalisation of the first signature scheme (EDL), it was
easier to formally verify the second related signature scheme by Chevallier-Mames (CM)
[17] in EasyCrypt. He also presented the security reduction of the EDL as tightly related
to the CDH problem. He further claims that his signature is efficient, and the results
are smaller than the original EDL signature scheme. The difference in the CM scheme is
that the message is not included in the random oracle query, which served as the second
base for the proof of discrete logarithm equality. Instead, the message is included as
input to the challenge-generating random oracle query, similar to the standard Schnorr
signatures. Consequently, it supports the security of the scheme but without additional
randomness. For the machine-checked proofs, the security reduction of the CM is inlined
with the given original pen and paper proof by Chevallier-Mames.

The pen and paper proofs of both EDL and CM schemes have direct reductions;
however, machine-checked formal verification of the schemes is based on the code-based
game-playing technique advocated by Shoup [15]. During the machine-checked verifica-
tion, both schemes have been reformulated, and the statements of the security reductions
are concrete and constructive. In the formal development of both schemes, the similar-
ities are sought out and then factored in. Both schemes have three formal intermediate
games, which bridge the gap between the EUF-CMA game and the CDH game. The
Shim is extracted after deep insights into those intermediate games and written as an
instance of a common game named Shim. The formalisation effort shows that any two
successive games differ only in the oracles provided to the Shim. The property of the
Shim is to reduce the boilerplate proof amount and focus reasoning on the parts of the
proofs that change between the successive games. The insight gained from the formal-
isation of both schemes directs the thesis to further generalisation, and the research
outlines a novel four-step proof structure (refactorisation, embedding, simulation and
reduction). In the generic structure, the first step is refactorisation which refactors the
EUF-CMA security of EDL as an instance of Shim. The second step is embedding, which
embeds the CDH challenge into the responses of the oracle queries. The third step is
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a simulation, which relies on the zero-knowledge proof. The fourth step is a reduction,
which relies on the soundness of the zero-knowledge proof and underlying CDH problem.
These proof-steps aim to introduce a general approach that can be applied to similar
signature schemes.

The reason for the third machine-checked formalisation began when the thesis
gained the full knowledge of the machine-checked proofs for the EDL and CM schemes.
The thesis argues that one can use the technique extracted from the EDL and CM
schemes that can be applied to similar signature schemes based on a tight discrete
logarithm. So, this thesis shows that the third related signature scheme by Goh, Jarecki,
Katz and Wang [6] (GJKW) can be formalised with the above techniques mentioned,
using the EasyCrypt. However, there are changes in the overall machine-checked proofs
for the GJKW’s scheme. This is because the pen and paper proofs of the scheme are
slightly different from the EDL and CM schemes, but the formalised proofs of the GJKW
delivers the same security, that is, the tight discrete logarithm-based reductions. The
main difference in the pen and paper proof of the GJKW’s scheme is that they have
shortened the size of the scheme to improve the EDL signature scheme and removed
the random salt. The machine-checked formal verification of the GJKW’s scheme shows
that the technique extracted from the EDL and CM scheme has the potential, and one
can apply the techniques to similar digital signature schemes.

The machine-checked formalisation of all three signature schemes EDL, CM and
GJKW are based on discrete logarithm signature schemes. The proofs present a tight
security reduction from the Existential unforgeability under the adoptive Chosen Mes-
sage Attack (EUF-CMA) to the hardness of the CDH problem in the Random Oracle
Model (ROM). The security proofs of the scheme are done through exact security and
reasoned that the CDH problem is almost as hard to solve as the scheme to break. The
formal verification of all three signature schemes shows that they are related to each
other with slight differences in their pen and paper proofs, but the core principles that
make them secure are the same in the EasyCrypt.

1.2 Thesis structure

The thesis is composed of six themed chapters. The first chapter of this thesis identifies
the knowledge gap in the field of study and states the focus, aims, and contributions
to the field. Chapter two overviews the digital signature schemes and introduces the
basic knowledge of cryptography and its security model with its mathematical primi-
tives. Chapter three begins with background knowledge of the formal semantics and
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its notations. This chapter also includes the background definitions of the code-based
game-playing techniques, followed by a game declaration in the EasyCrypt proof assis-
tant. The fourth chapter presents the machine-checked formalisation of the two signa-
ture schemes, EDL and CM, presented at the conference. Chapter five formalises and
machine-checks the scheme of GJKW and presents the dimension of comparing the se-
curity proofs with the EasyCrypt’s proofs to help understand the proof structure. This
chapter also includes a discussion of related and future work. Finally, the last chapter
concludes with a discussion, conclusion and future work of the PhD study.
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Chapter 2

Digital Signature Schemes

This chapter begins with an overview of the signature scheme, which is the main focus
of this thesis. Then it defines some formal definitions and finishes with a discussion.

2.1 Introduction

According to the Cambridge Dictionary, cryptography has two definitions: “the practice
of creating and understanding codes that keep information secret”; and the second “the
use of special codes to keep information safe in computer networks”. The first definition
may refer to classic cryptography, which is the era of the Roman Empire. However, the
second definition is more relevant and involves the term “computers,” which means the
twenty-first century’s modern era.

Over the years, modern cryptography has emerged as a science where schemes are anal-
ysed and developed with rigorous proof to secure cryptographic constructions. The
cryptographic schemes are constructed based on the required specifications and prop-
erties. The difference between classic and modern cryptography is that modern cryp-
tography focuses on three principles formal definitions, having precise assumptions and
the proofs of security. These principles are the key contributions to modern cryptogra-
phy. To have a secure cryptographic scheme, one must clearly describe the scope of the
threats and how it guarantees security. Then the underlying hard assumptions must be
explicitly stated. Finally, the cryptographic scheme requires security proof, giving an
iron-clad guarantee.
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In modern cryptography, digital signature schemes play an essential role and are used
widely to ensure digital data’s integrity, authenticity, and non-repudiation. In modern
cryptography, digital data refers to any form and shape of information represented and
processed digitally. It includes electronic information such as messages, files, documents,
images and videos and all those data and scope that can be stored and transmitted digi-
tally. So, cryptographic algorithms and protocols are designed and constructed to secure
digital data against unauthorised access and forgery. Most of the time, the mechanism
of protecting digital data is to employ encryption, hashing and digital signatures.

2.2 Digital Signatures

One key focus of modern cryptography is developing digital signature schemes, where a
digital signature is constructed to prove secure, relying on computational assumptions.
The idea of the digital signature was first presented by Diffie and Hellman [21]. The
idea served as a conceptual contribution toward modern cryptography, as Diffie and
Hellman were unsuccessful in constructing a digital scheme; however, the idea was later
formalised in the computational assumption by Goldwasser et al. [22].

Digital signatures are cryptographic mechanisms that sign messages and then verify the
message signatures to prove the authenticity of digital messages. It delivers authentica-
tion: a proof that the sender has the private key and signed the message; integrity : a
proof that the message was not modified after the sign; and non-repudiation: once the
signature is made, the signer can not deny it.

A digital signature scheme is widely applied in many industries, especially in the finan-
cial industry, for money transfers, signing transactions in the public blockchain systems
to transfer tokens, coins and assets, and exchanging signed online documents. So it
applies to integrity (or authentication) and non-repudiation. As an authentication ex-
ample, consider Alice, who wants to convince everyone that the message m published
is by her. To do this, Alice generates a public key pk along with a secret key sk and
publishes the public key in some reliable way to all verifiers while keeping her secret
key. Alice generates a digital signature σm on m, signs m using her secret key, and
sends (σm,m) to every receiver. Upon receiving (σm,m), each receiver can verify the
signature σm and confirm the origin of the m with respect to the public key.

The digital signature schemes generally employ a public-key cryptosystem such as
Rivest-Shamir-Adleman (RSA) and Elliptic Curve Cryptography (ECC) and use the
public and private key pairs. The signature scheme has three algorithms: key genera-
tion, signing and verification. Generally, the input message is hashed, and the signing
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Figure 2.1: The private key signs a message, and the corresponding public key verifies
the signature

algorithm calculates the signature. Most of the time, the signing algorithms accomplish
some computations with the hashed message and the signing key so that the result
can not be computed without the signing key. The following diagram 2.1 shows that a
message is signed by the sender using his/her private key.

The computation of the message signature also ensures that the authentic signer signs
a particular message by using his/her private key, which then checks the public key,
which guarantees that the message is authenticated. In addition, if the public key of
the message signer is public, then anyone can verify the signature. After receiving
the signature, the signer can not deny the act of signing, which gives non-repudiation
property.

For verifying the signature, the message for verification is hashed, and mathematical
computations are executed between the digital signature, hashed message and the public
key. Finally, it checks if the signature can be accepted or not.

A digital signature differs from Message Authentication Code (MAC) because MACs
are generated and verified using the same key (private key) via symmetric algorithms. In
contrast, digital signatures are generated by a signing key and are verified by a separate
verification key via asymmetric algorithms. However, both deliver the message with
authenticity and integrity.

The following section delves into the fundamental cryptography concepts, be-
ginning with exploring Mathematical Primitives. These mathematical building blocks
form the backbone of cryptographic algorithms and protocols.
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2.2.1 Mathematical Primitives

In modern Cryptography, the schemes can be written with mathematical primitives for
security reduction; then, one can define the hard problem over the same mathematical
primitives, which means that one breaks the scheme by solving the mathematically hard
problem. For instance, if schemes are constructed in a cyclic group G, the underlying
hard problem must be determined over the same group. So, the aim becomes to prevent
the attacker’s attack, which can either be computational or decisional in the security
reduction. However, it is very challenging to lessen the attacks on the scheme to solve the
hard problem because the instance of the hard problem and the schemes are produced
separately. For instance, a proposed scheme is substituted with another well-prepared
scheme in the reduction process, which correlates with a problem instance.

Furthermore, it is essential to be familiar with the following concepts in security re-
duction. In the following section, specific mathematical terminology extracted from the
source [23] will be cited.

Computation over Prime Field

The prime field (Fq) comprises exclusively numerical entities drawn from the set Fq =

{0, 1, 2, ..., q − 1}. The following illustrates the various modular arithmetic operations
conducted over the prime field.

Additive Inverse: Given an arbitrary element y ∈ Zq, one can proceed to derive

−y mod q.

Multiplicative Inverse: Given an arbitrary element z ∈ Zq∗, one can proceed to
derive

1/z = z−1 mod q.

Addition: Given an arbitrary element y, z ∈ Zq, one can proceed to derive

y + z mod q.

Multiplication: Given an arbitrary element y, z ∈ Zq, one can proceed to derive

y · z mod q.
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Exponentiation: Given an arbitrary element y, z ∈ Zq, one can proceed to derive

yz mod q.

Cyclic Group

The cyclic group (denoted as G) of prime order q uses an integer in {1, 2, ..., q − 1} in
modular multiplicative inverse to construct the schemes. For instance, gx is the group
element of G and g1/x is a group element, and any group element except 1G in G is the
generator (denoted by g).

Group Exponentiation: Consider a cyclic group denoted as (G, g, q). To establish
the notion of group exponentiation within this framework, one can define the expression
gx as follows:

gx = g · g · · · g · g︸ ︷︷ ︸
x

where x the positive integer.

So, the group exponentiation becomes

gx = gx mod q

where x is picked from the set Zq.

2.2.2 RSA signatures

RSA is a widely used cryptographic algorithm that can be utilised for digital signature
schemes. The security of RSA-based digital signatures relies on the computational infea-
sibility of certain mathematical operations, such as factoring large composite numbers
or computing discrete logarithms. The RSA algorithm’s strength in these areas makes
it challenging for adversaries to forge a valid signature without access to the private
key. Furthermore, the RSA signatures can be deterministic, where the exact message
and the private key produce the exact signature and non-deterministic, where they can
be created by padding the input message with randomness before the sign. RSA signa-
tures are employed for signing digital certificates to safeguard websites. For instance,
Microsoft uses SHA256RSA for its digital certification. Regardless, the recent trend is
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Gen : on input 1n run Gen(1n) to obtain (N, e, x). The public key is ⟨N, e⟩
and the secret key (sk) is: ⟨N, d⟩, where ed = 1 mod Φ(N).

Sign : on input a secret key and message m ∈ Z∗
q , and output is

σsk(m) :=
[
md mod N

]
.

Ver : on input the public key, a message, and a signature, pk = ⟨N, e⟩,m ∈ Z∗
q , and σ ∈ Z∗

q

respectively , output 1 if m = σe mod N , output 0 otherwise.

Figure 2.2: Plain RSA signature scheme

to move from RSA to ECC signatures due to the shorter key lengths and signatures
while providing high security and performance.

Public-key encryption is one of the essential aspects of public-key cryptography and
has many uses, such as key exchange and data confidentiality. However, some might
assume that digital signatures are the inverse of public-key encryption, with the in-
terchangeable functions of the sender and receiver. The mistake often arises because
the plain Rivest–Shamir–Adleman(RSA) signatures reverse the plain RSA encryption.
That means signing a message m by decrypting it, using the private key to get the sig-
nature σ and verifying a signature σ by encrypting it using the public key and checking
if the result is message m. This type of scheme construction is unfounded and simply
inapplicable in cases where it can be used insecurely. So, both plain RSA and plain
RSA encryption meet the slimmest notions of security, discussed next.

2.2.3 Plain RSA

Although the RSA-based signature scheme meets the minimal notions of security, it can
be a valuable starting point.

The following figure 2.2 defines the construction of the plain RSA signature scheme [24],
where it considers Gen be a PPT algorithm that, on input 1n, outputs a modulus N that
is the product of two n-bit primes, with integers e, x satisfying ex = 1 mod Φ(N). Plain
RSA applies Gen and outputting ⟨N, e⟩ as the public key and ⟨N, x⟩ as the private key
to generate keys. To sign a message m ∈ Z∗

N , the signer computes σ := [mx mod N ].
Verifying a signature σ on a message m for the public key ⟨N, e⟩ is brought out by
checking whether m

?
= σe mod N .

So the verification of a successfully generated signature is

σsk(m)e = (md)e = m[ed mod Φ(N)] = m1 = mmod N.
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One can view it as secure, as for any adversary learning only the public key ⟨N, e⟩;
computing a successful signature on a message m appears to mandate solving the RSA
assumption. However, the above reasoning is inaccurate because, for one thing, the RSA
problem only insinuates the hardness of computing a signature of a uniform message
m. It does not express the hardness of computing a signature on non-uniform m or, for
some message m of the adversary’s preference. Also, the RSA problem does not state
anything regarding the adversary’s behaviour once she learns about the signatures on
other messages.

The following instance shows that the above comment conducts an attack on the plain
RSA signature scheme.

A no-message attack This attack yields a forgery of operating the public key in-
dependently and without acquiring any signatures from the valid signer. The attack
ensues with a public key pk = ⟨N, e⟩, picks a uniform σ, calculates m, and outputs the
forger (m, σ). It is a forgery that σ is a valid signature on message m, as the public key
proprietor did not assign the signature.

It is not a real attack as the adversary has no power over the message m. For that, it
forges a valid signature. Additionally, the adversary can control message m by picking
uniform values of σ, and it could be with a high probability of getting message m in
some settings. By choosing σ in some desired way, there is a possibility to exploit the
consequent message m for which a forgery is a result.

2.2.4 Signatures from Hash Functions

In contrast to public-key encryption, signature schemes can also be formed based on
hash functions. In such settings, the scheme does not rely on random oracles as opposed
to the initial construction. Examples of signature schemes based on cryptographic hash
functions are Lamport’s signature [25], Chain-based signatures [26], and Tree-based
signatures [27]. The details of such construction are irrelevant, so the section is short.

2.3 Exploring Cryptographic Concepts

2.3.1 Hash Function

Hash functions are utilised so that one securely embeds strings of any length into group
elements and exponents, enhancing the computational efficiency without employing the
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large group. The security of group-based cryptography even relies on hash functions,
and if the hash functions are violated, then the scheme is no longer secure.

The details about the hash function are explained later, and here it briefly explains the
types. When the input is an arbitrary string, hash functions are categorised into the
following types.

H : {0, 1}∗ → Zq. This type embeds the hashing values in group exponents when the
input value is not in the space of Zq. The output space is {0, 1}, where q is the group
order.

H : {0, 1}∗ → G. This type hashes the input string into a group element when the
output space is a cyclic group.

H : {0, 1}∗ → {0, 1}n. This type generates a symmetric key from the key space {0, 1}
for encryption when the output space is the set containing n-bit strings.

2.3.2 Random Oracle model (ROM)

During the security reduction of the proposed scheme, the random oracle (RO) O is
adopted to illustrate an ideal hash function. The ideal hash function is denoted as H,
and the output of the distribution result is uniformly and randomly. The proposed
scheme uses the H, particularly as the primitives, and H is treated as a RO. The oracle
acts as a box. All parties, in addition to the attacker, can interact with the box, takes
a binary string x as an input, and returns a binary string y as an output; which refers
to that x made a query to the oracle. The querying is kept secret; no party can learn
who made the queries if someone queries the oracle. The box also has the property
of "consistency," which means that if the box returns y for some x, so then it always
returns the same result y once provided the same x again.

In security reductions, it is essential to know the difference between random oracles and
hash functions.
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Hash function Random oracle

Given the arbitrary string x, the attacker
has the knowledge of the hash functions H
so that she can compute H(x).

Given the arbitrary string x, the attacker
does not have the knowledge of the H(x)

if hash function was set as a RO unless it
was queried x to the RO.

The same input space plus the number of
inputs to H are exponential.

The same input space and the number of
inputs to RO are polynomial.

The output space is the same and relies
on the description of H. Given the input,
the results from H are defined by the in-
put and the algorithm of H. The output
from H is not required to be uniformly dis-
tributed.

The output space is the same, depend-
ing on the description of H. Given the
input, a simulator can define the output
from RO, which can control the RO. The
output from RO must be random and uni-
formly distributed.

In the ROs, the security proofs can become more effortless compared to those ROs
which do not. The reason is that ROs are accommodating the simulator to program the
reduction, and also, the simulator handles picking some random output which makes
the attacker apply attacks.

Computational and Decisional

Earlier, it was mentioned that the attacks could be computational or decisional to solve
the hard problem. In a computational attack, the attacker wins the game by forging a
valid signature not asked before. Whereas in a decisional attack, the attacker guesses
the message and guesses with either 0 or 1.

Loose and Tight Reduction

Tight and loose reductions are used to estimate the security reduction loss. According
to Micali and Reyzin, "A reduction in which the difficulty of forging and the difficulty
of solving the underlying hard problem are close is called tight; otherwise, it is called
loose" [28]. They put it close if the reduction is less efficient and loose if it is significantly
less efficient. The tight reduction is when the reduction loss is small; for instance, the
number of queries is sub-linear. The simulator makes the signature queries on a message,
and the relation between the hard problem and the difficulty of the forged signature
can be quantified. So, given the definition of the hardness of the underlying problem,
the security of a signature is called tight: if some problem is (t′, ϵ′, δ′)-secure, then the
signature scheme is (t, ϵ, δ, qhash, qsig)-secure. If t is smaller than t′ and epsilon ϵ, δ is
larger than ϵ′ and δ′ and also independent of the attacker’s queries, be it hash (qhash)

or signature (qsig) queries.
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The loose reduction is when the reduction loss is linear during the queries; for instance,
the attacker makes the number of hash and signature queries.

Negligible function

The negligible function represents how large the function can be with its probability.
The formal definition can be defined as follows:

Definition 1. A function µ is negligible, if for all constants c ∈ N , ∃n ∈ N such that

for n > N , µ(n) < 1
nc .

2.3.3 Distinguishing the Given Scheme

The attacker can distinguish the real scheme from the simulated ones by their random
numbers and correctness.

Randomness

In the simulated scheme, the random number and group element should be independent
and random. The attacker can effortlessly find if the scheme is simulated; or if the real
scheme did not produce a random number or random group element independently and
randomly, causing the simulated scheme not to generate random numbers. Random
numbers can be used in digital signatures and many other constructions.

The following paragraphs introduce the concept of randomness briefly.

Random numbers Numerous digital signature schemes depend on random numbers
that are distinctive and non-predictable. The random numbers are also understood as
a digital signature’s ephemeral key, session key and nonce. The private signature keys
can be compromised if the random number generators fail due to underlying interactive
zero-knowledge proof (will be explained later). A notable instance of reusing the ran-
dom numbers is when Sony Playstation3 reused it, which compromised the signature
keys [29]. In the last few decades, the trend has been to use deterministic signature
schemes as they are considered more securer to implement.

Pseudorandomness After defining and explaining the securities, it is now easier to in-
troduce pseudorandomness, which grabs the concept that appears entirely random even
though it is not. Pseudorandom generators (PRNG) play an essential part in private-key
encryption. It refers to an efficient and deterministic algorithm that uses mathematical
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formulas from a uniform string called a seed to produce a uniform-looking sequence
(pseudorandom). The result of a PRNG should be computationally indistinguishable
from a uniform string.

Pseudorandom Functions(PRF) The origin of the name, Pseudorandom Functions,
can be seen as a long string of random numbers. The string is the function’s truth
table, where a distinguisher interacts with the functions. The result would be a random
function, a function whose truth table is picked uniformly at random, which means that
the result of the pseudorandom generator appears to be a uniformly yielded string to
the efficient viewer.

Correctness

The attacker can also distinguish the simulated scheme from the real by correctness.

In the simulated scheme, all answers to queries by the attacker should be identical to
the real scheme. Consequently, the attacker gets the corresponding answers when she
queries the simulated scheme. So, if the answer is not valid, then the attacker can easily
guess whether the scheme is simulated, and that is because the real one only correctly
answers all the queries. For instance, the attacker guesses the signature scheme to be
simulated if the message’s signature cannot verify.

Several other security settings of signature schemes are defined by Micali, Rivest
and Goldwasser [22, 30]. This motivates an emphasis on discrete-logarithm-based prob-
lems and concrete signature schemes based on the RSA problem, and the RSA was
explained earlier already. The following section explains the discrete logarithm prob-
lem.

2.3.4 Discrete-Logarithm

The discrete logarithm problem (DL) is considered one of the most difficult problems
to solve in cryptography and has been used in many security protocols. The famous
security protocol which uses the discrete logarithm problem is the Diffie-Hellman key
exchange. In this protocol, two parties, Alice and Bob, decide on some primitive root
g and prime order p. Alice chooses a secret integer a, and Bob chooses b. When both
parties choose their secret integers, Alice sends ga mod p to Bob, and similarly, Bob
sends gb mod p to Alice. In order to have a secure session with each other publicly, both
parties use their secret key. For instance, the first party (Alice) takes the second party’s
(Bob) group element gb and raises it with its secret exponent a, which gives (gb)a = gab.
Similarly, the second party (Bob) takes the first party’s (Alice) group element ga and
raises it with its secret exponent b and gives (ga)b = gab. The computation of both
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parties gives the same result, gab mod p as gab ≡ (ga)b ≡ (gb)a( mod p). So, in this
way, given ga, gb, g and p, no adversary can find gab without knowing either a or b,
which asks to solve the discrete logarithm problem.

Cryptography’s discrete logarithm problem is one of the most studied number theoretic
problems. Now, let us say that G is the cyclic group and g is g ∈ G, and x is the integer,
and computation is y = gx mod p. So, the inverse of this computation is said to be a
discrete logarithm problem which is to solve gx ≡ y( mod p) for x.

Discrete logarithms are logarithms described for multiplicative cyclic group G. Next, it
defines the discrete logarithm problem formally.

Definition 2. Given a group G, a generator g of a group and an element h of G; an

integer x satisfies gx = h, then DL to the base g of h in the group G. So, to compute

x is known as the DL problem.

The DL problem is one of the fundamental problems in cryptography as there is no
polynomial-time algorithm to solve the discrete logarithm problem in a cyclic group.

The discrete logarithm problem based schemes shown to be secure in the Random Oracle
(RO) model [31] (ROs will be discussed later) include the Schnorr Signature [20], the
EDL scheme [18, 16], an ElGamal scheme [32] variant suggested by Pointcheval and
Stern [33], and Girault-Poupard-Stern scheme [34, 35]. The underlying concept is to
run the adversary twice with different hash oracles to get two valid forgeries on the
same message. The following subsection describes the Schnorr Signature Scheme first,
then the Schnorr Identification Scheme, followed by the Fiat-Shamir transformation.

2.3.5 The Schnorr Signature Scheme

The scheme was described by Claus Schnorr [20], derived from the Schnorr’s identifica-
tion protocol [36] using the Fiat–Shamir heuristic [37]. The security stands in the RO
model using the forking lemma [1] on the interactivity of discrete logarithm problem.
This signature scheme is considered simple, efficient, generate short signatures, and is
provably secure in the random oracle model (see Figure 2.3).

The following subsection describes the high-level intuition of the Schnorr identifica-
tion scheme using the diagram.
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Gen : picks a random secret key x ∈ Zq, sets y = gx.

Sign : on input secret key x and message, the Signer picks random k ∈ Zqand sets I = gk.

It calculates r = H(I,m)(H is function specified as part of key generation ),

computes s = rx+ kmodq.Then sends the signature (r, s).

Ver : on input public key, a message, a signature (r, s), calculates I = gs · y−r.

Finally checks if r ?
= H(I,m).

Figure 2.3: Schnorr Signature Scheme

2.3.6 Schnorr Identification Scheme

In this scheme, two parties, a Prover and a Verifier, interact. The goal of this scheme
is that Prover wants to convince Verifier that he/she knows the secret knowledge;
however, Verifier should not learn the secret information. To show the security notion
of the scheme, the Prover chooses a random x ∈ Zq (secret key) and sets y = gx. The
protocol has three rounds to protect against the eavesdropping attack (see Figure 2.4).

1. The Prover chooses a random k ∈ Zq, sets I = gk, and sends I to the Verifier.

2. The Verifier chooses a random challenge r ∈ Zq and sends it to the Prover as a
response.

3. The Prover computes s = rx+ k and sends s to the Verifier.

The Verifier accepts if and only if I = gs · y−r, which intuitively means that if the
legitimate Prover completed the protocol accurately, then the Verifier must always
accept.

The above protocol 2.4 can be transformed into non-interactive using the Fiat-Shamir
transformation [37], assuming a secure hash function H exists (see Figure 2.5). The
intuition is that both Prover and Verifier have access to the hash function modeled as
a random oracle, and Prover acts as a Signer and runs the identification protocol by
itself. The Prover computes I, sets r = H(g, I, y), computes s, and sends (r, s) to the
Verifier. On the other hand, Verifier computes I ′ = gs · y−r and accepts if and only if
r

?
= H(g, I ′, y).

The Schnorr non-interactive zero-knowledge proof can be obtained from the inter-
active identification scheme through the Fiat Shamir transformation. So, the following
section introduces the high-level description and some formal definitions of the zero-
knowledge proofs.
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Prover Verifier

k←$Zq

I = gk I

r ∈ Zq

r

s = rx+ k mod q

s Checks: I ?
= gs · y−r

Figure 2.4: Schnorr Identification Scheme

Prover Verifier

k←$Zq

I = gk

r = H(g, I, y)

s = rx+ k mod q (r, s) I ′ = gs · y−rand checks r ?
= H(g, I ′, y)

Figure 2.5: Non-interactive Schnorr

2.3.7 Zero-Knowledge Proofs (ZKPs)

The Zero-Knowledge Proofs (ZKPs) were first introduced by Goldwasser, Micali, and
Rackoff [38]. The basic idea behind ZKPs is that it is a protocol between Prover and
Verifier. In the protocol, the Prover convinces the Verifier that it has some secret
information, and Verifier validates the claim without requiring the Prover to reveal
any underlying information about its secret information. In this way, the Verifier does
not learn anything about the information at all. The proposed model in [38] allows the
Prover to validate the argument with Verifier through several rounds of interaction,
called interactive Zero-Knowledge proofs or just simply Zero-Knowledge proofs. A well-
known practical application of ZKPs is in the Trusted Platform Module (TPM) [39]
and in the blockchain world [40, 41].

One can define an interactive proof system ⟨P, V⟩ as a Zero-Knowledge if, for any V ′, a
simulator S produces a transcript of the conversation between P and V ′ on any provided
input x. So, from the interaction with P can not lead V ′ to compute something that was
not computed before. Also, Goldwasser, Micali, and Rackoff [38] define the definition
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of the interactive proof system ⟨P, V⟩ for a language L as Zero-Knowledge; either the
⟨P, V⟩ is a proof system for language L, or it is not. Their formal definition is: for
polynomial time V ′, the distribution that V ′ can see on all its tapes while interacting
with P on input x in language L, is indistinguishable from a distribution that can be
computed from x in polynomial time [38].

Now that we have the intuition that a proof system is said to possess Zero-Knowledge
property if, following the interaction, the Verifier ’s knowledge remains unchanged be-
cause no new information is acquired that surpasses the knowledge that could have been
obtained independently. Then the formal definition is:

Definition 3. A proof system ⟨P, V⟩ for a language L is considered Zero-Knowledge if,

for every efficient Verifier strategy V ′, there exists an efficient probabilistic algorithm

S′ (simulator) such that, for every x belonging to L, the random variables denoting the

output of V ′ after interacting with P on input x and the output of S′ on input x are

computationally indistinguishable.

In other words, the Zero-Knowledge property asserts that the Verifier ’s knowledge
remains unaffected by the interaction with the Prover. Regardless of the algorithm V ′

employed by the Verifier, any information gained from the interaction can be equally
obtained by running the stand-alone algorithm S′ on the same input. Therefore, the
Verifier ’s knowledge acquisition is independent of the interaction and solely relies on
the inherent properties of the input.

Earlier, we saw the Schnorr Identification scheme (see Figure 2.4), which was the
recurrence of three round protocol. The Prover sent a message I as commitment, and
the Verifier sent a random r-bit string as a challenge. The Prover sent a response
as s, and the Verifier checks. So, the soundness of such protocol can be proved with
special-soundness. It can be defined as there exists an extractor that, on given input
x, for any set of n valid transcripts and, in this case, pair of transcripts (I, r, s), (I, r′, s′)
with sharing the same commitments but having different challenges such as r ̸= r′. In
other words, if a Prover can produce two or more valid proofs for the same instance, the
special soundness property guarantees that there are different valid witnesses associated
with each proof.

A Zero-Knowledge proof for L is a three-round interactive protocol between a Prover
and a Verifier, satisfying the following properties:
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1. Completeness
This property is considered the high probability that if Prover tells the truth,
then Verifier eventually be convinced that the Prover is telling the truth. Also,
if the input is correct, then ZKP always return true.

Definition 4. Formally one can define completeness as a game between two par-

ties, Prover and Verifier. Let ϵ−completeness be a small positive value, and then

the game proceeds as follows; the Prover receives an input x. On the other hand,

Verifier sends a challenge c to the Prover, whereas the Prover now responds with

a proof Π based on challenge c. The Verifier then checks the validity of proof Π

based on the input x and challenge c. Hence, the completeness property is sat-

isfied if, for every valid input x, there exists an honest Prover that can convince

the Verifier in the game with a probability equal to 1, and Verifier accepts the

proof Π as valid. .

So one can say that if x is in language L, then on input x, Prover and Verifier with

the given x interact, and once the interaction is completed, the Verifier outputs

Accept with a probability of at least 1.

2. Soundness
This property is considered the low probability that Prover can only convince the
Verifier if it tells the truth, and if the input is incorrect, then it is not possible
to fake the output to the Verifier that it is true, or it is not possible to trick the
ZKP to return true.

Definition 5. Formally one can also define soundness as a game between two

parties, Prover and Verifier. Let ϵ − soundness be a small positive value, and

then the game proceeds as follows; the Prover receives an input x, which is either

true or false. The Verifier then selects a random challenge c, and the Prover

responds with a proof Π based on the challenge. Finally, the Verifier checks proof
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Π’s validity based on input x and challenge c. Hence, the soundness property

is satisfied if, for every dishonest Prover, let us say Prover′, the probability that

the Verifier accepts an incorrect input x′ is less than or equal to ϵ− soundness.

Ultimately, no cheating Prover can convince the Verifier of an incorrect input

with a probability greater than ϵ− soundness.

So one can say that if x is not in language L, then on input x, Prover and
Verifier with the given x interact, and once the interaction is completed, the
Verifier outputs Reject with a probability of at least 1

2 .

3. Zero-knowledge
In this property, the Verifier does not learn anything about the Prover ’s secret
information. This property can be view as if the input is valid; then the Verifier
does not learn any information except that the input is valid, and the information
about the statement will not be revealed.

Definition 6. Zero-knowledge can be defined through a game where three par-

ties are involved: Prover, Verifier and a Simulator. The game proceeds such that

the Verifier selects a random challenge c and the Simulator interacts with Ver-

ifier without access to the Prover. It constructs a transcript of the interaction

that is statistically indistinguishable from the transcript of the real interaction

between the Verifier and Prover. Finally, the Verifier cannot determine whether

the transcript was generated by the Simulator or by a real interaction with the

Prover. Hence, the zero-knowledge property is satisfied if, for every Verifier, there

exists a Simulator that can construct a valid transcript indistinguishable from a

real interaction, regardless of the Verifier ’s knowledge or computational power.

This property ensures that the Verifier learns no additional information about

the statement’s truthfulness beyond the fact that it is true.

One can also define the zero-knowledge of a proof system ⟨Prover, Verifier⟩ for
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a language L holds for every Verifier ; there exists a probabilistic algorithm as
Simulator S such that for all x ∈ L, the following random bits are computationally
indistinguishable:

• After the interaction, the output of the Verifier with Prover on x.

• The output of S on x.

So in this way, the Verifier will only learn information from their interaction with
the Prover, as its power is very limited in this case.

Intuitively, an interactive proof system is zero-knowledge if the Verifier does not learn
anything from the interaction other than the statement is true; even the Verifier deviates
from the protocol.

Furthermore, the Zero-Knowledge property has three variants: perfect Zero-Knowledge,
statistical Zero-Knowledge, and computational Zero-Knowledge. If the probability dis-
tributions are identical, it is called perfect Zero-knowledge. If the two probability distri-
butions are statically close, then it is referred to as almost-perfect Zero-Knowledge. On
the other hand, if the computation can not distinguish the two probability distributions,
then it is called computational Zero-Knowledge. The following are the formal definitions
of the invariants.

Definition 7 (Perfect Zero-Knowledge). A proof system ⟨P, V⟩ for a language L is

said to be perfect Zero-Knowledge if there exists an efficient probabilistic polynomial-

time simulator S that, for every x ∈ L, can generate a transcript that is perfectly

indistinguishable from a real interaction between an honest Prover and Verifier, without

revealing any additional information about x.

So, for all efficient verifiers V ′ and for every x ∈ L, the following holds:

Pr[V ′(x, P (x)) = 1] ≈ Pr[V ′(x, S(x)) = 1],

where Pr is the probability and ≈ denotes computational indistinguishability. The
V ′(x, P (x)) denotes the output of Verifier V ′ when interacting with the honest Prover
P on input x, and V ′(x, S(x)) denotes the output of Verifier V ′ when interacting with
the simulator S on input x.
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Now, this equation implies that Verifier V ′ accepting the proof generated by the honest
Prover and the probability of Verifier V ′ accepting the proof generated by the simulator
are computationally indistinguishable. This means that no matter how sophisticated
the Verifier V ′ is, there exists a simulator S that can produce an interactive transcript
that is indistinguishable from a real interaction, providing perfect Zero-Knowledge.

The concept of perfect Zero-Knowledge ensures that the Verifier learns absolutely noth-
ing about the witness or any additional information that could be used to deduce it.
The proof system is designed in a way that the Verifier ’s knowledge remains com-
pletely unchanged, even in theory, thereby preserving the highest level of privacy and
confidentiality.

The following definition is the definition of statistical Zero-Knowledge.

Definition 8 (Statistical Zero-Knowledge). A proof system ⟨P, V⟩ for a language L is

said to be statistical Zero-Knowledge if there exists an efficient probabilistic polynomial-

time simulator S, a negligible function ϵ, and a security parameter n, such that, for all

efficient verifiers V ′ and for every x ∈ L.

So, the following holds:

|Pr[V ′(x, P (x)) = 1]− Pr[V ′(x, S(x)) = 1]| ≤ ϵ(n),

where Pr denotes probability, V ′(x, P (x)) denotes the output of Verifier V ′ when in-
teracting with the Prover P on input x, V ′(x, S(x)) denotes the output of Verifier V ′

when interacting with the simulator S on input x.

Now, this equation implies that the statistical distance between the two distributions is
negligibly small as the security parameter n increases. The definition ensures that the
Verifier’s knowledge of the witness, obtained through the proof system, is indistinguish-
able from the knowledge that could have been gained by interacting with the simulator
alone.

The following definition is the definition of computational Zero-Knowledge.

Definition 9 (Computational Zero-Knowledge). A proof system (⟨P, V⟩ for a language

L is said to be a computational Zero-Knowledge if, for every probabilistic polynomial-

time algorithm V ′, there exists an efficient probabilistic polynomial-time simulator S,
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a polynomial function p and security parameter n, such that, for every x ∈ L, the

following holds:

|Pr[V ′(x, P (x)) = 1]− Pr[V ′(x, S(x)) = 1]| ≤ 1/p(n),

where Pr denotes probability, V ′(x, P (x)) denotes the output of Verifier V ′ when in-
teracting with the Prover P on input x, V ′(x, S(x)) denotes the output of Verifier V ′

when interacting with the simulator S on input x.

Now, the equation implies that the absolute difference between the probability of Verifier
V ′ accepting the proof generated by the honest Prover and the probability of Verifier
V* accepting the proof generated by the simulator is bounded by the reciprocal of a
polynomial function p(n).

The definition ensures that regardless of the probabilistic polynomial-time algorithm
used by the Verifier, there exists a simulator which is capable of producing a proof that is
indistinguishable from the one produced by the Prover. Although the Verifier may have
some knowledge or information after the interaction, this knowledge is computationally
negligible and difficult to extract useful information from.

Alternatively, Blum, Feldman, and Micali [42] proposed another model called non-
interactive zero-knowledge proofs (NIZK). In this model, a trusted third party, the
dealer, generates a reference string randomly and shares it between the Prover and
Verifier. After generating the reference string, the Prover sends a single message to the
Verifier, who will decide whether to accept or reject. So, NIZK and ZKP are related
cryptographic concepts that share some similarities but also have distinct differences in
their properties.

Interactivity: One key distinction is the level of interactivity required in the protocols. In ZKP,
multiple rounds of interaction occur between the Prover and Verifier, with the
Prover providing responses to challenges posed by the Verifier. On the other
hand, NIZK protocols are designed to be non-interactive, meaning they require
only a single round of interaction. The Prover generates a proof independently
and sends it to the Verifier without the need for further communication.

Efficiency: NIZK protocols are generally more efficient than ZKP protocols in terms of com-
putational overhead and communication complexity. The non-interactive nature
of NIZK allows for streamlined execution without the need for real-time back-and-
forth exchanges, resulting in faster and more practical implementations.
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Soundness: Both NIZK and ZKP protocols aim to achieve soundness, which ensures that a
dishonest Prover cannot convince the Verifier of a false statement. However, the
level of soundness may vary depending on the specific protocol and the underlying
assumptions. In general, NIZK protocols strive for soundness under computational
assumptions, whereas ZKP protocols often aim for perfect soundness, meaning
that even computationally unbounded adversaries cannot be deceived.

Completenes and Zero-Knowledge: Both NIZK and ZKP protocols possess completeness, mean-
ing that an honest Prover can convince an honest Verifier of a true statement.
Additionally, both aim to achieve zero-knowledge, where the protocol reveals no
additional information other than the validity of the statement. However, the
specific techniques and assumptions used to achieve zero-knowledge may differ
between NIZK and ZKP protocols.

Overall, the main difference lies in the level of interactivity and the resulting efficiency
of the protocols. NIZK protocols prioritise non-interactivity for efficiency gains, while
ZKP protocols involve multiple rounds of interaction at the expense of increased com-
putational and communication overhead. Moreover, the interest of this thesis is more in
special soundness and honest verifier zero-knowledge. The informal definitions of these
two properties are defined below.

Definition 10 (Special Soundness in NIZK). A NIZK protocol satisfies the Special

Soundness property if, for any efficient adversary that can produce two accepting tran-

scripts for the same statement, there exists an efficient algorithm that can extract the

Prover ’s secret witness information without knowing the secret witness itself.

The Special Soundness property ensures that if an adversary can produce multiple valid
proofs for the same statement, it must have access to the secret witness information
used in the proofs. The existence of an efficient extraction algorithm that can recover
the secret witness from two accepting transcripts guarantees that the protocol is secure
against malicious provers who attempt to generate multiple convincing proofs without
possessing the necessary knowledge of the secret witness.

Definition 11 (Honest Verifier Zero-Knowledge in NIZK). A NIZK protocol satisfies

Honest Verifier Zero-Knowledge if, for every efficient Verifier algorithm V , there ex-

ists an efficient simulator algorithm S that, given an input statement, can produce a
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transcript that is indistinguishable from the transcript obtained by interacting with an

honest Prover. This indistinguishability holds even if V is replaced with any efficient

adversary algorithm that interacts with S.

In other words, the honest Verifier, interacting with the real Prover, cannot distinguish
between the actual execution of the protocol and interaction with the simulator. The
simulator S is capable of generating transcripts that are indistinguishable from those
produced during a real interaction without having access to the Prover ’s secret infor-
mation or the witness used in the proof. The property ensures that the Verifier does
not learn any additional information beyond the statement’s validity, even against a
computationally unbounded adversary.

Earlier, we have seen how the Fiat-Shamir transformation technique converted in-
teractive identification schemes, such as the Schnorr Identification Scheme, into non-
interactive signature schemes. This transformation replaces the interactive challenge
generation step with a deterministic computation using a hash function. One can ap-
ply the Fiat-Shamir transformation to convert the Schnorr Identification Scheme into a
signature scheme. Additionally, the non-interactive zero-knowledge (NIZK) property is
closely related to this transformation. The Fiat-Shamir transformation is a key compo-
nent in constructing NIZK proofs. By applying the transform to interactive protocols,
one can convert them into non-interactive proofs, achieving the NIZK property. In the
context of Schnorr’s protocol, applying the Fiat-Shamir transformation turns it into a
non-interactive signature scheme that possesses the NIZK property. The NIZK property
ensures that proof can be generated without any further interaction between the prover
and verifier. It allows the prover to convince the verifier of a statement’s truthfulness
without revealing any additional information. The Fiat-Shamir transformation enables
the conversion of interactive identification schemes into NIZK proofs, facilitating non-
interactive protocols while preserving the security properties of the original scheme.

2.4 Background Definitions

Having gained an understanding of the foundational concepts and role of signature
schemes in modern cryptography, we now turn the reader’s attention to the formal def-
inition of the signature scheme and the Computational Diffie-Hellman (CDH) problem.
The CDH plays a significant role in signature schemes, and it is a mathematical problem
which serves as the foundation for the security of the signature schemes.
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The following subsections define the formal definitions of the Computational Diffie-
Hellman problem, the signature scheme and the existential unforgeability under chosen
message attack (EUF-CMA). Furthermore, the thesis also formally defines the EUF-CMA
in the random oracle model. These two definitions are formally defined with code-based
game-playing proofs to emphasise the need for a precise and rigorous specification of
the cryptographic primitive. However, the thesis first briefly explains the code-based
game-playing techniques concerning its security notion so that one can understand the
formal definitions defined in this chapter. Nonetheless, these brief introductions will be
explained in more detail in Chapter 3.

Code-Based Game-Playing Proofs and Exact Security

Cryptographic proofs often rely on complexity theoretic reductions, constructing an
adversary against some hardness (or statistical) assumption from an adversary against
the construction under study.

If early cryptographic proofs were indeed presented much like complexity theoretic re-
ductions, the complexity of modern assumptions and constructions, the difficulty of rea-
soning rigorously about probabilistic algorithms, and the desire to use security proofs to
inform parameter selection (and in particular key sizes) have led to a shift towards code-
based game-playing security proofs [15]. These proofs still construct a reduction, but
do so step-by-step—with each step called a game, allowing careful reasoning about the
relation between the probabilities of events in successive games, and isolating complex
events whose probability must be reasoned about.

Further, assumptions, constructions, security notions, and intermediate games are ex-
pressed as simple programs. This provides clarity in the definitions, but also helps
reason about the complexity of the reduction and its tightness, stepping away from
asymptotic results and providing concrete (or exact) security claims for given security
parameters.

This research does not use the full power of the methodology. Instead, it will only rely
on proving statements of the following form, with D1 and D2 distributions, and E1 and
E2 events defined over the relevant distribution’s support.

Pr[D1 : E1 ] ≤ Pr[D2 : E2 ]

In places, it will also prove statements that involve some additional failure event F2
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defined over the support of D2.

Pr[D1 : E1 ] ≤ Pr[D2 : E2 ] + Pr[D2 : F2 ]

It will do so simply by proving the following and applying the union bound.

Pr[D1 : E1 ] ≤ Pr[D2 : E2 ∨ F2 ]

The distributions we consider are quite often defined by probabilistic programs with
specified inputs. Code-based game-playing proofs, and their formalisation in EasyCrypt,
leverage this by allowing a proof relating two distributions to be lifted from a proof
relating the two programs that produce them.

EasyCrypt

This research utilises EasyCrypt1 [43], which is an interactive proof assistant designed to
construct machine-checked game-based cryptographic proofs. Cryptographic games and
definitions are modelled as probabilistic procedures (with random sampling, conditional
statements, loops and procedure calls) over a language of expressions that can be user-
extended with various mathematical and data structures.

In addition to the usual features of an interactive proof assistant, EasyCrypt features
specialized program logics to reason about probabilistic equivalences between programs
(in the probabilistic Relational Hoare Logic; pRHL), and to directly reason about prob-
abilities of events in given programs (in the probabilistic Hoare Logic; or pHL). We now
explain how statements in these logics map to the practice of game-based proofs.

pRHL Judgments

A pRHL judgment of the form
{Φ} c1 ∼ c2 {Ψ}

where c1 and c2 are programs, and the precondition and postcondition Φ and Ψ (respec-
tively) are relations between the memories of c1 and c2, can be used to prove—for any

1https://www.easycrypt.info

https://www.easycrypt.info
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pair of memories m1, m2 such that m1 Φ m2—that

Pr[c1 @ m1 : E1 ] ≤ Pr[c2 @ m2 : E2 ]

whenever for any pair of memories m′
1 and m′

2, such that m′
1 Ψ m′

2, we have E1(m
′
1)⇒

E2(m
′
2). The notation c @ m defines a distribution over final states by defining some

code c and an initial memory m in which that code is executed. In the following
and in our formal definitions, we always consider top-level games whose behaviour is
independent of the initial memory (by ensuring that all variables are defined before
use). We therefore omit initial memories where possible in the remainder of this paper.

pRHL for equivalence up to failure For readers who wish to match paper state-
ments here to the formal development, we note that a single pRHL judgement can be
used to discharge several statements on probabilities. Anticipating slightly on discus-
sions of the proofs, this is useful in proving statements of the following form when the
failure event F is defined over the support of both distributions.

Pr[c1 @ m1 : E1 ] ≤ Pr[c2 @ m2 : E2 ] + Pr[c1 @ m1 : F ]

Indeed, to obtain such a result, a single pRHL judgement—such that the post-condition
Ψ implies both that the failure event F occurs with the same probability in c1 and c2,
and that whenever E1 holds in c1, then either E2 or F occurred in c2—is sufficient.1

pHL Judgments

A pHL judgment of the form
{Φ} c {Ψ} ⋄ b

where c is a program, the precondition and postcondition Φ and Ψ are predicates over
the memory of c, b ∈ [0, 1] is some probability bound, and ⋄ ∈ {=,≤,≥} is some
relation, can be used to prove—for any memory m such that Φ m—that

Pr[c @ m : Ψ] ⋄ b

1The full formal interpretation of pRHL judgments—as originally given by Barthe et al. [10]—allows
other deductions, which are not used in this paper.
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Proofs of such statements are relatively straightforward when the event Ψ occurs in the
program’s main component, but involve invocations of the failure event lemma when the
event is triggered by oracle queries. The failure event lemma, in the proof we describe
below, allows us to lift a bound on the probability of an event occurring during any one
oracle query into a bound on the probability of that event occurring during the run of
the experiment.

As discussed in relation to game-based proofs, these two ingredients suffice to follow
the proofs given below. We note that, although we do not give details, all statements
below are given proofs that are fully machine-checked in EasyCrypt. We instead focus
our writing on giving an intuition of the reasoning formalised in those machine-checked
proofs, and of the aspects of it that might be abstracted into higher-level proof principles.

Now, before defining the formal definition of the signature scheme, the following
definition defines the Computational Diffie-Hellman (CDH) problem.

2.4.1 The Computational Diffie-Hellman Assumption

The security of the schemes considered in this work relies on the hardness of the Com-
putational Diffie-Hellman (CDH) problem, of finding gab given ga and gb. We define
this assumption more formally, aligning it with principles of concrete security, and first
defining the advantage of a constrained adversary in solving CDH.

The following formal definitions are extracted from our conference paper [44].

Definition 12 (CDH advantage). Let G be a cyclic group of finite order n, and gG be

a generator of G. Let A be a computational Diffie-Hellman adversary that, on input a

description of G, n, gG, and gaG and gbG for uniformly chosen exponents a and b, returns

an element r ∈ G. The CDH advantage of A is defined as

AdvcdhG,gG,n(A) := Pr
[
ExpcdhA (G, gG, n) : r = gabG

]

where the experiment ExpcdhA (G, gG, n) is defined in Figure 2.6.

The definition of hardness is natural.
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ExpcdhA (G, gG, n)

a←$Fn

b←$Fn

r← AG,gG,n(g
a
G, g

b
G)

Figure 2.6: The CDH
experiment.

Expeuf-cma
S,F ()

(pk, sk)← S.KGen()

(m̃, σ̃)← FS.Signsk(·)(pk)

b← S.Verpk(m̃, σ̃)

Figure 2.7: The EUF-CMA
experiment.

Hd(x)

if x /∈ H

H[x]←$ d

return H[x]

Figure 2.8: A Random Or-
acle that lazily samples its
responses from some dis-
tribution d. H is a map
or association list, initially
empty.

Definition 13 (Hardness of CDH). The CDH problem is said to be (t, ϵ)-hard in G

with generator gG if, for any adversary A that runs in time at most t, we have

AdvcdhG,gG,n(A) ≤ ϵ

The research will be more particularly interested in the hardness of the CDH problem
in our cyclic group G of prime order q with generator g, namely AdvcdhG,g,q(A).

In the security model of the signature scheme, a challenger plays a game against
the adversary. The challenger generates the signature scheme during the interaction,
and the adversary constantly tries to break it. The challenger first generates (pk, sk),
keeps her secret key, and sends the public key to the adversary. The adversary has the
liberty to choose adaptively on any messages to make signature queries.

Next, the formal definition of the signature can be defined as the following.

2.4.2 Signature Scheme

Definition 14. A signature scheme consists of three algorithms key generation (KGen),

signing (Sign), and verification (Ver), such that S = (KGen, Sign,Ver) for messages in

some set M:

• A key generation algorithm KGen that outputs a key pair composed of a public
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(pk) and private key (sk);

• A signing algorithm Sign that, upon input a private key sk and a message m ∈M,

returns a signature σ;

• A verification algorithm Ver that, upon input a public key pk, a message m ∈ M

and signature σ, returns a boolean signifying acceptance (with value true, denoted

with 1) or rejection (with value false, denoted with 0).

As is standard in cryptography, the desired security property is captured as a game
between an adversary attempting to break the security of the scheme (by forging a
valid signature) and a challenger that mediates interactions between the adversary and
the signature scheme under study to specify adversarial powers and prevent trivial wins.

More specifically, we consider the notion of existential forgery under adaptive chosen
message attacks (EUF-CMA), in which the adversary—given the public key and ora-
cle access to a signing oracle that signs messages of the adversary’s choice under the
challenger’s key—attempts to produce a valid signature on a fresh message—that is,
one that has not been queried to the signing oracle. As for CDH, we first define the
advantage of an adversary in breaking the security of a signature scheme.

Definition 15 (EUF-CMA advantage). Given a signature scheme S = (KGen,Sign,Ver)

and an adversary (or forger) F that, upon input a public key for S and given oracle

access to a signing oracle for S (which produces a signature upon input a message), the

advantage of A in breaking the EUF-CMA security of S is

Adveuf-cma
S (F) := Pr

[
Expeuf-cma

S,F () : b ∧ m̃ /∈ QS

]

where the experiment Expeuf-cma
S,F () is defined in Figure 2.7, and QS is the set of queries

issued by the forger F to its signing oracle.

We can then naturally define EUF-CMA security as the relevant hardness notion.
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Definition 16 (EUF-CMA security). A signature scheme S is said to be (t, qS, ϵ)-

EUF-CMA-secure if, for any adversary A that runs in time at most t, making at most

qS queries to its S oracle, we have

Adveuf-cma
S (A) ≤ ϵ

2.4.3 EUF-CMA security in the ROM

As mentioned about the the Random Oracle Model (ROM) before, it was first intro-
duced by Bellare and Rogaway [31] as a tool to reason about the security of efficient
cryptographic constructions that make use of hash functions. In the ROM, hash func-
tions are modelled as public oracles that compute a function sampled uniformly from
the appropriate function space at the beginning of the experiment. Formally, we equiv-
alently capture random oracles as stateful algorithms whose outputs to unique requests
are sampled following some distribution, as shown in Figure 2.8. In the following, we
consider uniform random oracles (where d is the uniform distribution over the relevant
(finite) output space).

When analysing the security of a scheme that uses hash functions in the ROM, it is
crucial to ensure that the adversary is given oracle access also to the hash functions. All
the schemes we consider in this paper make use of two distinct hash functions, and we
therefore consider forgers who have access to two random oracles H and G in addition
to the signing oracle. The resulting security experiment is shown in Figure 2.9. In such
a context, the number of queries the forger makes to the random oracles should also be
bounded as a resource; in the following we consider a notion of (t, qH, qG, qS, ϵ)-EUF-CMA
security naturally extending that from Definitions 15 and 16.

Definition 17 (EUF-CMA security in the ROM). Given two random oracles H and G

and a signature scheme SH,G = (KGen,Sign,Ver) and an adversary (or forger) F that,

upon input a public key for S and given oracle access to H, G, and to a signing oracle

for SH,G (which produces a signature upon input a message), the advantage of A in
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Expeuf-cma
H,G,S,F()

(pk, sk)← S.KGen()

(m̃, σ̃)← FH,G,S.Signsk(·)(pk)

b← S.Verpk(m̃, σ̃)

Figure 2.9: EUF-CMA with two Random Oracles H and G.

breaking the EUF-CMA security of S in the ROM is

Adveuf-cma
H,G,S (F) := Pr

[
Expeuf-cma

H,G,S,F() : b ∧ m̃ /∈ QS

]

where the experiment Expeuf-cma
H,G,S,F() is that defined in Figure 2.9, and QS is the set of

queries issued by the forger F to its signing oracle. A signature scheme S is said to be

(t, qH, qG, qS, ϵ)-EUF-CMA-secure in the ROM if, for any adversary A that runs in time

at most t, making at most qH (resp. qG, qS) queries to its H (resp. G, S) oracle, we have

Adveuf-cma
H,G,S (A) ≤ ϵ

Although this is not important in this paper, we note in particular the importance—in
general—of exposing these two oracles also to any adversary against a construction that
uses any of the signature schemes we prove secure here. The reductions we formally
prove here require control over both ROs, which must thus—in general—be independent
from any ROs taken over by any further reductions—for example, if the schemes are
used in larger protocols.

2.5 Discussion

Several signature schemes are proved in the standard model [45, 46, 47, 48] and the
Random Oracle model [49, 50, 51, 52, 53]. The signature schemes based on the RSA [54]
mostly seem secure with strong underlying assumptions in the standard models [55,
56]. The standard model is where adversary (attacker) A is restricted by some time
she takes to break the system. In contrast, the ROM restricts the adversary, and
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one can assume that one of the scheme’s hash functions is set as a RO controlled by
the simulator. The first efficient signature scheme whose security is tightly related to
the RSA assumption [54], in the Random Oracle model, is the scheme of Bellare and
Rogaway [57], where they describe an RSA-based signing scheme. The literature shows
that the shortest signature scheme in the Random Oracle model is the BLS scheme [49].

It is assumed that the Diffie-Hellman problems [21] (Computational Diffie-Hellman
(CDH) and Decisional Diffie-Hellman (DDH)) are stronger than the discrete logarithm
problem. There is no known reason to solve the Diffie Hellman problems faster than
the discrete logarithm problem [58, 59]. Furthermore, there are particular shreds of
evidence that the CDH problem may be equivalent to the discrete logarithm problem in
specific groups [58, 59, 60].

Earlier, the Schnorr scheme was based on the hardness of the discrete logarithm, and the
security is assessed with a forking lemma (relies on the proof of knowledge property of
an interactive proof system). The drawback of using the forking lemma lands into loose
security reduction. In contrast, this thesis shows the formal proofs and the formalisation
of the scheme based on the CDH problem, and the security notion relies on the property
of soundness (Chapter 4) and honest-verifier zero knowledge (Chapter 6).

In cryptography, it is assumed that the hardness of the CDH assumption is closely
related to the hardness of the discrete logarithm assumption. The digital signatures can
be constructed in the discrete logarithm settings [60]. The signature schemes based on
the discrete logarithm are Schnorr [20], DSS [61] and ElGamal [62]. These signature
schemes either involve loose security or require non-standard assumptions. Note that
the scheme’s security is tight when the success probability is close to the adversary’s
success probability; otherwise, the scheme is loose (explained earlier). In , Goh and
Jarecki [16] proposed a signature scheme (EDL), which claimed that they offer better
security guarantees than existing discrete logarithm-based signature schemes. The se-
curity of the EDL scheme showed that it is tightly related to the CDH problem in the
Random Oracle model. However, the drawback of the EDL scheme is that the signature
length is bigger than the length of traditional signature schemes, meaning that signature
schemes require more exponentiations. In public-key cryptography, discrete exponen-
tiation is a costly computational component because it dominates the computational
cost. Later, in 2005, Chevallier-Mames [17] shortened the size of the EDL scheme. He
proposed a new EDL scheme (this thesis calls the new EDL scheme by Chevallier-Mames
as CM scheme), whose security is also tightly related to the CDH problem in the Ran-
dom Oracle model. The CM scheme is efficient, and the signature size is smaller than
the EDL scheme, resulting in 25% efficiency on the discrete logarithm-based schemes.
Katz and Wang [63] modified the EDL scheme and improved the signature’s efficiency
and length. However, their security is tightly related to the hardness of the decisional
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Diffie-Hellman (DDH) problem [64], and the scheme does not have random salt. In
2007, Katz and Wang collaborated with the authors (Goh and Jarecki) of the EDL
scheme. Goh et al. [6] proposed two schemes whose security is tightly related to both
Diffie-Hellman problems (CDH and DDH) in the Random Oracle model. The security
of the first scheme relies on the hardness of the CDH problem, and the second scheme
relies on the DDH problem. They claimed that their schemes present better efficiency
than the existing schemes based on the discrete logarithm problem.



Chapter 3

Transforming security proofs into

semantic framework games

This chapter introduces the necessary background of game-based proofs in the cryptog-
raphy literature. Then, it introduces higher-order logic and state-of-the-art EasyCrypt.
This chapter delves into the syntax and semantics of EasyCrypt, focusing on reasoning
principles.

3.1 Introduction

Last few decades, provable security has been extensively used to support emerging
standards. However, the difficulty arose with validating the proofs when Shoup [65]
discovered the gap in the security proof of OAEP against adaptive chosen-ciphertext
attacks by Bellare and Rogaway [66]. In 1994, Bellare-Rogaway presented a well-written
but short proof that became famous and became part of the SET electronic payment
standard of Visa and MasterCard [67]. This interesting proof was unexamined for
seven years and became apparent when Shoup found the gap. The exciting history of
OAEP security proof shows that it was accepted initially, but the security was not read
carefully with a critical eye. Now, one must wonder how many details and validation
are required to present and check the reductionist arguments and, more importantly,
how many famous/infamous proofs are overlooked. To address the above difficulties of

39
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checking the complex arguments in the proofs, many suggested and proposed various
techniques to structure the proofs and get correct proofs. For instance, the proposed
techniques are game-based proofs [15, 68], a universal composability framework [69],
and Maurer’s constructive cryptography [70]. This thesis reports on the techniques of
the Game-based proofs as the proof assistant EasyCrypt is based on the sequence of
games formalism. The most significant difference in this technique is that the game’s
goal is not to specify every possible security definition with explicit Initial and the Final
step but to represent all the security definitions as indistinguishability of two games,
even if the definitions are regarding the property of unforgeability. Nevertheless, this
technique’s property of unforgeability can yet be reasoned. For instance, to declare that
no adversary can forge a MAC, it is sufficient to state that no adversary can differentiate
a subroutine of the MAC(in the verification) from a subroutine that yields false.

3.2 Formalisms for Security Definitions

Modern 21st-century cryptography has very much developed lately. Now, the proofs are
proved so that code-makers can win against the code-breakers. The proofs are reasoned
with formal definitions of what it signifies to be secure and defining insecurity employing
attacks against the formal security definitions. The definition of security must guarantee
the behaviour of the cryptosystem in the existence of an adversary. It is important to
note that the security definitions assume the adversary’s view of the cryptosystem, and
the adversary can observe what she is exposed to. For instance, consider the scenarios
where the adversary observes ciphertexts and sees how ciphertexts are generated.

The key is generated with the key generation algorithm KGen, and the private key is
kept secret from the adversary. In the encryption scheme, the key is used to encrypt
a plaintext. The adversary considers picking the plaintexts, permitting her with some
power. Nonetheless, if the encryption scheme is secure whilst the adversary picks the
plaintexts, it is indeed secure in real systems where the adversary has some uncertainty
about the plaintexts. Consider the adversary (a calling program) to the following CTXT
subroutine to assume the above details 3.1.

CTXT (m ∈ Σ.M):

k←$Σ.KGen;

c := Σ.Enc(k,m)

return c

Figure 3.1: A calling program to subroutine
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A calling program picks the plaintext to the subroutine and can only see the ciphertext
and cannot see the private k. The fresh k is chosen each time the calling program
constructs a couple of calls to the subroutine.

Next, the following diagrams show the interaction between the calling program (adver-
sary) and the CTXT subroutine, and the output of the CTXT subroutine is uniformly
distributed. This scenario shows that the CTXT subroutine has the identical impact
on every calling program as a CTXT subroutine that samples its result uniformly.

CTXT (m ∈ Σ.M):

k←$Σ.KGen;

c := Σ.Enc(k,m)

return c

versus CTXT (m ∈ Σ.M):

c← Σ.C;

return c

Figure 3.2: Interaction b/w calling program and subroutine

Supposedly, there should be no way for the calling program (adversary) to determine
which of these two executions response to subroutine calls.

The following section begins by revisiting the semantics of programming language.

3.3 The formal semantics of Programming language

The theoretical department of Computer Science has developed with great exposure
lately. Their recognised works have established many areas such as formal language,
computational complexity and automata theory. The progression of programming lan-
guage semantics in cryptography expanded, and a programming language’s formal se-
mantics is involved in constructing a mathematical model. The purpose is to operate as
a foundation to apprehend and maintain the program’s behaviour with reasoning. The
mathematical models are helpful for analysis and verification and, at a more initial level,
because developing the program’s definition exposes all types of subtleties of which it
is crucial to be mindful.

Before explaining the semantics, it is essential to present the notation and concepts
of informal, logical and set theories used to reason the security statements.

3.3.1 Summary of Notation

For statements A and B, the notations are:
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A ∧B and

A ∨B or

A⇒ B implies

¬A not

A⇐⇒ B A if and only if B

∀x.A(x) for all

∃x.A(x) exists

a ∈ A element of

{a1, ..., an} the set with elements a1, ..., an

dom(s) set of elements in the domain of s

Z = {..,−1, 0, 1, ...} the set of integers

x ∈ Z integer

There are three tiers of the semantics of programming language; operational seman-
tics, denotational semantics, and axiomatic semantics, which are defined next.

3.3.2 Operational Semantics

It defines a programming language by specifying how it can be conducted on an abstract
machine. This semantic is helpful in implementation. The structure of a programming
language, a small language of while programs, is called imperative language (IMP). It is
called IMP because the program executes a sequence of involved commands to change
the states.

The operational semantics of the programs begins with some formation rules.

a ::= b | c | skip.

The symbol ::= can be read as "can be" and the symbol | as "or".

The function of commands and programs is to enforce the change in their states. When
the IMP program is executed then is assumed that the initial state is set to zero. One
can define a relation if a pair ⟨c, s⟩ expresses the format from which it stays to run
command n from state s with basic operations.

(op +) ⟨c1 + c2, s⟩ → ⟨c, s⟩ if c = c1 + c2
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(op ≥) ⟨c1 ≥ c2, s⟩ → ⟨b, s⟩ if b = c1 ≥ c2

Rules for commands

Atomic commands
⟨skip, s⟩ → s

Sequencing
⟨c0, s⟩ → s′′ ⟨c1, s′′⟩ → s′

⟨c0; c1, s⟩ → s′

Conditional
⟨b, s⟩ → true ⟨c0, s⟩ → s′
⟨if b then c0 else c1, s⟩ → s′

3.3.3 Denotational semantics

It is a technique to define the connotation of programming languages and employs more
abstract mathematical concepts of continuous functions. This semantic gives the most
profound and widely used functional techniques, braced by advanced mathematical
theories.

The denotational semantics uses an emphatic bracket JK to diverge the syntactic from
the semantics. For instance, the expression (“6+2”)s = 8 can be written as J6+2Ks = 8.

CJskipK = {(s, s)|s ∈ Σ}

CJc0, c1K = CJc1K ◦ CJc0K

CJif b then c0 else c1K =

{(s, s′)|βJbKs = true &(s, s′) ∈ CJc0K}∪

{(s, s′)|βJbKs = false &(s, s′) ∈ CJc1K}

3.3.4 Axiomatic semantics

The axiomatic semantics is more abstract than the denotational ones, based on logical
deduction from the predicates. It provides proof rules within a program logic to revise
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the definition of a programming construction. The axiomatic semantics highlights the
proof’s correctness and deliver elegant proofs, which can help construct and verify the
programs. This semantic is also called logical, which can directly define a program’s
meaning by delivering the axioms of the logic of program statements. It is not wrong to
say that this semantic has an appealing technique because it gives bug-free algorithms
by proving the algorithm correct.

The axiomatic semantics aims to deliver axioms and proof rules that can catch each
command’s intended meaning in the programming language. The semantics of the pro-
gram can be described by assertion (logical formula assembled employing the variables),
which always becomes accurate when the program comes to the assertion point. For
instance, the correctness of program C can be defined with an assertion; precondition
and postcondition. The precondition is placed before the program and postcondition
after.

{Pre} C {Post}.

The assertion (pre and post condition) is called the program’s specification. So, given
pre and post conditions, program C is correct w.r.t. the specification, provided that
the program is executed, satisfying the precondition, terminating the program and the
results satisfying postcondition.

One can not view the above three tiers of semantics as opposed to each other. It is
just because all three tiers are dependent on each other. For instance, demonstrating
that proof rules of axiomatic semantics are written correctly, it trusts the underlying
operational or denotational semantics.

The following section begins by reviewing game-based proofs.

3.4 Game-based proofs

The security proofs of the cryptographic protocols are analysed and specified with
several methodologies. The two popular methodologies are; game-based proof and
simulation-based proof. This thesis focuses only on the former approach. The ap-
proach of game-based proof is classified into two categories, game-hopping and security
reduction. The security reduction was discussed in the previous chapter, and now, the
discussion begins with game-based proofs.

The technique of game hopping originated to tame the complexities of the crypto-
graphic security proofs [71, 72]. Kilian and Rogaway [73] presented the idea of a game
as a program written in a semi-formal language.
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Later in 2004, Bellare and Rogaway [68] laid the foundation of the game-playing tech-
nique and suggested games as programs, where the game is considered with a collection
of procedures. The adversary is also viewed as a program consisting of a single pro-
cedure. They believe their technique can lead to significant results and is more easily
verifiable with minor error-prone proofs in cryptography. Under their framework, the
game includes three procedures: initialise, oracle named, and finalise. The adversary
has access to the oracles and can make queries; the initialising and finalising procedures
can be absent. The game has global variables unavailable to the adversary, but the
adversary’s variables are local.

From the idea of Bellare and Rogaway [68], in 2005, Halevi [7] envisioned the idea of
a proof checker. He advocated developing an automated framework to help cryptog-
raphers with their security statements in their proofs. In contrast to Halevi’s idea,
Shoup [15] opposed being limited to a tool. Instead, he suggested that games be the
extent of their PL for their probability spaces. He suggested that the core idea of the
game-based proof is that cryptographic primitives should be defined as an attacking
game between the adversary and the challenger. Both parties are probabilistic and can
communicate with each other. Then one can model the game with some probability
space. So the proof’s definitions can become easier to check and verifiable.

So to reflect on Shoup’s idea, one can assume that there exists an adversary who can
break the proposed scheme in some polynomial time with some advantage of winning
under the related security model. The security reduction reduces loss and cost whilst
the adversary solves the underlying hard problem. In the reduction, a simulator utilises
the instance of an assigned problem to make a simulated scheme and eventually uses
the adversary’s attack on the scheme to answer the underlying hard problem. If the
reduction loss is self-dependent on the number of queries the adversary makes, then the
security reduction is tight ; otherwise, it is loose.

So, for every efficient adversary, the probability that some particular event S happens
is very close to some target probability : either 0, 1/2, or the probability of some event T
in another game where the same adversary interacted with a different challenger. Here,
"efficient" means the polynomial time-boundness, and "very close to" means it is less
efficient.

So, a typical game in the cryptographic proof involves a challenger and an adversary
interacting with each other. The adversary can be defined on what and where to query
and how to win the game. So one should be careful with the adversary’s interaction
whilst proposing the schemes. Some proposed schemes can be proved secure in a weak
security model by restricting her interaction. In contrast, the adversary in a strong
security model can adaptively query more additional details than in a weak model.
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So, all queries from the adversary that eventually helped her win the game must be
carefully assigned; if not, she can always win the game regardless of the construction of
the proposed scheme.

Basic Probability Before jumping into transitions of Game-based proofs, this subsec-
tion reminds the concept of basic probability with its notation and facts.

If the event is E, then the complement of that event is Ē, which means Ē is the
event that E does not happen, and the definition would be Pr[E] = 1 − Pr[Ē] .
If two events E1 and E2, occur, then the conjunction E1 ∧ E2 of these two events is
Pr[E1∧E2] ≤ Pr[E1]. If Pr[E1∧E2] = Pr[E1]·Pr[E2] then E1 and E2 are independent.

If the disjunction of two Events, E1 and E2, occurs, i.e. E1∨E2, which means either E1

happens or E2 and, by definition, Pr[E1∨E2] ≥ Pr[E1]. The union bound is frequently
a helpful upper bound of the quantity; defined next.

Definition 18 (Union Bound).

Pr[E1 ∧ E2] ≤ Pr[E1] + Pr[E2].

The union bound for the series of events E1, · · ·, Ek follows

Pr[∨ki=1Ei] ≤ Σk
i=1Pr[Ei].

The conditional probability of events i.e., Pr[E1|E2] follows as

Pr[E1|E2]
def
=

Pr[E1 ∧ E2]

Pr[E2]

The above statement only become true if Pr[E2] ̸= 0 and the probability denotes that

the E1 happens, given that E2 has happened. It follows from the definition that

Pr[E1 ∧ E2] = Pr[E1|E2] · Pr[E2].
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This equality still hold even if Pr[E2] = 0 as long as the multiplication is not aggravated

by zero on the right hand side.

Sequence of Games After reviewing some basic terminology and the probability
bound, the game-based proofs begin by sequencing the games. To construct the se-
quence of games, Game0, Game1, . . , Gamen, the Game0 becomes the original game
for a given adversary and the cryptographic primitives. The definition of security is
bounded with some event S; for i = 1, .., n, the security constructions can define the
event Si in some Game i related to S’s definition. So, to prove the security, one can
show that Pr[Si] is negligibly close to Pr[Si+1] for i = 0, .., n − 1, and finally, the
Pr[Sn] becomes negligibly close or, in some cases, is equal to the target probability (n
is a constant).

Shoup [15] suggested that the transition from one game to the next should be kept
smaller to have simple changes at a time. He mentioned that the transition from one
game to the next could be classified into three types.

3.4.1 Transition based on indistinguishability

In this transition, a small change made by the adversary implies an efficient method of
distinguishing between two computationally indistinguishable distributions, say P1 and
P2. Now, to prove |Pr[Si]−Pr[Si+1]| is negligibly close, an algorithmD (distinguishing)
introduces between Gamei and Gamei+1 so that if an auxiliary input is drawn from
P1, algorithm D outputs 1 with Pr[Si], achieving Gamei, and if an auxiliary input is
drawn from P2, algorithm D outputs 1 with Pr[Si+1], achieving Gamei+1. Then the
postulate of indistinguishability becomes negligible |Pr[Si]− Pr[Si+1]|.

3.4.2 Transitions based on failure events

In this transition, Gamei and Gamei+1 proceed identically unless a "failure event F"
happens. The two games can be defined on the same underlying probability space,
but the rules to compute random variables are different. A boolean variable bad is
introduced in a game to set the failure event. To be noted, the flag bad begins with
false, and once the flag is set to true, it can never be unset(false). The following lemma
is the formal definition of identical two games until the failure event bad is set to true.
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Lemma 1 (Difference Lemma [68, 15]). Let G1, G2 be two games and A and B be

events defined in G1 and G2 respectively, and F an event defined in both games. So, if

Pr[G1 : A ∧ ¬F ]⇐⇒ Pr[G2 : B ∧ ¬F ], then |Pr[G1 : A]− Pr[G2 : B]| ≤ Pr[F ].

Proof. More generally, the probability of any two games G1 and G2 proceed identically

until the failure event F happens, which is equivalent to Pr[G1 ∧ ¬F ] = Pr[G2 ∧ ¬F ]

and Pr[G1 ∧ F ] and Pr[G2 ∧ F ] are numbers between 0 and Pr[F ]. We have

|Pr[G1 : A]− Pr[G2 : B]| = |Pr[G1 ∧ F ] + Pr[G1 ∧ ¬F ]− Pr[G2 ∧ F ]− Pr[G2 ∧ ¬F ]|

= |Pr[G1 ∧ F ]− Pr[G2 ∧ F ]|

≤ Pr[F ]

One can use the Difference lemma (also called the Fundamental lemma) to analyse the
games G1 and G2 with an adversary and bound the difference in the probability of a
given event in both games. One can identify the failure event F and argues that games
G1 and G2 proceed identically unless the event F happens. Next, one can bound the
difference in the probability of a different event by the probability of the failure event
in either game.

3.4.3 Bridging step

This transition works as a bridging step between two games. For instance, the prob-
ability of the successive Gamei+1 can be computed equivalently in specific quantities
from the previous Gamei, i.e. Pr[Si] = Pr[Si+1].
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3.5 Proof-assistants for Cryptography

Halevi [7] stated that there are problems in the cryptographic constructions, and cryp-
tographers write more security proofs than carefully verify the existing ones. Nonethe-
less, the proofs are long, complicated and deal with non-trivial algorithms, making it
hard to verify the proofs. His vision of developing computer-aided tools or proof assis-
tants to verify the security proofs and protocols has increased and shown substantial
prior research. The idea of utilising the tools is to achieve high assurance and confidence
in the security proofs during the formal verification. Some well-known cryptographic
constructions such as [74, 75, 76, 77] are proven secure from the machine’s support.

One can use the support of computer-aided tools to ensure that their proofs are proved
correct. So the proofs in security reductions are proved abstractly and have many
counter-intuitive components which become mostly overlooked with a critical eye. How-
ever, every component of the proofs can be explored inside a computer memory to
understand the proofs confidently.

Proof assistant is a software that combines two main functionalities:

1. to offer support and help the user build long and complicated proofs, and

2. verify the proofs that they are complete and correct using the rules of logic.

On a high level, the proof assistant can be defined as a computer system allowing the
user to do some maths on a computer with the aspect of proving and defining. To do
so, the user manually sets up the theories, defines the functionalities by importing or
utilising the libraries, and uses logical reasoning to prove them. In contrast to manual
proving, the system of automated theorem provers allows the user to choose from the
set of well-chosen decision procedures to prove automatically. A powerful and robust
tool but has restricted expressiveness in setting generic mathematical theories.

Moreover, the symbolic and computational models can verify the cryptographic con-
structions. The verified protocol in the symbolic model is [78]. In the symbolic ap-
proach, for instance, [79] initiated the work of automated methods where automated
procedures can be implemented in their tool to verify the generic hardness of assump-
tions. They analysed the hardness of the assumptions in the generic group models.
They presented an automated tool which takes the assumptions and provides either an
algebraic attack against the assumption or shows the generic hardness of the proof.

This thesis focuses on the frameworks developed in the computational model, and the
prominent examples are CryptoVerif [80], CryptHOL [81], FCF [11], CertiCrypt [82]
and EasyCrypt [8, 9].
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The CryptoVerif is an automatic framework which mechanised in proving the properties
of the security protocols such as secrecy and authentications [80] in the computational
model. The framework is based on the technique of the game-based proof, where the
game sequence is formalised in probabilistic polynomial-time (PPT) methodology. The
framework can be used automatically (repertoire game transformation) or manually.
There are some examples, i.e. SSH’s Transport Layer Protocol [83], avionic proto-
cols [84], Signal Protocol [85], and the Kerberos network authentication system [77]
that used this framework to verify.

The CryptHOL framework is embedded in the Isabelle/HOL theorem prover [81], which
adopts Isabelle’s proof mechanisation to game-based proofs. [86] extends CryptHOL to
support the formalisation of security proofs in the Constructive Cryptography frame-
work [70], a generic theory supporting clean, composable security assertions.

The Foundational Cryptography Framework (FCF) is embedded in the Coq [14] theorem
prover. This framework is generic and can be used to reason security definitions and
assumptions. The proofs produce concrete bounds and asymptotic judgments [11].

CertiCrypt [82] framework is built upon the Coq proof assistant to formalise the stateful
languages based on the code-based proofs. CertiCrypt verifies the proof of semantic
security of OAEP and the proof of existential unforgeability of FDH signatures [82].
This framework can work in the areas of probability, the semantics of PL, complexity
and algebra.

The EasyCrypt is an interactive proof assistant designed to focus on formalising cryp-
tographic proofs in the computational model and utilises the approach of game-based
proofs.

The EasyCrypt framework is the successor of CertiCrypt, which introduced a clear sepa-
ration between theoretic reasoning and program verification. The first version of Easy-
Crypt was developed in 2011 to formalise the Cramer-Shoup [8] encryption and the
Merkle-Damgard [76]. Although this version helped implement the security statements
back then, it had scalability issues because it could not deal with very complicated
cryptographic constructions. This issue led to the development of an extended version
1.0 of EasyCrypt in 2012. The extended version of EasyCrypt dealt with scalability issues
by building a robust framework with the ability to provide a functional platform with
underlying support of automated proofs, which can offer the user to machine-checked
formalise the complex proofs with fundamental reasoning principles.

So, suppose one compares EasyCrypt with CertiCrypt. In that case, it is not wrong to
say that verified proofs in EasyCrypt are better attainable to the working cryptographer
as it uses SMT solvers and automated theorem provers to get automation. Whereas the
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CertiCrypt verifies the proofs to the semantics of programs and realises with guarantees
of Coq. Furthermore, EasyCrypt was used to translate the proofs from the AutoG&P
tool [87], where the proofs were further explained with relational program logic. They
implemented a formal logic in pairing-based cryptography, demonstrating that formal
proofs of the complicated pairing-based constructions can be done.

The EasyCrypt has emblematic examples of proven cryptographic constructions and pro-
tocols such as Merkle-Damgard [76], TLS handshake protocol [88], RSA-PSS [89], mech-
anise proofs of UC security [90], privacy and verifiability for Belenios in e-voting [91],
and the most recent ones are Saber’s Public-key encryption scheme [92] and unforge-
ability proofs for signature schemes with tight reduction [44].

This thesis focuses on the EasyCrypt framework, which is explained next.

3.6 EasyCrypt proof assistant

The EasyCrypt framework has module systems for formalising the game-based proofs,
and these modular reductions were also presented by Halevi [7]. The module consists of
global variables and procedures where procedures can be written in a simple imperative
language. One can produce proofs in EasyCrypt using tactics, where the hypotheses are
shown in the goal section with a conclusion, and a goal can be reduced using the tactics.
Proofs can be developed as a sequence of lemmas and can be checked interactively.
Since the EasyCrypt embraces the game-based technique, the security statements and
the hard mathematical problems are expressed as probabilistic programs called games or
experiments. The reductionist proofs are decomposed into a sequence of games, where
they become easier to check. The EasyCrypt has the following logic, which are explained
next:

1. a Probabilistic Relational Hoare Logic (pRHL) to prove relations between pairs of
games or experiments,

2. a Probabilistic Hoare logic (pHL) to prove probabilistic arguments on a single
experiment,

3. an ordinary Hoare logic (HL).
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Probabilistic Relational Hoare Logic (pRHL)

The pRHL [93] judgment has quadrupled the form

⊢ c1 ∼ c2 : Ψ⇒ Φ.

The relation evaluates a probabilistic program c1 to a probabilistic program c2 w.r.t. a
precondition Ψ and a postcondition Φ, and both conditions are defined as relations on
deterministic states.

The judgment is valid if two memories, m1 and m2, satisfy the precondition Ψ, and
the distributions Jc1Km1 and Jc2Km2 satisfy postcondition Φ. One can derive a proba-
bility claim from the valid judgments and write equalities or inequalities between two
probabilities, such as

c1 ∼ c2 : Ψ =⇒ E⟨1⟩ → F ⟨2⟩

where E and F are events. The probability for every initial memories m1 and m2 related
to Ψ are

Pr[c1,m1 : E] ≤ Pr[c2,m2 : F ].

In addition, if the probability of the form Pr[c1,m1 : A] = Pr[c2,m2 : A] for every
initial memories related to Ψ with event A which depends on some {a1, ..., an} then the
observational equivalence for the failure event F becomes:

Pr[c1,m1 : A] ≤ Pr[c2,m2 : A] + Pr[c2,m2 : F ].

In EasyCrypt, the pRHL has the following form:

equiv [M.p ∼ N.q : ϕ ==> ψ]

where:

• p is a procedure of module M, and q is a procedure of module N;

• ϕ is global variables of modules, the parameter of M.p is in memory m1, and
parameters of N.q is in memory m2;

• ψ is global variables of modules and return type of M.p is res1, and return type
of N.q is res2.
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Probabilistic Hoare Logic (pHL)

Another logic of EasyCrypt is a probabilistic Hoare logic (pHL), which helps one to
establish proofs on the probability after executing the procedure in its postconditions.
The pHL reasons on the probability of events in games or experiments and the judgment
of the form is:

[c : ζ =⇒ φ] ⋄ p

where c is a program, ζ and φ are assertions, ⋄ is operators and finally, p is the proba-
bility.

In EasyCrypt, the pHL has the following form:

phoare [M.p : ϕ ==> ψ] ⋄ expression

where:

• p is a procedure of module M;

• ϕ is global variables of modules and parameters of M.p;

• ψ is global variables of modules and return type of M.p is res;

• ⋄ ∈ {=, <,>} relation;

• the expression is type of real.

The above judgment can be read for all initial memories m, satisfying ϕ. The domain
comprises the module’s global variables, parameters, and local variables of M.p. So,
the probability of executing the M.p in memory m result from stopping with memory
whose condition to res and global variables of modules satisfy ψ.

Hoare logic (HL)

In EasyCrypt, the Hoare Logic (HL) has the following form:

hoare [M.p : ϕ ==> ψ]

where:
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• p is a procedure of module M;

• ϕ is global variables of modules and parameters of M.p;

• ψ is global variables of modules and return type of M.p is res.

The following section explains that how to write a game in EasyCrypt.

3.6.1 A primer on EasyCrypt

One can write a game in EasyCrypt using a set of global variables with a collection of
modules. A module consists of a procedure or procedures where some can be written
as abstract or concrete, and the procedure can be written as the simple imperative
language with loops and random assignments.

There are four steps to develop cryptographic proofs in EasyCrypt.

1. The first step is to define a formal context that includes types, operators, constants
and declare them as axioms and derived lemmas.

2. The second step is to define the number of games that consist of several procedures,
and the adversary can be declared as the abstract procedure parametrised by a
set of oracles. One should instantiate the oracles as other procedures in the game.

3. The third step is to prove logical judgments that set equivalences between games.
One can establish this using tactics and strategies.

4. The final step is to derive inequalities probabilities claims in games.

3.6.2 Input Language

In a proof assistant, the input language can be procedural (users tell the proof assistant
what to do) or declarative (users tell the proof assistant where to go). EasyCrypt fol-
lows game-based proofs, which forces a special severance between program verification
and information-theoretic reasoning. Games are written in an imperative language,
called pWHILE, where games are formalised with procedural calls. The following set of
commands are defined inductively by the clauses:

C ::= skip/nill nop

| V ← ε deterministic assignment
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| V ←$Dε probabilistic assignment

| if ε then C else C conditional

| while ε do C while loop

| V ← P (ε, ..., ε) procedure call

| C; C sequence

where V is a set of variable identifiers, ε is a set of expressions, Dε is a set of distribution
expressions, and a set P of procedure identifiers.

The language pWHILE is considered as an imperative typed probabilistic program-
ming, and EasyCrypt has an automated mechanism to prove the claims about probabil-
ities, combining rules to bound the probabilities of events in games from judgments in
pRHL [93]. More information about the probabilistic Relational Hoare logic (pRHL) is
described in section 3.6.

In EasyCrypt, the transition between games are reasoned into two steps: first, it im-
plements a probabilistic Hoare logic (pHL) to bound the probability of postcondition
and embeds both pHL and probabilistic Relational Hoare logic (pRHL) into an ambi-
ent logic which can be used to perform hybrid arguments that involve equivalences on
parameterised programs. Second, it implements a theory mechanism and a module sys-
tem supporting compositional proofs through quantification over programs, types and
values. This step employs information-theoretic reasoning to claim the probability of
events from the pRHL. Each step is highly effective and builds upon purpose-specific
tools. The pRHL judgment uses satisfactory verification conditions for its validity, ex-
pressed in the language of first-order logic. The outstanding feature of EasyCrypt is that
the verification conditions are shown without introducing the probability, which can be
automatically discharged by using the SMT solvers and theorem provers.

3.6.3 Axioms and Lemmas

In EasyCrypt, proofs are developed as a sequence of lemmas, and theories can be used to
build up the types, operators, modules and lemmas. After writing the lemmas, proofs
are solved using tactics and general reasoning principles that transform the current goal
into more goals or zero with acceptable conditions for the lemmas to be held. The goals
with simple ambient logic can easily be proved using the Satisfiability Modulo Theories
(SMT) solvers (smt()).

One can write an axiom and lemma as in
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axiom Example : forall (x y : int), x =y => y=x.

lemma Example : forall (x y : int), x =y => y=x.

The difference between the axiom and lemma is that EasyCrypt trusts the axiom while
one must prove the lemma. The steps for proving the lemma have the form

proof.

tactic1 · · · · · · · · · tacticn.

qed.

The first step is optional and can be omitted. Inside the proof, tactics are used. The
quod erat demonstrandum (qed) preserves the lemma, which can be reusable and is
only allowed when the proof is fully proved. One cannot use the same name for two
lemmas; otherwise, there will be conflict upon running the qed.

Furthermore, axioms can be used to express abstract operators and types and express
hypotheses over declared constants. The lemmas are written to verify goals in the
security proofs.

3.6.4 Game declarations

The security reductions are proved in EasyCrypt using the code-based game-playing tech-
nique. The games are modelled as modules, and the module comprises of typed global
variables, procedures, and abstract adversary assertions. The EasyCrypt expression lan-
guage is established on the polymorphic typed λ calculus, and they are guaranteed to
terminate. The declarations, statements of assignments, and procedures end with a
semicolon. However, one cannot use a semicolon at the end of the conditional state-
ments. One can declare multiple local variables together, as in:

var x, y, z : int;

var x, y, z : int← 5;

var x, y;

The following listing 3.1 represents the definition of a simple module, CDH, which
illustrates the module language.

Listing 3.1: A module in EasyCrypt

module CDH (A : CDH_Adv) = {
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proc run ( ) = {
var a , b , r ;

a <$ dZp ;
b <$ dZp ;
r <@ A. s o l v e ( g^a , g^b ) ;
r e turn r = g^(a ∗ b ) ;

}
} .

The module CDH does not have any global variables, which are generally declared after
opening the curly braces. The procedure main does not take any parameters and returns
some computations at the end (r = ga·b). The local variables a, b, and r are declared
inside the procedure. The main uses a random assignment, where a and b are randomly
sampled. After sampling, a procedure call assignment to call the procedure solve with
two arguments (ga, gb) is used and assign solve’s return value to r.

In EasyCrypt, the module types prescribe the types of sets of procedures; for instance,
the module type Adv-CDH :

module type Adv-CDH = {

proc solve (ga gb: Group) : Group

}.

The Adv-CDH has one procedure (solve) and defines solving the CDH. The procedure
takes two parameters of type Group. So in the above figure, the game is parametrised
by an adversary with access to the solve procedure.
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Chapter 4

Machine-Checked verification of

EDL and CM Signature Schemes

This chapter includes the original research, co-authored with Dr François Dupressoir,
and it was submitted at the conference [44]. This chapter reports on the first machine-
checked proofs for EDL and CM signature schemes with tight reductions to the CDH
problem using EasyCrypt proof assistant.

4.1 Introduction

The EDL signature scheme—based on the Discrete Logarithm (DL) problem—was in-
dependently proposed without proof by Chaum and Pedersen [18] and Jakobsson and
Schnorr [19]. Goh and Jarecki [16] propose a proof in the random oracle model that
EDL is existentially unforgeable under chosen-message attacks when constructed over
a group in which the Computational Diffie-Hellman (CDH) problem is hard. Crucially,
Goh and Jarecki’s proposed security proof does not make use of Pointcheval and Stern’s
Forking Lemma [1]: although EDL signatures contain a Schnorr proof, it is used as a
zero-knowledge proof of discrete logarithm equality, rather than as a proof of knowledge.
This allows a much tighter reduction than most other DL-based signature schemes, the-
oretically supporting shorter signatures.

59
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Chevallier-Mames [17] presents an improvement on EDL which reduces the size of sig-
natures and allows cost-free use of coupons. The scheme (denoted CM in the following)
relies on similar techniques to avoid relying on the forking lemma, but interestingly still
relies on the special soundness property of Schnorr proofs.

4.1.1 Our Contributions

Our main contribution is the first machine-checked proof for a signature scheme with
a tight reduction to CDH. We formalize proofs for both the EDL (Section 4.3) and CM
(Section 4.4) signatures schemes, and make them publicly available.1 We reformulate
Goh and Jarecki [16] and Chevallier-Mames’s [17] pen and paper proofs, and mechanise
them in EasyCrypt. Like the original results by Goh and Jarecki [16] and Chevallier-
Mames [17], our theorems are concrete—rather than asymptotic—security statements.
However, the original proofs were direct reductions; ours follows the methodology based
on sequences of games advocated by Shoup [15].

This, and the formalisation effort, allow us to identify proof principles that we believe
are more general, and could be applied more broadly. In developing the proof of security
for EDL, we develop a shim, used in all intermediate steps of the proof, and whose main
interest is in reducing the amount of boilerplate proof. We reuse the same shim with very
minor tweaks for the CM scheme, whose proof differs only in probability bounding and
reduction steps. Section 4.5 closes with discussions of further potential generalizations
as well as or related and future work.

Due to very minor mistakes and omissions in the original proof by Goh and Jarecki [16],
we cannot prove that the bound given originally holds; we prove a very close bound
instead, similar to that given for EDL by Chevallier-Mames [17], with minor amendments
to address formal details (discussed where relevant). Our formal theorem for the CM
scheme is in line with that given originally.

4.1.2 Related Work

We now discuss closely related work, first considering digital signature schemes, and
then the state of machine-checked proofs for DL-based cryptographic constructions.

Proofs for digital signature schemes Tight proofs for digital signatures exist for
PSS [94]. EDL, CM and their variants by Katz and Wang [63] and Goh et al. [6]

1https://gitlab.org/ec-zksigs/edl.git

https://gitlab.org/ec-zksigs/edl.git
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are—to our knowledge—the only DL-based signature schemes equipped with tight
proofs. Coron [94], and Bader, Jager, Li and Schäge [95] show the impossibility of
obtaining tight reductions in some settings (for FDH, and for signing in multi-user set-
tings). Proofs following our game sequence are not necessarily tight: the final reduction
step is where looseness could be introduced, rather than the sequence itself. As such, we
believe the techniques presented here are not limited to those schemes for which tight
bounds can be established.

Katz and Wang [63] discuss a proof technique—based on claw-free permutations—that
applies to PSS as well as to DL-based signing schemes to obtain tight security proofs.
Machine-checking their proofs could yield interesting insights in future. Barthe et al [96]
formalise a security proof for PSS. Although the proof involves the consideration of
faults, it also establishes a tight machine-checked security bound for the security of PSS
in the absence of faults, following proofs by Coron and Mandal [94, 97]. The proof’s
structure is in fact similar to that of the proofs discussed here; considering it as an
instance of our shim may help generalize the shim further for broader applicability.

El Kaafarani, Katsumata and Pintore [98] propose a tightly-secure post-quantum sign-
ing scheme based on CSIDH [99] and CSI-FiSh [100]. Their proof relies on a generic
result on the security of Fiat-Shamir in the Quantum-Random Oracle Model (QROM)
due to Kiltz, Lyubashevsky and Schaffner [101]. The proof shape we formalise here does
not consider the QROM, and is unlikely to apply in the presence of quantum-capable
adversaries. Extensions in this direction would be natural as future work. We note,
however, that the formalisation of such proof is still on the edge of feasibility [102].

Machine-checked proofs for DL-based cryptography Although this paper presents
the first machine-checked proof for a DL-based signature scheme, other machine-checked
proofs exist for DL-based cryptography more generally.

EasyCrypt was used to formalize the security of Cramer-Shoup [8], one-round key ex-
change protocols [103] and Amazon Web Services’ Key Management Service [104].

Only the Cramer-Shoup proofs involve reasoning about arithmetic in cyclic groups sim-
ilar to that done here, with the others focusing on DL-based key exchange and key
encapsulation. (Complexity in these other cases often stems from considering multiple
interactive instances with corruption.)

Proofs in other tools, such as F∗ [105] or CryptoVerif [106] (for Wireguard [107], TLS
1.3 [108, 109], Signal [110], OEKE [111] and HPKE [112]), also focus on protocol reason-
ing, with little to no reasoning about the group structure involved, and challenges arising
from the complexity of the properties being proved rather than inherent complexity in
the mathematical arguments involved.
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4.2 Mathematical Preliminaries

To better support—and in fact add value to—the formalization, we carry out our formal
proof on abstract mathematical objects, without specifying their implementation. As
shown by Almeida, Barbosa, Barthe and Dupressoir [113, 114], this does not preclude
further refinements, even all the way down to considering implementation adversaries.
More importantly, the proof formalized then applies to all valid instantiations of the ab-
stract objects, provided the refinement ensures that the expected interface is respected.1

We consider constructions that rely on a cyclic group G of prime order q, and on a
specific generator g of G agreed upon ahead of time. G, q and g are assumed to be
public, and known—in particular—to the adversary. We use multiplicative notation for
the group G, denoting with 1G (or simply 1 when unambiguous) its identity element,
and with × its operation. We use exponents to denote iterations of × but take exponents
directly in the field Fq such that field addition (+) and multiplication (·) in the exponent
are implicitly carried out modulo q. We use ·−1 for field inversion. Multiplication
symbols are often omitted, as is standard.

4.3 EDL Signatures and their Security

The EDL signature scheme is defined over a set M of messages as shown in Figure 4.1,
where, in addition to the cyclic group G, we also consider a set N of nonces, equipped
with some distribution dN.

Key generation is as standard for DH-style schemes. Signing is done by producing a
non-interactive zero-knowledge (NIZK) proof of discrete logarithm equality with bases a
message-dependent hash and the generator, and discrete logarithm the secret key. Ver-
ification recomputes the message-dependent hash and verifies the corresponding NIZK
proof.

We formally prove a tight reduction to breaking CDH in G from breaking EUF-CMA
security of EDL, where by tight we mean, like Goh and Jarecki [16] that there are no
multiplicative factors involved in relating the time complexity and advantage of an ad-
versary against the scheme and that of the corresponding reduction. More precisely,
we are looking for reductions that—when applied to an adversary that breaks the sig-
nature scheme with probability ϵ in time t—break the underlying hard problem with

1In particular, this would normally require the refinement to ensure or check that inputs are indeed
valid encodings of elements in the expected algebraic structure, or to prove that it does not matter for
security.
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EDLH,G
G,g,q

KGen()

sk←$Fq

return (sk, gsk)

Verpk(m, (z, r, s, c))

h← H(m, r)

u← gspk−c

v← hsz−c

c′ ← G(g, h, pk, z, u, v)

return c = c′

Signsk(m)

r←$ dN

h← H(m, r)

z← hsk

k←$Fq

u← gk

v← hk

c← G(g, h, gsk, z, u, v)

s← k+ c · sk
return (z, r, s, c)

Figure 4.1: The EDL signature scheme, parameterized by two random oracles H :
M×N→ G and G : G6 → Fq.

probability ϵ′ ≈ ϵ in time t′ ≈ t. Our proof is concrete and constructive: the concrete
reduction used in proving Theorem 2 is displayed in Figure 4.2.

Theorem 2 (Security of EDL). If CDH is (t, ϵ)-hard in G with generator g, then EDL

is (t′, qH, qG, qS, ϵ
′)-EUF-CMA-secure for all non-negative qH, qG, qS, and with

t ≲ t′ + (qH + 6 · qS + 1) · texp

ϵ′ ≤ ϵ+ qS ·
(
qH + qS
|N|

+
qG + qS
q2

)
+
qG + 1

q

where texp is the cost of an exponentiation in G.

Proof. The bound on the reduction’s time complexity t is not formally verified, and we

prove it here: the reduction (as shown in Figure 4.2) first runs the EUF-CMA forger

and simulates its oracles. When simulating each of the forger’s qH queries to H, the

reduction computes one exponentiation in G. When simulating each of the forger’s
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AF
G,g,q(pk, gb)

var H ∈M×N ⇀ G× Fq

var G ∈ G6 ⇀ Fq

(m̃, (z̃, r̃,_,_))← F
H,G,Sign(pk)

_← H(m̃, r̃) // This is to ensure (m̃, r̃) ∈ H

d← π2(H[m̃, r̃])

return z̃ · pk−d

Oracle simulation

H(x)

d←$Fq

if (x) /∈ H⌊
H[x]← (gbg

d, d)

return π1(H[x])

G(x)

c←$Fq

if x /∈ G⌊
G[x]← c

return G[x]

Sign(m)

r←$ dN

d←$Fq

H[m, r]← (gd, d)

c←$Fq

s←$Fq

u← gspk−c

v← gdspk−dc

G[g, gd, pk, pkd, u, v]← c

return (z, r, s, c)

Figure 4.2: The reduction A from CDH. AF
G,g,q uses an EUF-CMA forger F as a black-

box, and internally simulates H and G. H keeps track of both the response h and i. its
discrete logarithm in base g (for queries made by the signing oracle), or ii. the unique
value d ∈ Fq such that h = gbg

d (for queries made by the forger). π1 and π2 are the
first and second projections on pairs.

GameEDL
H,G,S,F()

1 : sk←$Fq

2 : b←$Fq

3 : pk← gsk

4 : gb ← gb

5 : (m̃, (z̃, r̃, s̃, c̃))← FH,G,S(pk)

6 : h← H(m̃, r̃)

7 : u← gs̃pk−c̃

8 : v← hs̃pk−c̃

9 : c← G(g, h, pk, z̃, u, v)

10 : win← c̃ = c ∧ m̃ /∈ QS

Figure 4.3: The EDL proof shim.
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qS queries to the signing oracle, the reduction computes two exponentiations and two

double-exponentiations. Finally, the reduction computes one inverse in Fq (whose cost

is omitted, as it is dominated by that of exponentiations) and one exponentiation to

retrieve its answer. We overapproximate the cost of double-exponentiation as the cost

of two exponentiations to get the bound shown above.

The rest of this Section is dedicated to discussing the proof for the bound on ϵ′. Fig-

ures 4.3-4.4 show the intermediate games that serve in this proof.

Goh and Jarecki’s original proof [16]—which uses gb
d instead of gbgd when simulating

H—omits certain low probability cases in which their given simulation fails:

1. when b is 0;

2. when the value of d used in simulating H for forgery verification is 0; and

3. when the same random nonce is used in two separate signatures of the same
message.

Accounting for these cases yields a valid (and indeed machine-checked) security proof,
with a slightly worse bound than that given here. We instead formalize and check a
different proof, which yields a more precise bound.

4.3.1 Intuition

We first note that a valid forgery (m̃, (z̃, r̃, s̃, c̃)) cannot be such that the signature scheme
queried H on (m̃, r̃) (if that were the case, the forgery would not be fresh), so either the
forger has made that query herself, or we can make the query on her behalf after she
returns. Note also that, in an honestly computed signature (z, r, s, c) for a message m,
we have h = zsk, where h← H(m, r). The key insight in the reduction is to embed the
CDH challenge into the EUF-CMA game, using ga as public key (so that sk = a), and
embedding gb into the answers given by H to the forger (so that h = gbgd for some d

known to the simulator). In this setting, a valid forgery that is such that z̃ = hsk can
be used to compute gab as z̃ · pk−d.

z̃ · pk−d = ha · (ga)−d = (gbgd)a · g−ad = gab
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With this key insight, a proof can be obtained by further proving that 1. the reduc-
tion—without access to the private key—can simulate the signing oracle an EUF-CMA
forger against EDL expects to have access to, and 2. the probability of verification
succeeding for a forgery (m̃, (z̃, r̃, s̃, c̃)) such that z̃ ̸= ha (with h← H(m̃, r̃)) is low.

We now detail the sequence of games and local claims which formalise and leverage
this intuition. The sequence of games itself (Lemmas 3 to 5) shows that the simulated
oracles from Figure 4.2 are indistinguishable from the actual EUF-CMA oracles for EDL.
We then show (Lemma 7) that any run of the forger that finds a forgery in the final game
lets the reduction solve the CDH challenge, except if the forgery is such that z̃ ̸= ha,
and bound the probability that this occurs with a successful forgery (Lemma 6).

Proofs for the local claims give an intuition of the machine-checked reasoning on pro-
grams involved, but do not delve into detailed discussions of the tactics used. We keep
the description here as close as possible to the EasyCrypt proof, but omit some formal
details in probability-bounding steps. Indeed, in the formal proof, we must first trans-
form the game to explicitly count oracle queries. Our final theorem, like Theorem 2
does quantify over adversaries that make a bounded number of queries.

4.3.2 Formalisation

We formally define 3 intermediate games that bridge the gap between the EUF-CMA
experiment and the CDH experiment. We write these intermediate games as instances
of a common shim GameEDL

·,·,·,·() (shown in Figure 4.3), which is parameterized by oracles
presenting the same interface as the random and signing oracles, and by a forger. Any
two successive games in our formalization differ only in the oracles provided to the shim.
The oracles we use in our proof, along with the definition of our intermediate games as
instances of the shim, are shown in Figure 4.4.

Locally, using a shim allows us to focus reasoning on the parts of the experiment that
do change between the successive games, and reduces the amount of boilerplate proof
code we need to write. In EasyCrypt, we reuse a single proof base over the shim in all
proof steps, which reduces the proof obligation to obligations on the oracles themselves,
the shim essentially serving as a distinguisher between the various sets of oracles we
consider in our games.

The formal proof proceeds in 4 steps:

1. we refactor the EUF-CMA security of EDL as an instance of the shim;

2. we embed the CDH challenge into the responses given to H queries;



4.3. EDL SIGNATURES AND THEIR SECURITY 67

S0(m)

r←$N

h← H(m, r)

z← hsk

k←$Fq; u← gk; v← hk

c← G(g, h, gsk, z, u, v)

s← k+ c · sk
return (z, r, s, c)

H(x)

h←$G
if x /∈ H⌊
H[x]← h

return H[x]

G(x)

c←$Fq

if x /∈ G⌊
G[x]← c

return G[x]

S1(m)

r←$N;

badH ← badH ∨ (m, r) ∈ H

d←$Fq; h← gd

H[m, r]← (h, d)

z← hsk

k←$Fq; u← gk; v← hk

badG ← badG∨
(g, h, gsk, z, u, v) ∈ G

c← G(g, h, gsk, z, u, v)

s← k+ c · sk
return (z, r, s, c)

H′(x)

d←$Fq

if x /∈ H⌊
H[x]← (gbg

d, d)

return π1(H[x])

S2(m)

r←$N

d←$Fq; h← gd

H[m, r]← (h, d)

z← pkd

c←$Fq; s←$Fq

u← gspk−c; v← hsz−c

badG ← badG∨
(g, h, pk, z, u, v) ∈ G

G[g, h, pk, z, u, v]← c

return (z, r, s, c)

Figure 4.4: Oracle simulations for use in intermediate steps in the security proof for EDL
signatures. Lemmas 3 and 4 use GameEDL

0 (F) := GameEDL
H,G,S0,F

(). Lemmas 4 and 5 use
GameEDL

1 (F) := GameEDL
H′,G,S1,F(). Lemmas 5 and 7 use GameEDL

2 (F) := GameEDL
H′,G,S2,F().

3. we simulate the proof of discrete logarithm equality without using the witness
(here the secret key); and

4. we show that a forgery either exploits the (negligible) unsoundness of the proof
of discrete logarithm equality, or answers the given CDH challenge.

Refactoring

The first step refactors the EUF-CMA game to make use of the shim, as GameEDL
0 (F) :=

GameEDL
H,G,S0,F

() where H, G, and S0 are shown in Figure 4.4.
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Lemma 3 (EDL Refactoring). For any forger F, we have

Pr
[
Expeuf-cma

H,G,EDL,F() : b ∧ m̃ /∈ QS

]
= Pr

[
GameEDL

0 (F) : win
]

Proof. This is a simple program equivalence: GameEDL
0 (F) is the EUF-CMA experiment

for EDL with KGen and Ver inlined, and with the addition of ineffective operations

(sampling of b and computation of gb, which are not used in the rest of the game.

Embedding

In our second step, we modify the way in which queries to H are handled to embed the
CDH challenge in the log of forger queries. Consider GameEDL

1 (F) := GameEDL
H′,G,S1,F(),

with H′, G, S1 as defined in Figure 4.4.

To the forger, we expose H′—which computes its output as gbg
d for some uniformly

sampled d that is kept alongside the oracle’s response.

The signing oracle S1 is modified so that it always samples a fresh value of h (although
keeping in its log its discrete logarithm d), regardless of whether its (m, r) had already
appeared as a query to H′ or in a signing query. This change is visible to the adver-
sary—who can distinguish between GameEDL

0 (F) and GameEDL
1 (F) when the pair (m, r)

being used in a signing query already appears in the map H. We capture this event as
badH.

In addition, we keep track of an event badG, which is triggered when the query to G

made by the signing oracle is not fresh. This event is not observable by the adversary,
but is easier to bound in GameEDL

1 (F) than in the next game, where it does become
observable.

Lemma 4 (EDL Embedding). For any forger F, we have

Pr
[
GameEDL

0 (F) : win
]
≤ Pr

[
GameEDL

1 (F) : win
]
+ Pr

[
GameEDL

1 (F) : badH

]

In addition, for any forger F that makes at most qH queries to her H oracle, and at
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most qS queries to her signing oracle, we have

Pr
[
GameEDL

1 (F) : badH

]
≤ qS ·

qH + qS
q

Proof. Thanks to the use of a common shim, we only need to consider differences in

behaviour arising from the oracles.

First we observe that logging d in H has no effect on the adversary’s view of the system:

computing gbg
d and gd both yield the uniform distribution over G when d is uniform in

Fq, and the value of d is not used (other than in computing the response of the random

oracle) while the forger is running. Focusing on the signing oracle, it is clear that S1 is

equivalent to S0 as long as badH is false: indeed, in that case, S1 is exactly S0 with H

inlined, the conditional reduced to its true branch, and h sampled in a way that reveals

its discrete logarithm (this is marked as the dashed box in Figure 4.4). This proves the

first part of the lemma.

Second, we bound the probability of badH occurring. During any one execution of S1,

badH becomes true if a fresh value r sampled in dN already appears in H. H increases

in size by at most 1 for each query to H′ and to S1. So each query to S1 sets badH with

probability at most qH+qS
q . A forger that makes qS query to S1 therefore triggers badH

with probability at most qS · qH+qS
q .

Simulation

In our third step, we simulate the proof of discrete logarithm equality. We rely on its
zero-knowledge property to simulate the signing oracle without using the secret key.

GameEDL
2 (F) := GameEDL

H′,G,S2,F() carries out this simulation by programming the ran-
dom oracle G on inputs queried by the signing oracle—regardless of their freshness.
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GameEDL
2 (F) can therefore be distinguished from GameEDL

1 (F) by the forger exactly
when the signing oracle programs G in a point the forger had previously queried. This
event—which we captured as badG already in S1—occurs with low probability since some
of its parameters are freshly sampled in high entropy distributions. This probability,
however, is easier to bound in S1, and we rely on the argument outlined in Section 2.4
to prove the bound.

Lemma 5 (EDL Simulation). For any forger F, we have

Pr
[
GameEDL

1 (F) : win
]
≤ Pr

[
GameEDL

2 (F) : win
]
+ Pr

[
GameEDL

1 (F) : badG

]

In addition, for any forger F that makes at most qG queries to her G oracle, and at most

qS queries to her signing oracle, we have

Pr
[
GameEDL

1 (F) : badG

]
≤ qS ·

qG + qS
q2

Proof. Note the fact that we bound the probability of badG occurring in the embedding

game, rather that the simulation game. This requires a bit of additional effort. We

prove the following two relations, combining them to prove the first claim.

Pr
[
GameEDL

1 (F) : badG

]
= Pr

[
GameEDL

2 (F) : badG

]

Pr
[
GameEDL

1 (F) : win
]
≤ Pr

[
GameEDL

2 (F) : win
]
+ Pr

[
GameEDL

2 (F) : badG

]

We do so—both in EasyCrypt and in the argument below—with a single equivalence

proof, in which we establish that the badG events occur with the same probability in

both games, and that a forger F that wins against S1 also wins against S2 unless its

run against S2 triggers badG.
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The oracles H′ and G are as in the previous game, with the only difference lying

in the signing oracle S2. We must prove two facts relating executions of S1 and S2

starting from the same memory where badG has not yet been set. First, we must

prove—unconditionally—that they produce the same distribution over badG. Second,

we must prove that executions that leave badG unset always yield the same distribution

over the output (z, r, s and c) and state (maps H and G) of the oracles.

Variables d and z follow the same distribution in both games, since d is sampled in the

same distribution, and z = gd·sk.

In order to reason about further equivalences, it is necessary to consider the code of G.

Consider a version of S1 with G inlined. Now it is clear that variable c can be sampled

at the same time as k without change in the semantics. Now, the distribution in S1 of

(k, c, k+ c · sk) is the same as that of (s− c · sk, c, s) in S2. The distributions of u, v and

badG are therefore also equal. From here on, we only need consider the case where badG

does not occur. In this case, the conditional in G follows the then branch, yield the

same distribution over output and state. This concludes the proof of the first claim.

Now, as discussed, we bound the probability of badG occurring in GameEDL
1 (F) to con-

clude the proof. Variable badG is set by a signing query if the tuple it uses as input

to G coincides with one of the inputs on which G has already been queried (one that is

set in G). Signing oracle S1 makes only queries of the form
(
g, gd, gsk, z, gk, v

)
where k

and d are sampled freshly and uniformly at random in Fq. Therefore, the probability

that such a query is one of the at most qG + qS already set in G is upper-bounded by

qG+qS
q2

. The forger makes at most qS queries to its signing oracle, so badG occurs with

probability at most qS · qG+qS
q2

.
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Reduction

In the final step of the proof, we show that if a forger F wins GameEDL
2 (F), the CDH

adversary AF from Figure 4.2 succeeds in solving its given CDH instance, except with
low probability. More specifically, a successful forgery either can be used to solve the
given CDH instance, or relies on an unsound proof of discrete logarithm equality.

We start by stating and proving a lemma bounding the probability of the forger relying
on unsoundness.

Lemma 6 (z̃ ̸= hsk). For any forger F that makes at most qG queries to her G oracle,

we have

Pr
[
GameEDL

2 (F) : win ∧ z̃ ̸= hsk
]
≤ qG + 1

q

Proof. If the forger produces a valid forgery such that z ̸= hsk then there exists in

map G—at the end of the game’s run—an input-output pair ((g, h, y, z, u, v) , c) such

that z ̸= hlog y and (u × yc)log h = v × zc. Indeed, consider the input-output pair((
g, h, gsk, z̃, gs̃g−sk·c̃, hs̃g−sk·c̃) , c) involved in the G query made by the shim during

verification of the forgery. Since the forgery is valid, it must be that c̃ = c and the

conditions hold.

We now bound the probability that any specific query to G adds such an input-output

pair to G. Since all G queries made by the signing oracle have z = hsk, it must be that

the G query we consider was either made by the forger or shim—there are at most qG+1

such queries. Each of them samples c at random in Fq, and—all inputs being set—there

is only one value in Fq that meets the constraints—namely c = log(v/ulog h)/log(hlog y/z).

Oracle G samples this one value with probability 1/q.

Lemma 7 (EDL Reduction). For any forger F that makes at most qG queries to her G
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oracle, and at most qS queries to her signing oracle, we have

Pr
[
GameEDL

2 (F) : win
]
≤ AdvcdhG,g,q(A

F
G,g,q) +

qG + 1

q

Proof. We split the probability depending on whether the forgery breaks the discrete

logarithm equality proof’s soundness, and bound the summands pairwise to conclude.

Pr
[
GameEDL

2 (F) : win
]
= Pr

[
GameEDL

2 (F) : win ∧ z̃ = hsk
]
+Pr

[
GameEDL

2 (F) : win ∧ z̃ ̸= hsk
]

Lemma 6 bounds the second summand. We now bound the first, proving that our

reduction can make use of a successful forgery run that does not break the soundness

of the proof to solve its CDH challenge.

Pr
[
GameEDL

2 (F) : win ∧ z̃ = hsk
]
≤ Pr

[
Expcdh

AF
G,g,q

(G, g, q) : r = gab
]

We first show that GameEDL
2 (F) and Expcdh

AF
G,g,q

(G, g, q)—where we recall that AF
G,g,q is

defined in Figure 4.2—are equivalent as programs until the forger returns (Line 6 in

Figure 4.3). Indeed, note that the shim—up to that point—is an inlined prefix of

ExpcdhA (G, g, q). Its code samples two field elements, hides them in the group, then calls

the forger with oracles that are themselves equivalent to those used in AF
G,g,q:

• the simulated H oracle from Figure 4.2 is syntactically equal to H′;

• the simulated G oracle from Figure 4.2 is syntactically equal to the oracle G defined

in Figure 4.4; and the signing oracles differ only cosmetically
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CMH,G
G,g,q

KGen()

sk←$Fq

return (sk, gsk)

Verpk(m, (z, s, c))

u← gspk−c

h← H(u)

v← hsz−c

c′ ← G(m, g, h, pk, z, u, v)

return c = c′

Signsk(m)

k←$Fq

u← gk

h← H(u)

z← hsk

v← hk

c← G(m, g, h, gsk, z, u, v)

s← k+ c · sk
return (z, s, c)

Figure 4.5: The CM signature scheme, parameterized by two random oracles H : G→ G
and G : M×G6 → Fq.

• we define h = gd in GameEDL
2 (F), and simply propagate the definition in AF

G,g,q;

and

• we no longer keep track of badG in the simulated signing oracle.

After the call to H made by the challenger at Line 6 in Figure 4.3), we have H[x] =

(gbg
d, ⟨d⟩A) for some d ∈ Fq. In this case, we know that h = gbg

d and the CDH adversary

recovers the value d corresponding to h from the random oracle’s record. We, therefore

always have z̃ × pk−d = gb
skgd·skg−d·sk = gb

sk. Our reduction runs with sk = a and

gb = gb, where a and b are the CDH secrets. Therefore, if the forger wins with a valid

forgery such that z̃ = hsk, then the reduction returns the value of gab.

Combining Lemmas 3, 4, 5, and 7 allows us to conclude the proof of Theorem 2.

4.4 CM Signatures and their Security

The CM signature scheme is defined over messages in M as shown in Figure 4.5. The
most notable difference from EDL is that the message is not included in the random
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oracle query to H whose output serves as the second base for the proof of discrete loga-
rithm equality; instead, the message is included as an auxiliary input to the challenge-
generating random oracle query, in a way similar to standard Schnorr signatures. This
change supports security without the use of additional randomness (which shortens the
signature), but also allows the use of coupons, where the most part of the signature’s
computation can be done offline and ahead of the message being produced. The on-
line part of the signature then simply consists in one hash query, and two simple field
arithmetic operations.

Following Chevallier-Mames [17], we formally prove a tight reduction to breaking CDH
in G from breaking the EUF-CMA security of CM. The proof is, here again, concrete and
constructive. The reduction is displayed in Figure 4.6. Unlike the EDL simulator, the
simulator shown in Figure 4.6 must keep track of different information when simulating
random oracle queries placed by the forger or internal to the simulation of signatures.
We capture this in code using a tagged disjoint union, denoting with ⟨X⟩tℓ ⊎ ⟨Y ⟩tr the
set that contains values from set X tagged with tl and values from set Y tagged with tr
(for distinct tags). We use a tagged tuple notation (with ⟨v⟩t denoting a value v tagged
with tag t) to denote values in sum types, using match to match on the tag t and bind
the tuple’s elements to names provided in the pattern. We later use π as a notation to
project out a tagged union’s contents so that π(⟨v⟩t) = v.

Theorem 8 (Security of CM). If CDH is (t, ϵ)-hard in G with generator g, then CM is

(t′, qH, qG, qS, ϵ
′)-EUF-CMA-secure for all non-negative qH, qG, qS and with

t ≲ t′ + (6 · qS + (qH + 1) + 5) · texp

ϵ′ ≤ ϵ+ qS ·
(
qH + qS

q
+
qG + qS
q2

)
+
qG + 1

q
+ 2 · qS · (qG + 1)

q

where texp is the cost of an exponentiation in G.

Proof. The complexity bound is not formally verified, so we argue the time bound here:

the reduction (see Figure 4.6) first runs the EUF-CMA forger, simulating its oracles.

When simulating H, the reduction computes one exponentiation and one product in G
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AF
G,g,q(pk, gb)

var H ∈ G⇀ G× (⟨Fq⟩A ⊎ ⟨Fq × Fq⟩S)
var G ∈M×G6 ⇀ Fq

(m̃, (z̃, s̃, c̃))← F
H,G,Sign(pk)

u← gs̃pk−c̃

_← H(u) // This is to ensure u ∈ H

match (π2(H[u])) with

| ⟨d⟩A 7→ return z̃ · pk−d

| ⟨s, c⟩S 7→ return g
s−s̃
c−c̃

b

Oracle simulation

H(u)

d←$Fq

if u /∈ H⌊
H[u]← (gb · gd, ⟨d⟩A)

return π1(H[u])

G(x)

c←$Fq

if x /∈ G⌊
G[x]← c

return G[x]

Sign(m)

d←$Fq

s←$Fq

c←$Fq

u← gspk−c; h← gd

z← pkd; v← hsz−c

H[u]← (h, ⟨s, c⟩S)
G[m, g, h, pk, z, u, v]← c

return (z, s, c)

Figure 4.6: The reduction A to CDH. A uses an EUF-CMA forger F as a black-box,
and internally simulates H and G through initially empty finite maps H and G. H
keeps track of both the response h and the random exponents s and c used in the
related signature (for queries made by the signing oracle), or the value logg(h · g−1

b )
(for direct queries). π1 and π2 are the first and second projections on pairs.

GameCM
H,G,S,F()

sk←$Fq

b←$Fq

pk← gsk

gb ← gb

(m̃, (z̃, s̃, c̃))← FH,G,S(pk)

u← gspk−c̃

h← H(u)

v← hs̃pk−c̃

c← G(m̃, g, h, pk, z̃, u, v)

win← c̃ = c ∧ m̃ /∈ QS

Figure 4.7: The GameCM
·,·,·,·() shim used in the security proof for CM. We use a dashed

box to isolate code that serves as the core of the reduction (Figure 4.6).
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(whose cost we omit). Simulating G is straightforward and incurs no cost. Simulating

signature queries requires two exponentiations and two double exponentiations (which

we cost as four exponentiations). Finally, extracting the CDH solution from the sim-

ulator’s state and the forger’s output costs one H query, two double exponentiations

and one exponentiation (with some operations on exponents whose cost is omitted, as

dominated by the cost of exponentiations in G).

The rest of this Section is dedicated to discussing the proof. As with EDL, we include
a high-level and intuitive overview and details of its formalization, but do so at a lesser
level of detail, focusing instead of aspects that differ, and patterns that are common to
both proofs.

4.4.1 Proof Overview

The security argument for CM signatures is slightly less intuitive. Indeed, the statement
being proved as part of the signing process is entirely independent from the message
which is instead included into the challenge. This means that valid forgeries can in fact
involve a query to H that was made by the signing oracle.

If the forger produces a forgery such that z ̸= hsk, or in cases where the verification of
the forgery involves a fresh query to H, or one that was made by the forger, the proof
is exactly as that of EDL. However, there is one additional case to consider. Indeed,
the final reduction for the EDL scheme exploits the fact that the message to be signed
is included in the input to H to deduce that a fresh forgery must involve a query to H

whose response contains the CDH challenge gb.

In CM, we cannot exclude a valid signature (z̃, s̃, c̃) on some fresh message m̃ where
u = gs̃pk−c̃ was previously used as input to H in a signing query. In such a situation,
however, we have two valid pairs (c, s) and (c̃, s̃) such that gspk−c = u = gs̃pk−c̃ (the
former from the simulator’s log of the original query of H on u, and the latter from the
forgery itself), and we can recover the secret key as sk = s−s̃

c−c̃ when c ̸= c̃. There is a
low probability of having c = c̃ here, which is accounted for using a final failure event
col, which captures collisions in the output of G, and whose probability accounts for
the final term in the probability bound. (We in fact need to capture only some such
collisions, since we also know that the forgery is fresh. Details are discussed in relation
to Lemma 13, below.) As such, and interestingly, the proof still leverages the special
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soundness of Schnorr proofs, but does so without making use of the forking lemma.
The scheme itself is designed so that the forger gives the simulator (via random oracle
queries) enough information to fork its execution without rewinding when producing a
forgery from which a CDH solution can only be extracted via special soundness.

4.4.2 Formalisation

As before, throughout the formal proof, we make use of a shim game (Figure 4.7),
which remains unchanged except in the first and last steps, allowing us to focus the
formal reasoning (and, here, the discussions) on meaningful changes in the oracles and
to limit boilerplate proof artefacts. As before, variables shared between the shim and
the intermediate oracle definitions in Figure 4.8 are simply made global in the shim so
they can be accessed directly.

Figure 4.8 shows the oracles we use in the sequence of games, with claims on the game
transitions displayed as Lemmas 9 and 10, and on the final reduction as Lemma 13.
In our CM sequence of games, we omit details of the refactoring step, but display the
corresponding oracles (in Figure 4.8) for completeness and clarity in proofs.

Step 0 — Embedding

In this proof step (Lemma 9), we change the way in which queries to H are handled.
We expose H′ to the forger so that gb can easily be recovered by the simulator from
the answers given, without affecting their distribution. In the signing oracle, we pro-
gram answers to internal H′ queries regardless of previous queries. The corresponding
simulations are shown in Figure 4.8.

As with the EDL proof, oracle S1 keeps track of a failure event badG that will only
become relevant in Lemma 10.

Lemma 9 (CM Embedding). For all forgers F that make at most qH queries to their

H oracle, and at most qS queries to their signing oracles, we have

Adveuf-cma
CM (F) ≤ Pr

[
GameCM

1 (F) : win
]
+ qS ·

qH + qS
q
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S0(m)

k←$Fq

u← gk

h← H(u)

z← hsk; v← hk

c← G(m, g, h, gsk, z, u, v)

s← k+ c · sk

return (z, s, c)

H(u)

h←$G
if u /∈ H⌊
H[u]← h

return H[u]

G(x)

c←$Fq

if x /∈ G⌊
G[x]← c

return G[x]

S1(m)

k←$Fq

u← gk

badH ← badH ∨ u ∈ H

d←$Fq

h← gd; z← hsk; v← hk

badG ← badG∨
(m, g, h, gsk, z, u, v) ∈ G

c← G(m, g, h, gsk, z, u, v)

s← k+ c · sk

H[u]← (h, ⟨s, c⟩S)
return (z, s, c)

H′(u)

d←$Fq

if u /∈ H⌊
H[u]← (gbg

d, ⟨d⟩A)
return π1(H[u])

S2(m)

s←$Fq; c←$Fq

u← gspk−c

d←$Fq

h← gd; z← pkd; v← hsz−c

badG ← badG∨
(m, g, h, pk, z, u, v) ∈ G

colS ← colS ∨ ∃x̃.G[x̃] = ⟨c⟩A
G[m, g, h, pk, z, u, v]← ⟨c⟩S

H[u]← (h, ⟨s, c⟩S)
return (z, s, c)

G′(x)

c←$Fq

if x /∈ G⌊
colA ← colA ∨ ∃x̃.G[x̃] = ⟨c⟩S
G[x]← ⟨c⟩A

return π(G[x])

Figure 4.8: Oracle simulations for use in intermediate steps in the security proof for
Chevallier-Mames signatures. Lemmas 9 and 10 use GameCM

1 (F) := GameCM
H′,G,S1,F().

Lemmas 10 and 13 use GameCM
2 (F) := GameCM

H′,G′,S2,F().
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Proof. The proof is an easy replay of those of Lemma 3 and Lemma 4, noting that the

randomiser in the input to H is now sampled in G instead of N.

Step 0 — Simulation

The second step (Lemma 10) simulates the zero-knowledge proof by programming the
relevant random oracle in the signing oracle. In this proof, unlike in that for EDL, we
need to modify also the random oracle exposed to the forger as G′ to detect collisions
in G′ as they happen, and to keep track of which of the forger or signing oracle made
particular queries (by internally tagging responses). We wield both of these tools in the
proof of Lemma 13, below.

Lemma 10 (CM Simulation). For all forgers F that make at most qG queries to their

G oracle and at most qS queries to their signing oracle, we have

Pr
[
GameCM

1 (F) : win
]
≤ Pr

[
GameCM

2 (F) : win
]
+ qS ·

qG + qS
q2

Proof. The proof is the same as that of Lemma 5, noting in addition that the colS and

colA events do not affect the oracles’ behaviour, and that neither does internally tagging

responses from G′ with the party that first observed them.

Step 0 — Reduction

Finally, the reduction step shows that if a forger F wins GameCM
2 (F), the CDH adver-

sary AF from Figure 4.6 succeeds in solving its given CDH instance, except with low
probability. We prove (Lemma 13) that a successful forgery: i. solves the given CDH
instance; ii. relies on an unsound proof of discrete logarithm equality (Lemma 11); or
iii. finds a (restricted) collision in the random oracle (Lemma 12).

We start by bounding the two events that prevent the simulator from solving CDH.
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Lemma 11. For all forgers F that make at most qG queries to their G oracle, we have

Pr
[
GameCM

2 (F) : win ∧ z̃ ̸= hsk
]
≤ qG + 1

q

Proof. The proof is identical to that of EDL (Lemma 6).

Lemma 12. For all forgers F that make at most qG queries to their G oracle and at

most qS queries to their signing oracle, we have

Pr
[
GameCM

2 (F) : colA ∨ colS

]
≤ 2 · qS · (qG + 1)

q

Proof. First note that

Pr
[
GameCM

2 (F) : colA ∨ colS

]
≤ Pr

[
GameCM

2 (F) : colA

]
+ Pr

[
GameCM

2 (F) : colS

]

We now show that Pr
[
GameCM

2 (F) : colA
]
≤ qS·(qG+1)

q .

The colA event occurs when the freshly sampled value c coincides with one of the c

values previously sampled by the signing oracle. There are at most qS such values, and

the event occurs with probability at most qS
q during each one of the at most qG + 1

queries made to qG during the execution of GameCM
2 (F) (at most qS made by the forger,

and one made to validate the forgery).

To conclude the proof, we establish the same bound on Pr
[
GameCM

2 (F) : colS
]

using a

symmetric argument (with the roles of qG + 1 and qS reversed).

Lemma 13 (CM Reduction). For all forgers F that make at most qG queries to their G
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oracle, and at most qS queries to their signing oracle, we have

Pr
[
GameCM

2 (F) : win
]
≤ AdvcdhG,g,q(A

F) +
qG + 1

q
+ 2 · qS · (qG + 1)

q

Proof. First, note that we can split the forger’s success probability as follows, for any

forger F.

Pr
[
GameCM

2 (F) : win
]
= Pr

[
GameCM

2 (F) : win ∧ z̃ = hsk
]
+Pr

[
GameCM

2 (F) : win ∧ z̃ ̸= hsk
]

We can further split the first summand based on whether one of the collision events

captured as colA and colS occurred during the run.

Pr
[
GameCM

2 (F) : win ∧ z̃ = hsk
]

≤ Pr
[
GameCM

2 (F) : colA ∨ colS

]
+ Pr

[
GameCM

2 (F) : win ∧ z̃ = hsk ∧ ¬(colA ∨ colS)
]

With Lemmas 11 and 12, it is now sufficient to prove that a forger that wins with a

forgery such that z = hsk and without causing a collision in G allows our reduction to

solve its given CDH instance.

Pr
[
GameCM

2 (F) : win ∧ z̃ = hsk ∧ ¬(colA ∨ colS)
]
≤ Pr

[
Expcdh

AF
G,g,q

(G, g, q) : r = gab
]

First observe that GameCM
2 (F) and ExpcdhA (G, g, q), as programs, share i. their oracles

(up to projection on G, and the removal of code that tracks failure events badG, colS
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and colA); and ii. a common prefix, which ends at the end of the dashed box shown

in Figure 4.7 (for GameCM
2 (F)) and after the third line of AF

G,g,q (for the CDH game).

Up until those points, the two programs are perfectly equivalent, and produce the same

state (up to projections on G).

Consider two possible cases after the call to H made by the challenger as part of

the verification query (or, rather, at the end of the dashed box in Figure 4.7): ei-

ther i. H[u] = (gbg
d, ⟨d⟩A) for some d (when u was not used in a signature); here, the

same proof as in EDL applies, or ii. H[u] = (gd, ⟨s, c⟩S) for some d, s and c (when u was

used in a signature).

In the second case, we have H[u] = (gd, ⟨s, c⟩S) for some d, s and c such that gs−sk·c =

u = gs̃−sk·c̃ (where the first equality comes from the fact that the signing oracle only

inserts pairs of values with that property into H, and the second equality comes from

the construction of u by the reduction). If c ̸= c̃, then we can compute the discrete

logarithm sk = s−s̃
c−c̃ of pk, allowing us to solve the CDH instance (pk, gb) given as input

to A—simply by computing gb
sk (sk = a and gb = gb, where a and b are the CDH

secrets).

It remains to show that we are in a case where c ̸= c̃. We know that u was queried to

H by the signing oracle. Therefore, it must be that there exists a message m such that

G[m, g, h, pk, hsk, u, usk] = ⟨c⟩S (since the signing oracle always inserts such an element

in G after inserting an element in H). Since the forgery is fresh, it must be that m ̸= m̃.

Since the forgery is also valid, it must also be that G[m̃, g, h, pk, hsk, u, usk] = ⟨c̃⟩A (the

query may be fresh; this does not impact the reasoning). Therefore, it must be that

c ̸= c̃ or one of colA or colS would have occurred.
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As before, combining Lemmas 9, 10 and 13 allows us to conclude the proof of Theorem 8.

4.5 Conclusion

We now briefly discuss and reflect on the formal development itself before discussing
related work (both on tight DL-based signatures and machine-checked cryptographic
proofs) and highlighting interesting directions for further generalizations beyond the
shim presented here and beyond simple digital signatures.

We now discuss some aspects which are important to be discussed to have an under-
standing of how the formalisation of both schemes was developed.

Differences between paper and formal proofs The bounds we prove formally are
slightly tighter than those presented in this paper.

In practice, our formal proof bounds the probability of badH as Pr
[
GameEDL

1 (F) : badH
]
≤

qS ·
qH+

qS−1

2
q instead of qS · qH+qS

q for EDL, and has similarly tighter bounds for badG

and for both events in the CM proof. This is simply due to more precise accounting
of queries: during the ith query to S, we can bound the number of entries in H by
qH + i − 1 instead of qH + qS, and the bound is

∑
0≤i<qS

qH + i instead of the bound∑
0≤i<qS

qH + qS discussed in the proofs above. We choose to keep the bound (and
related discussions) simple in this presentation, as these details add little to the paper’s
contributions while making the pen-and-paper argument more difficult to trust.

In order to formally obtain the tight bounds discussed here, our formal shim is slightly
more complex than the ones shown in Figures 4.3 and 4.7, and takes two different G

oracles, with the second used only in the shim’s verification query. This allows us to
instantiate the shim’s verification algorithm with a version of G that does not count
towards the total number of queries when bounding the probability of badG in the
simulation step.

Related to this, an unfortunate amount of the complexity in the formal proof comes
from the need to explicitly count oracle queries when bounding probabilities. In practice,
EasyCrypt in fact requires that oracles that may trigger the event whose probability is
being bounded be called a statically bounded number of times. Our formal development
uses the manipulations discussed by Barthe et al. [43] to instead bound the adversary.
We expect ongoing work on formalizing complexity analysis to better support such
analyses in future developments.
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Proof Effort and Challenges An initial version of the formal proof for EDL was
developed over the course of 6 person-months by a novice to both cryptography and
formal proof. The starting point was Goh and Jarecki’s 2003 proof [16], which our
initial proof followed and extended with additional failure events. The initial proof for
CM was carried out in one person-week by an experienced EasyCrypt developer, relying
heavily on the insights gained during the EDL formalization (in particular, adapting the
sequence of games instead of starting from the direct reduction). The development of
the common shim, along with adapting the existing proofs to make use of it, took one
additional person-week. The effort involved in its ideation is more difficult to quantify,
as it occurred continuously through the roughly 6.5 person months of development—and
additional reading of related work.

The proof relies on algebraic arguments which form the core of its practical difficulty
(past initially formalizing the sequence of games). Further support for symbolic tech-
niques (perhaps inspired by the tools discussed by Barthe et al. [115]) would greatly
simplify our proofs, and future proofs in DL-based settings.

Lessons Learned Our formal efforts started from existing pen-and-paper proofs,
based on direct reductions. We first isolated the three steps on paper and almost im-
mediately started formalising the arguments. Although we converged relatively quickly
towards the pattern embedding, simulation, reduction, initial formalisation efforts which
placed a different order on the proof steps were in large part wasted—derivations of
group and field arithmetic results were mainly preserved. This—once again—highlights
the value of first gaining as full an understanding as possible on paper of the arguments
to formalise before starting the machine-checking effort itself.

On the other hand, later iterations to adapt the full proofs to make use of the shims
were almost lossless, in the sense that the main changes we needed to make to the proofs
were removals of repeated arguments. These modifications were only made possible by
the identification—through the initial formalisations—of the proofs’ common structure.

Striking the right balance between gaining understanding before embarking on a for-
malisation effort and gaining understanding through the formalisation effort remains
a delicate exercise. We cannot offer insights, but hope that this simple observation
encourages both more thorough pen-and-paper arguments and more deliberate experi-
mentation with formalisation.
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4.6 Further Generalisations

The security proofs of EDL and CM, as initially presented by Chevallier-Mames [17],
are very similar—and indeed carry over very similar objects. In the formalisation effort
of both EDL and CM schemes, we purposefully sought out similarities and attempted to
factor them out. We believe the proof pattern extracted in this way could be adapted
to other constructions—existing or new—to obtain new proofs of tight security. The
EDL and CM schemes are formally defined with three intermediate games, which bridge
the gap between the EUF-CMA game and CDH game.

In particular, we outline a three-step proof structure, that relies on:

• embedding the underlying challenge into random oracle answers;

• simulating the zero-knowledge proof; and

• reducing from a combination of soundness of the zero-knowledge proof and the
underlying computational assumption (perhaps via special soundness).

Those intermediate games have deep insight, which gives an instance of a common game
called Shim. It is not incorrect to say that this generalisation gives the first comprehen-
sive use of the game Shim which only allows one to focus reasoning on the parts of the
proofs that change between the two successive games, which helps hugely to reduce the
boilerplate proof amount. The formalisation effort shows that any two successive games
differ only in the oracles provided to the Shim. Throughout the formal proof of both
schemes, the technique only used the Shim game, which remained unchanged except
in the first and the last steps. This technique allows us to focus the formal reasoning
on only meaningful changes which only happened in the oracles. We believe that proof
extracted in such a pattern could be replayed and reused to similar signature schemes
whose security is based on a tight discrete logarithm.

We now discuss potential directions for further generalizations.

Embedding in EDL and CM involves computing the random oracle answer h from gb and
some trapdoor information d such that h is distributed uniformly at random in G but
such that f(d, hsk) = gb. In this context, the embedding operation is in fact a one-time
pad, and our proof relies on its malleability. It is worth considering whether the proof
technique could be generalised to a setting where the secrecy of the embedding is not
perfect, which may be required in settings where the embedding function itself (or the
extraction function f) is not as simple as in this case.

A related observation is that the relation being proved by the (sound, special sound and
zero-knowledge) proof or argument needs to be tightly integrated with the embedding



4.6. FURTHER GENERALISATIONS 87

function: it is only because we can malleably push exponents into the embedding that
we can leverage the soundness of the proof system to extract the solution to the given
hard problem instance.

The occurrence of special soundness in the CM proof may appear—at first glance—more
ad hoc, but also highlights a precious ingredient in the proof pattern: it is important
(for CM-style schemes that commit to the message only late in the signing process) that
the witness for the relation be sufficient to solve the target hard problem.
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Chapter 5

Machine-checked verification of

GJKW

This chapter uses the techniques of the previous Chapter 4 to formalise the scheme of
Goh et al. [6] (GJKW), using the EasyCrypt proof assistant. The formalised scheme gives
insights to prove the unpredictability and show off the flexibility of the machine-checked
security reduction with a visual representation.

5.1 Introduction

Chapter 4 formalised and machine-checked the two signature schemes, EDL and CM,
using the technique of a general proof-step structure and common proof base technique.
The techniques were used to reduce the amount of the boilerplate proof code and focused
on reasoning the parts of the experiments that change between successive games. In
the previous chapter also mentioned that the reduction of the Goh et al.’s [6] (GJKW)
scheme is also based on a tight discrete logarithm. One can extend the proof schema
and use the common proof base (Shim) from the machine-checked formalisation of the
EDL and CM schemes to leverage unpredictability. So, keeping these ideas in mind, this
chapter aims to formalise the third related signature scheme by Goh et al. [6], using the
EasyCrypt proof assistant to show the techniques of EDL and CM schemes are general
enough to apply to similar signature schemes.

89
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Goh et al. [6] analyse the signature scheme whose security is also tightly related to the
Diffie-Hellman assumption. The scheme relies on the hardness of the Computational
Diffie-Hellman (CDH) problem (of finding gab given ga and gb). However, the highlight
of their scheme is that the signer generates a single bit as a deterministic pseudorandom
function of the message that results in the same signature being generated each time
when a specific message is signed. Goh et al. [6] claimed to improve the efficiency of the
signature while detouring the signer to record all the previous messages and signature
(m, σ) pairs. For that, the signer produces bm and r as pseudorandom functions of the
message m, resulting in the same result signature being produced each time an individual
message is signed. In addition, the difference between this and the proofs of EDL and
CM schemes is that Goh et al. [6]’s scheme has an additional step called the compute
relevant queries step, where the adversary performs three steps when any time the first
relevant query for some message is made (see Figure 5.1). Thus, using this notable
highlight and the difference in their scheme, this thesis reports on another machine-
checked formalisation using EasyCrypt, which relies on automated theorem provers, SMT
solvers and interactive proof assistants. Like denoting other schemes with short names
during the formalisations, this chapter denotes Goh et al. [6]’s scheme with GJKW.

CompRel Queries [6]

1 : Chooses a random bit bm and stores (bm,m).
2 : Chooses a random γm ∈ Zq, define hm = H(bm,m) = gγm , and stores (bm,m, γm) .

3 : Computes y = pkγm and simulates a NIZK. Picks random (c, s), and computes

A = gspk−c, B = hskm · y−c.
Setting γm = (y, c, s, bm), defining G(hm, y, A,B,m) = c and stores (sig,m, σm).

Figure 5.1: Compute Relevant Queries

The security proof of the GJKW scheme is also constructed through exact security and
develops the reasoning that the CDH problem is almost as hard to solve as to break the
scheme. The scheme is formalised and verified in the computer-aided tool EasyCrypt,
and the methodology of formally verifying the scheme is the code-based game-playing
technique [15]. Remember, this technique makes small changes to the original security
game until a condition is reached where the adversary cannot win the game. The
proofs give a sequence of games which provide reasoning on the relations between the
probabilities of events in the successive games and isolate the complicated events whose
probability must be reasoned.
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5.1.1 Contribution

The formalisation of the GJKW [6] scheme is verified using the EasyCrypt framework. To
the best of our knowledge, this is the first machine-checked formalisation of the GJKW
scheme with a tight reduction to a Diffie-Hellman assumption in the game-based proof
settings. The mechanism of this proof is the evidence claimed in our research paper [44]
that one can use the underlying techniques such as the common proof base and the
general proof-step structure for the tight security reduction to the CDH problem. The
machine-checked security proof of the GJKW uses the underlying technique to step to
another level of refining the similarities and eliminating the events which are not needed,
and the common proof base reduces the boilerplate codes. The resulting formalisation
is now more straightforward and elegant. The chapter also presents the dimension of
comparing the security proofs with EasyCrypt’s proofs to help understand the novelty
of the proof structure for a better understanding of the formalisation.

5.1.2 Related Work

Besides the machine-checked proofs of the EDL and CM schemes, published and pre-
sented at the conference (see Chapter 4), there are no related verified discrete logarithm-
based schemes with tight reductions. However, this section only gives an overview of
the related schemes with the view of cryptography rather than formal verifications.

In 1996, Bellare and Rogaway proposed a probabilistic signature scheme (PSS) that
achieves a tight security reduction (i.e., the probability of forging a signature is nearly
as low as inverting RSA) [57]. They also presented the Full Domain Hash (FDH)
signature scheme [57], [31], which is secure in the random oracle model (ROM). They
showed that the security of their scheme is tightly related to the security of the RSA
function. The scheme is based on the reversing of the RSA; that is, it is hard to extract a
root modulo a composite integer. Later, in 2000, Coron [116] delivered a better security
reduction for the FDH, which offers tighter security proofs for bounds. In 2008, Hofheinz
and Kiltz [117] proposed asymptotical tightness revisions for the CDH based signature
scheme, secure without random oracles. Since then, many schemes with the techniques
of security reductions have been presented to achieve tight security proofs.

One noteworthy scheme, EDL, was proposed by Katz and Wang [63], which is to tighten
the security of the FDH signature scheme. In 2003, they showed that their scheme was
based on their original work [16]. They claimed that their newer scheme is efficient
and has the claw-free trapdoor Full Domain Hash (FDH), which fulfils tight security
utilising the technique of bit selector. Chaum and Padersen proposed the first EDL
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signature scheme in 1992 [18], and seven years later, Jakobsson and Schnorr [19] pro-
posed its variants. However, both schemes were proved without security analysis. In
2003, Goh and Jarecki [16] proved that the EDL signature scheme is tightly related to
the Computational Diffie Hellman (CDH) problem when it is constructed in the Ran-
dom Oracle Model. Due to a minor omission of steps by Goh and Jarecki, Chevallier-
Mames [17] presented an improvement of the EDL scheme, besides their new proposed
signature scheme, which is denoted by CM here. The most recent related work is by
the Chevallier-Mames [118], who proposed a new pairing-free signature scheme which
extends the EDL family and its variants [6, 16, 18, 63, 119, 120]. The scheme is based
on the strong Diffie-Hellman problem, and the signature is proved without using the
random oracle model. This scheme certainly looks more complicated than all the prior
schemes.

5.1.3 Outline

After defining the GJKW signature scheme, the next section dives directly into the
machine-checked formalisation of the scheme with its security proof. Then finally, it
closes with a discussion and future work.

5.2 GJKW signature scheme

The GJKW signature scheme is defined as shown in Figure 5.2, where, in addition to
the cyclic group G, it considers; a bit and a set M of messages. The scheme is defined
over cyclic group G of prime order q with generator g.

The scheme consists of three probabilistic algorithms S = (KGen,Sign,Ver). In the
figure, the key generation algorithm (KGen) picks the secret key sk ∈ Zq and computes
pk = gsk, where pk is the public key. The signing algorithm (Sign) produces a non-
interactive zero-knowledge (NIZK) proof of discrete logarithm equality with bases a
message-dependent hash and the generator, and discrete logarithm the secret key. Upon
input a secret key sk and a message m ∈M, returns a signature (σ = y, π, bit). Finally,
the verification algorithm (Ver) recomputes the message-dependent hash and verifies
the corresponding NIZK proof. That is, upon input a public key pk, a message m ∈M

when given signature σ, returns whether σ is a valid signature of m with respect to pk.
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GJKWH′,H
G,g,q

KGen()

sk←$Fq

return (sk, gsk)

Verpk(m, (y2, pi, bit))

h← H(bit,m)

A← gspk−c

B← hsy−c

c′ ← G(h, y,A,B,m)

return c = c′

Signsk(m)

bit←$ {0, 1}
h← H(bit,m)

y← hsk

r←$Fq

A← gk

B← hk

c← G(h, y,A,B,m)

s← r + c · sk
pi← (c, s)

return (y, pi, bit)

Figure 5.2: The GJKW signature scheme based on CDH, parameterized by two random
oracles H : M× bits→ G and G : G5 → Fq.

5.2.1 GJKW in EasyCrypt format

In EasyCrypt, the cryptographic algorithms and experiments are modelled as modules,
consisting of global variables and procedures written in a simple imperative language
with namespaces. The Listing 5.1 represents the definition of the GJKW’s proof in
EasyCrypt as a module. The module is parametrised by Sig-Scheme (Sig-Scheme is a
sub-module and modelled as module type (as shown in Listing 5.2)) and two oracles, H
and G, with name spaces GJKW, H and G, respectively. The name of the modules starts
with an uppercase letter. In this module, there are three procedures (proc), named with
algorithms keyGen, sign, and verify, respectively. The map is the global variable which
any of the procedures can use, and it should be declared before the procedures which
use them. Moreover, the modules can be parametrised as an abstract module, where
the adversary is modelled and whose code is unknown and could be quantified over. In
a procedure, after writing the local variables, there maybe a sequence of statements,
such as allocating values picked from distributions to variables, if-and-else statements,
and returns statements which should occur at the end of the calls.

Listing 5.1: Definition of GJKW scheme in EasyCrypt
module (GJKW : Sig_Scheme) (H : Ht.RO) (G : Gt.RO) = {
var map : (msg , group * (zmod * zmod) * bool) fmap
proc keygen () = {

var sk;
map <- empty;
sk <$ dZp;
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return (g^sk, sk);
}
proc sign(sk : zmod , m) = {

var b, h, r, c;
if (m \notin map) {
b <$ {0,1};
h <@ H.get(m, b);
r <$ dZp;
c <@ G.get(h, h^sk, g^r, h^r, m);
map.[m] <- (h^sk, (c, c * sk + r), b);
}
return oget map.[m];

}
proc verify(pk : group , m, sig) = {

var y, pi, b, h, c’;
var c, s : zmod;
(y, pi, b) <- sig;
(c, s) <- pi;
h <@ H.get(m, b);
c’ <@ G.get(h, y, g^s * pk^-c, h^s * y^-c, m);
return c = c’;

}
}.

Listing 5.2: Sig-Scheme is an abstract module
module type Sig_Scheme(H : Ht.RO, G : Gt.RO) = {

proc keygen () : group * zmod
{G.init , G.get , G.set , G.rem , G.sample ,
H.init , H.get , H.set , H.rem , H.sample}

proc sign(_ : zmod * msg) : group * (zmod * zmod) * bool
{G.init , G.get , G.set , G.rem , G.sample ,
H.init , H.get , H.set , H.rem , H.sample}

proc verify(_ : group * msg * (group * (zmod * zmod) * bool)) : bool
{G.init , G.get , G.set , G.rem , G.sample ,
H.init , H.get , H.set , H.rem , H.sample}

}.

module RO = { (** H oracle **)

var m : (msg ∗ bool, group) fmap

proc get(x : msg ∗ bool) : group = {

var r : group;

r←$ dgp;

if (x /∈ Ht.RO.m)

Ht.RO.m.[x] ← r;

return oget Ht.RO.m.[x]; }

}
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module RO = { (** G oracle **)

var m : (group ∗ group ∗ group ∗ group ∗ msg, zmod) fmap

proc get(x : group ∗ group ∗ group ∗ group ∗ msg) : zmod = {

var r : zmod;

r←$ dZp;

if (x /∈ Gt.RO.m)

Gt.RO.m.[x] ← r;

return oget Gt.RO.m.[x]; }

}

The procedure keyGen initialises the map to empty, uses a random assignment to assign
the secret key (sk) to uniformly chosen at random in Zq and returns the public secret
key pairs (pk = ggsk, sk).

The procedure sign takes two parameters (or arguments) sk of type Zq and m of type
messages. This procedure has conditional (if ) statement, which states that if the mes-
sage m is not in the map, then perform the following statements;

• random assignment to assign to b to a bit, i.e. 0 and 1,

• procedure call assignment to call the procedure H.get with arguments of m and b,
(see module RO for oracle H),

• a random assignment to assign the variable (r) to uniformly chosen at random in
Zq,

• procedure call assignment to call the procedure G.get with arguments (...) (see
module RO for oracle G),

• the message m is mapped to output the values.

Finally, it returns the message m.

The procedure verify takes three parameters pk of type in cyclic group, m of type
messages, and sig of type signature. The local variables (c, s) of type in Zq and local
variables can not be accessed by other procedures. After setting some values, it uses
a procedure call assignment to call the procedure H.get with arguments of m and b
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and another procedure call assignment to call G.get with arguments(...). Assign G.get

returns c = c′, which checks if they are equal.

It can be seen that after writing each statement of a procedure and variable declara-
tions, they are terminated with a semicolon. Also, a module can access the previously
declared module, as mentioned in the procedure call assignment. Furthermore, the mod-
ule types define the types of a set of procedures The module type Sig-Scheme takes two
parameters, H and G, and three procedures, keyGen, sign, and verify, with their types.
The order of the procedures does not make any difference.

5.3 Security

The GJKW signature scheme follows the notion of existential forgery under adaptive
chosen message attacks (EUF-CMA) in the ROM. However, this chapter skips the pen-
and-paper definitions of EUF-CMA, CDH and their advantages but only illustrates the
EasyCrypt’s definitions (as shown in Listings 5.3 and5.4). One can find those pen-and-
paper definitions in Chapter 4.

Listing 5.3: The definition of EUF-CMA experiment in EasyCrypt
module EUF_CMA(H : Ht.RO, G : Gt.RO, S : Sig_Scheme , A0 : CMA_Adv) = {

var sk : zmod
var qs : msg fset
module O = {

proc h(x : msg * bool) : group = H.get
proc g(x : group * group * group * group * msg) : zmod = G.get
proc sign(m : msg) : group * (zmod * zmod) * bool = {

var r : group * (zmod * zmod) * bool;
EUF_CMA.qs <- EUF_CMA.qs ‘|‘ fset1 m;
r <@ S(H, G).sign(EUF_CMA.sk, m);
return r;

}
}
proc run() : bool = {

var pk : group;
var m : msg;
var sig : group * (zmod * zmod) * bool;
var b : bool;
H.init ();
G.init ();
EUF_CMA.qs <- fset0;
(pk, EUF_CMA.sk) <@ S(H, G). keygen ();
(m, sig) <@ A0(EUF_CMA(H, G, S, A0).O).forge(pk);
b <@ S(H, G). verify(pk, m, sig);
return b /\ ! (m \in EUF_CMA.qs);

}
}.
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Listing 5.4: The definition of CDH experiment in EasyCrypt
module CDH(A0 : CDH_Adv) = {

proc run() : bool = {
var a : zmod;
var b : zmod;
var r : group;
a <$ dZp;
b <$ dZp;
r <@ A0.solve(g^a, g^b);
return r = g^(a * b);

}
}.

The formalisation of GJKW aims to be an efficient signature scheme with a tight security
reduction; that is, to break the scheme must be as hard as to solve the underlying hard
problem that the scheme employs. So, Theorem 14 shows that the adversary’s success
probability must be roughly equal to the probability that solves the underlying hard
problem.

Also, the proof of the scheme is concrete, and shows the reduction used in proving
Theorem 14 is displayed in Figure 5.3.

Theorem 14 (Security of GJKW). If the group G is (t′, ϵ′)-CDH with generator such

that simulating a query to G takes time t, then GJKW is (t, qG, qS, ϵ)-EUF-CMA secure,

and with

t ≈ t′ − O((qG + qS) · (t))

ϵ ≤ 2ϵ′ +
(qG + 1)

2p

where qG is queries to the hash function, qS is queries to the signing oracle, ϵ′ is the

success probability of the adversary, and ϵ is the success probability that the Diffie-

Hellman problem can be solved within t.

Proof. The adversary has EUF-CMA forger as a black-box which internally simulates

oracles H, and G. Figure 5.3 shows the reduction from the CDH that first runs the

EUF-CMA forger and simulates its oracles. The key insight in the reduction is to embed
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AF
G,g,q(pk, gy)

var H ∈M×N ⇀ G× Fq

var G ∈ G5 ⇀ Fq

map: (m, b)

Oracle simulation

H(m, b)

if (m /∈ map)⌊
Compute Rel Queries

βm ←$Fq

if (m, b) /∈ H⌊
H[x]← (hgβm , βm)

return π1(H[(m, b)])

G(h, y,A,B,m)

if (m /∈ map)⌊
Compute Rel Queries

c←$Fq

if x /∈ G⌊
G[x]← c

return G[(h, y,A,B,m)]

Sign(m)

bit←$ bool

if (m /∈ map)⌊
Compute Rel Queries

return (y, (c, s), βm)

Compute Rel Queries

bm ←$ bit

γm ←$Fq

y ← pkγm

c←$Fq

s←$Fq

A← gspk−c

B← hs
my−c

σm ← (y, c, s, bm)

H[hm, y,A,B,m]← c

Store (sig, m, σm)

(m̂, (ŷ, ĉ, ŝ, b̂))← F
H,G,Sign(pk)

_← H(m̂, b̂) // This is to ensure (m, bm) ∈ H

βm ← π2(H[m, bm])

return ŷ · pk−βm

Figure 5.3: The reduction A from CDH.

the CDH challenge across the signing scheme and its random oracles, then simulate the

signing oracle and finally use the forger’s queries to simulated oracles to solve the CDH

challenge. In other words, the CDH is embedded in oracle H, NIZK proof is simulated

in the signing oracle and then extracts the solution from the random oracle. Thus,

it proves that the probability that this reduction solves its CDH challenge is, in fact,

closely related to the probability that the forger Fq finds a valid forgery.

The techniques of reducing this scheme are almost the same as EDL and CM schemes,
as it was believed to be applied broadly to related signature schemes.
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5.4 Formalisation

The security reduction of the GJKW scheme is constructed to prove the unforgeabil-
ity under the EUF-CMA security notion in the ROM, using the code-based game-based
technique in the EasyCrypt framework. The initial game is the EUF-CMA experiment,
and the succeeding games are constructed by a small transition of the proceeding games.
The successive games are built so that the difference in their view is efficiently quantifi-
able.

5.4.1 Proof Overview

The machine-checked formal verification of the GJKW’s proof begins with a sequence of
games, which bridges the gap between the EUF-CMA experiment and the CDH experi-
ment. Diagram 5.4 shows the high-level overview of the proof as a sequence of games
which binds the sequence of games into a proof of Theorem 14 and gives an intuitive
explanation of each game transition. The machine-checked proof of the GJKW’s scheme
is divided into two sections, i.e. 1st simplification and 2nd simplification. The
diagram begins with the equivalence of two games, first the experiment of EUF-CMA of
GJKW and second the Game0.

The Game0 is split into two branches, 1 and 2, with events (res∧ŷ ̸= ĥsk) and (res∧ŷ =

ĥsk) respectively. In the second branch, Game0 is further split into two branches, A
and B. So, the whole second branch (i.e. on 2) bounds the probability, which is the
sum of the probabilities that the simulator wins the CDH at points a and b. Here, res
means the event.

The details of the games are not necessary at the moment, but the visual representation
emphasises the importance of the games with their events.

Then, one can say that the bound becomes twice the probability that the simulator
wins the CDH challenge. Overall the figure shows how the final statement arises, which
then can lead to bound the probability of EUF-CMA of GJKW is bounded by the sum
of the probabilities, that is:

Pr[EUF-CMA(GJKW)] ≤ (qG + 1)

p
+ 2 · Pr[CDH(Simulator(A))].
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Figure 5.4: Overview of the proofs

5.4.2 The Sequence of Games

The machine-checked formalisation of the GJKW’s scheme begins with the sequence of
the games, where the initial game is EUF-CMA game and the final game isGameGJKW

0 (H,G, S),
applied with some events. Then the construction of the sequence of games is simplified
into two sections (see Diagram 5.4 where the dashed line separates the simplifications).
The first simplification encounters the failure event by eliminating the other events that
are not essential, which later gives simpler proofs in the second simplification. The
second simplification removes the cases where the adversary guesses the value used for
his forgeries.
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[EUF-CMA(H,G,GJKW,F)]

The security proof begins with the initial game EUF-CMA of GJKW, where the public
and secret key pairs are produced with the key generation algorithm. The adversary
A, given the public key, has access to the random oracles H, G and Sign, which sign
messages and produce a valid signature upon a message.

[GameGJKW
0 (H,G, S)]

The next game is GameGJKW
0 (H,G, S), where the experiment of EUF-CMA is trans-

formed. The game is expressed in pseudocode (as shown in Figure 5.5) to make it more
transparent.

GameGJKW(H,G, S)

Wrapper O

H(m, b)

h←$G
if (m, b) /∈ H⌊
H[(m, b)]← h

return H[(m, b)]

G(h, hsk, gr, hr,m)

c←$Fq

if (h, hsk, gr, hr,m) /∈ G⌊
G[(h, hsk, gr, hr,m)]← c

return G[(h, hsk, gr, hr,m)]

S(m)

CompRel Queries

1 : b←$ {0, 1}
2 : h← H(m, b)

3 : y← hsk

4 : r←$Fq;A← gr;B← hr

5 : c← G(h, hsk, gr, hr,m)

6 : s← c · sk+ r

7 : return (hsk, (c, c · sk+ r), b)

Figure 5.5: GameGJKW
0 (H,G, S)

The following lemma shows the probabilities between the two successive experiments.

Lemma 15. For any forger F,

Pr
[
Expeuf-cma(H,G,GJKW,F) : y ∧ m̃ /∈ QS

]
= Pr

[
GameGJKW(H,G, S) : win

]

Proof. The lemma shows a simple program equivalence. The right-hand side of the
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equality is the GameGJKW
0 which is the EUF-CMA experiment, applied to GJKW scheme

with algorithms of key generation (KGen), signature Sign and verification (Ver) inlined

in the game. In Listing 5.5, the equivalence lemma is expressed in EasyCrypt. It proves

that the transition from the EUF-CMA experiment to GameGJKW
0 (H,G, S) is equal, with

the requirement of invariant to keep track of statements throughout the states.

Listing 5.5: GameGJKW
0 (F) in EasyCrypt

local equiv Step0:
EUF_CMA(Ht.RO, Gt.RO, GJKW , A).run ~
Game0(Bt.LRO , Ht.RO, Gt.RO).run:

={glob A} ==> ={res}.
proof.

The pRHL judgment is used to relate EUF-CMA.run and Game0.run, and ={res} means
that the result of EUF-CMA.run is equal to the result of Game0.run.

Listing 5.6: GameGJKW
0 (H,G, S) in EasyCrypt

local module Game0 (B : Bt.RO) (H : Ht.RO) (G : Gt.RO) = {
var sk : zmod
var qs : msg fset
var m : msg
var y : group
var c : zmod
var s : zmod
var b : bool
var h : group
module O = {

proc h = H.get
proc g = G.get
proc sign(m) = {

var b, h, r, c;
qs <- qs ‘|‘ fset1 m;
b <@ B.get(m);
r <@ Rt.RO.get(m);
h <@ H.get(m, b);
c <@ G.get(h, h^sk, gg^r, h^r, m);

return (h ^ sk, (c, c * sk + r), b);
}

}
proc run() = {

var pk, sig , pi, c’;
H.init ();
G.init ();
B.init ();
Rt.RO.init ();
qs <- fset0;
sk <$ dZp;
pk <- gg^sk;
CountingA.cG <- 0;
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(m, sig) <@ A(O).forge(pk);
(y, pi, b) <- sig;

(c, s) <- pi;
h <@ H.get(m, b);
c’ <@ G.get(h, y, gg^s * pk^-c, h^s * y^-c, m);

B.sample(m);
return c = c’ /\ !m \in qs;

}
proc distinguish = run (* Fit the RO distinguisher interface *)

}.

The model of developing the pseudocode of this game in the EasyCrypt framework is
shown in Listing 5.6. In EasyCrypt, games are modelled as modules, containing the
procedures written in a simple user-extensible imperative language. B, H, and G are
used as parameters in the game. Module O wraps the procedures h, g and sign.

The signing oracle is inlined, and it makes the sampling operations for values b and r

instead of sampling in the distributions. These are provided from the random oracles,
parametrised with m. So, instead of sampling a fresh value every time it gets the same
m, it retrieves the previously sampled value. The main idea is to ensure that values of
b and r are produced pseudorandomly from m, allowing getting rid of the if-and-else
conditions present in the original hand proof by GJKW, which makes the reasoning
easier in the framework.

The GameGJKW
0 has global variables (sk, qs,m, y, c, s, b, h) with their respective types,

which can be used by any inside procedures of game and outside modules. The procedure
run takes no parameters, initialises the oracles H, G, B and R and sets the list (qs) to
empty. The highlight of this procedure is that the public key (pk) is computed as gsk

for randomly chosen sk ∈ Zq in the procedure, and procedure call assignment is used to
call the adversary.

The procedure distinguish calls directly the procedure run.

1st Simplification

As mentioned in the overview (see Diagram 5.4) that GameGJKW
0 further splits into

two statements, 1 and 2. The first statement has the event where (y2 ̸= hsk), which
eventually proves the probability of the forger relying on an unsound proof of discrete
logarithm equality. The second statement has the event where (y2 = hsk), which even-
tually proves that the reduction uses the successful forgery run by breaking the CDH
challenge. The second statement will be explained in the second simplification, whereas
the first statement is in the first simplification, which begins next.
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[GameGJKW
bad (H,G, S) : bad] (failure event)

The next game is GameGJKW
bad , similar to the previous game, except small changes are

introduced with red texts, and the oracle G is programmed to account for the failure
event (see the r.h.s in Figure5.6). The first change is to introduce a (global) boolean
flag (bad) which becomes true if the signing oracle has already queried G on the input
string (h, hsk, gr, hr,m). This game is a simple game where it only cares to check if the
signing oracle makes the query to oracle G is fresh or not.

The game programs the random oracle G on inputs queried by the signing oracle to
return c (see GameGJKW

bad , point 5 in Figure5.6). Doing so introduces a difference in
the behaviour if the signer has already queried G on the point being programmed. The
event is captured as bad and becomes observable by the adversary. This is because
the game GameGJKW

bad (H,G, S) can be distinguished from the game GameGJKW
0 (H,G, S)

by the forger when the signing oracle programmed oracle G at a point the forger had
previously queried. So, the event bad occurs with a low probability and can be seen
later in the Lemma 16.

Another minor difference between GameGJKW
0 and GameGJKW

bad is setting the CountingA
(see red texts in GameGJKW

bad Figure 5.6), a counter and allowing one to bound the
probability by counting the number of queries and placing a bound on the adversary.

Before bounding the failure event, one can show the transition from GameGJKW
0 to

GameGJKW
bad with the following probabilities:

Pr
[
GameGJKW

0 (B,H,G).run() : res ∧ y ̸= hsk
]

= Pr
[
GameGJKW

bad (B,H,G).run() : res ∧ y ̸= hsk ∧ CountingA.cG ≤ (qG + 1)
]
.

GameGJKW
0 and GameGJKW

bad are the same except for some differences but with different
oracles, and the difference does not change the adversary’s behaviour. It states that
the probabilities of these two games are equivalent, except the variable (CountingA) is
initialised to zero in the GameGJKW

bad , and adversary calls the CountingA of the oracles.
This can easily be proved in EasyCrypt by just program equivalences. Here, the counter
bounds the probability that the adversary forges via the unsoundness of the NIZK proof.
Now, the Difference Lemma 1 is applied to capture the failure event as the flag bad is
set. The difference in probability of any event between two games is upper bounded by
the probability of the occurrence of the failure event bad in one of them. The following
lemma shows that the (qG+1)

p bounds the adversary’s probability of winning with y ̸= hsk.
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Game0(H,G, S)

1 : sk←$Zq;

2 : pk← gsk;

3 : (m, σ)← A(O).forge(pk);

4 : (y, π, b)← σ;

5 : (c, s)← π;

6 : h← H.get(m, b)

7 : c′ ← G.get(h, y, gs · pk−c, hs · y−c,m)

8 : return c = c′ ∧ ¬m ∈ QS;

Gamebad(H,G, S)

1 : sk←$Zq

2 : pk← gsk; b←$ {0, 1}
3 : h← H.get(m, b)

4 : y← hsk;

5 : Failure event

c←$Fq;

bad← bad ∨ (y ̸= hsk∧
(a · gskc)logg h = b · yc)

G[(h, hsk, gr, hr,m)]← c;

6 : bad← false;
7 : CountingA← 0;

8 : (m, σ)← A(CountingA(A,O)).forge(pk);

9 : (y, π, b)← σ;

10 : (c, s)← π;

11 : h← H.get(m, b)

12 : c′ ← CountingA(A,O).(h, y, gspk−c, hsy−c,m)

13 : return c = c′ ∧ ¬m ∈ QS;

Figure 5.6: GameGJKW
0 (H,G, S) and GameGJKW

bad (H,G, S)

Lemma 16 (bad). For any forger F,

Pr
[
GameGJKW

bad (B,H,G).run()&m : res ∧ y ̸= hsk
]
≤ (qG + 1)

p
.

Proof. Now, one can bound the probability of the failure event bad. The boolean flag

bad is set by the signing query if the tuple it uses as an input to oracle G coincides with

one of the inputs on which G has already been queried. One can see that both games

are equivalent as long as bad is false. Firstly, the counter countingA is added before
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proving the bound on the failure event.

Pr
[
GameGJKW

bad (B,H,G).run()&m : res ∧ y ̸= hsk ∧ CountingA.cG ≤ (qG + 1)
]

≤ Pr
[
GameGJKW

bad (B,H,G).run()&m : bad ∧ CountingA.cG ≤ (qG + 1)
]

The probability that the forger queries and gets a value c is at most 1/p. Since G query

was made by the forger, there are at most (qG +1) such queries. So, the probability for

any forger F that makes at most qG queries to her G oracle is at least (qG+1)
p .

Failure Event Lemma (fel tactic)

When the current goal’s conclusion has the form of the above probability, then one can
use the advanced tactic called Failure Event Lemma (fel) to reason about the failure
event in EasyCrypt. Here, the GameGJKW

Bad has a boolean variable bad, which is the bad
event. So, one can use the following rules in EasyCrypt;

fel

init The first argument is the numbers of the lines in the procedure that initialises the
failure event lemma.

ctr The second argument is the counter where the program variables have the expres-
sion type integer, and the counter counts the queries to the oracle.

stepub The third argument is a function of the counter’s current value when the query
is made and provides the probability that a specific query triggers the failure event
bad.

bound The fourth argument becomes the maximum value of the counter that is allowed
to be made by the adversary.

bad The fifth argument is an expression of a boolean type: the failure event.

conds The sixth argument is a list of procedures, where boolean type involves program
variables and the parameters of procedures.

invr The last argument is an optional invariant on program variables.
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The following Listing 5.7 for the fel tactic from EasyCrypt can help to understand better
the above rules.

Listing 5.7: fel tactic in EasyCrypt
fel 9 CountingA.cG

(fun _=> inv p%r)
(qG + 1)
Game0_bad.bad
[Game0_bad(Bt.LRO , Ht.RO, Gt.RO).O.sign: false ]=> //.

Listing 5.8: Game0GJKW
bad (F) in EasyCrypt

local module Game0_bad (B : Bt.RO) (H : Ht.RO) (G : Gt.RO) = {
var sk : zmod
var qs : msg fset
var bad : bool (* The bad is set *)
var m : msg
var y : group
var c : zmod
var s : zmod
var b : bool
var h : group
module O = {

proc h = H.get
proc g(h, y, a, b, m) = {

var c;
c <$ dZp;
if ((h, y, a, b, m) \notin Gt.RO.m) {

bad <- bad \/ ( y <> h^sk
/\ (a * gg^sk^c)^logge h = b * y^c);

Gt.RO.m.[(h, y, a, b, m)] <- c;
}
return oget Gt.RO.m.[h, y, a, b, m];

}
proc sign(m) = {

var b, h, r, c;
qs <- qs ‘|‘ fset1 m;
b <@ B.get(m);
r <@ Rt.RO.get(m);
h <@ H.get(m, b);
c <@ G.get(h, h^sk, gg^r, h^r, m);
return (h^sk, (c, c * sk + r), b);
}

}
proc run() = {

var pk, sig , pi, c’;
H.init (); (* 1 counting no. of lines for fel tactic *)
G.init (); (* 2 *)
B.init (); (* 3 *)
Rt.RO.init (); (* 4 *)
qs <- fset0; (* 5 *)
bad <- false; (* 6 *)
sk <$ dZp; (* 7 *)
pk <- gg ^ sk; (* 8 *)
CountingA.cG <- 0; (* 9 *)
(m, sig) <@ A(CountingA(A,O).Go).forge(pk);
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(y, pi, b) <- sig;
(c, s) <- pi;

h <@ H.get(m, b);
c’ <@ CountingA(A,O).Go.g(h, y, gg^s * pk^-c, h^s * y^-c, m);
B.sample(m);

return c = c’ /\ !m \in qs;
}

proc distinguish = run (* Fit the RO distinguisher interface *)
}.

Here, the number of lines is nine, as highlighted in Listing 5.8. The CountingA.cG is
the counter, causing the probability of the bad event (Game0− bad.bad) happening by
the query is the inverse of p with (qG + 1) is at most value allowed to be made by the
adversary. The procedure Sign is set to false as it has not been called, and one can say
that the oracle never triggers the bad event. The sign does not do anything when the
counter reaches the bound (qG + 1).

2nd Simplification

In the second simplification, on point 2, the GameGJKW
0 further splits into two state-

ments, A (b̂ = bm̂) and B (b̂ ̸= bm̂) (as shown in Figure 5.4). These two statements
can be seen in the rest of the proofs. The intention behind the second simplification is
to remove the cases where the adversary has to guess the value of b̂ that can be used
during the forgeries.

At branch 2, the arrow points at the GameGJKW
0 with events such as (res ∧ ŷ = ĥsk).

Here, one must know the value of b̂, which the adversary gives as part of the forgery. The
adversary wins the game with two probabilities; if she guesses the value of b̂ correctly,
then b̂ = bm̂ (go to branch A), the value is b̂ ̸= bm̂ (go to branch B).

From GameGJKW
0 to Game′GJKW

0

In branch A), the value of b̂ does not exist in GameGJKW
0 ; therefore, the Game′GJKW

0

ensures that the value exists. This game is inserted because sampling b̂ corresponds
to the adversary’s forger, which later allows her to decide whether she has guessed it
or not. This game can be proved easily with GameGJKW

0 , with just equivalences for all
possible events.

If the adversary manages to forge and wins the game with forgery such that b̂ = bm̂

(guessed correctly), then the probability is 1/2. So, the probability (A with red colour)
in the Diagram 5.4 is the probability that the adversary guessed it correctly, the prob-
ability that the adversary made this event accurate, and when the value is b̂ ̸= bm̂.
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Lemma 17 (Unpredictability).

Pr
[
GameGJKW

0 (B,H,G).run()&m : (res ∧ y = hsk)
]

≤ 2 · Pr
[
GameGJKW

0 (B,H,G).run()&m : (res ∧ y = hsk ∧ b̂ ̸= bm̂)
]

To reason in EasyCrypt, Game′GJKW
0 samples the value b, which corresponds to the

Game0.m in the procedure run (see Listing 5.9). The reason for sampling b is that
adversary has made a query with value Game0.m as input to the signing oracle. There-
fore, the Game0.m is in the list, and the adversary cannot win. If the adversary has
Game0.m, it must be that it is not in the map (Bt.RO.m); otherwise, the forgery
Game0.m would not be fresh. The Game′GJKW

0 runs the GameGJKW
0 , and it makes

sure to sample b, and from the adversary’s point of view, Game′GJKW
0 is equivalent to

GameGJKW
0 . However, suppose the value b that the adversary gives differs as part of the

signature. In that case, the probability of getting the value the adversary has at most
1/2 of finding the forger, which was seen in the above probabilities.

Listing 5.9: Game′GJKW
0 (H,G, S) in EasyCrypt

local module Game0 ’ = {
module O = Game0(Bt.RO, Ht.RO, Gt.RO).O
proc inner() = {

var pk, sig , pi, c’;
Ht.RO.init ();
Gt.RO.init ();
Bt.RO.init ();
Rt.RO.init ();
Game0.qs <- fset0;
Game0.sk <$ dZp;
pk <- gg^Game0.sk;
(*** we take the m (Game0.m) that the adversary

gave us as a part of the forgery ***)
(Game0.m, sig) <@ A(O).forge(pk);
(Game0.y, pi, Game0.b) <- sig;
(Game0.c, Game0.s) <- pi;
Game0.h <@ Ht.RO.get(Game0.m, Game0.b);
c’ <@ Gt.RO.get(Game0.h, Game0.y,

gg^Game0.s * pk^-Game0.c,
Game0.h^Game0.s * Game0.y^-Game0.c, Game0.m);

return Game0.c = c’ /\ !Game0.m \in Game0.qs;
}
proc run() = {

var r;
r <@ inner ();
(*** samples the bit that have been used

for the forgery ***)
Bt.RO.sample(Game0.m);
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return r;
}

}.

5.5 Formal Steps

The techniques of a single proof base to build subsequent formal steps (refactorisation,
embedding, simulation and reduction) from the machine-checked formal proofs of EDL
and CM signature schemes can be applied here. Note that the steps can reduce the proof
obligation to obligations on oracles, and the single proof base functions as a distinguisher
between the different sets of oracles in games. However, it requires a few gymnastics to
manipulate the proofs to use the techniques here. So, to begin with, in the formal steps,
GameGJKW

1 is applied to GameGJKW
0 in branch B. In GameGJKW

1 , pre-computation to
all oracles is added in three sub-steps, explained later. One can prove that GameGJKW

1

is syntactically equivalent to GameGJKW
0 (as shown in Listing 5.10).

Listing 5.10: Game equivalences in EasyCrypt

local equiv Game0_Game1_b:
Game0(Bt.RO, Ht.LRO , Gt.LRO).run ~
Game1(CR_b , Bt.RO, Rt.RO , Ht.LRO , Gt.LRO).run:
={glob A}

==> ={glob A, res}
/\ ={h, y, s, c, m, b, qs, sk}(Game0 , Game1)
/\ Bt.RO.m.[Game0.m]{1} = Some Game1.bm{2}.

proof.

Once the equivalences between GameGJKW
0 and GameGJKW

1 are proved, the transition
from GameGJKW

0 to the final game begins, which tells if the adversary wins the game
(Shim(O1)

GJKW), then the simulator succeeds in breaking the CDH challenge (see Fig-
ure 5.1). There are minor changes made during the transitions of the games in which
their probabilities can easily be proved with equivalences, explained next. The transi-
tions of these games are explained in the three steps:

1. the refactorisation occurs in the GameGJKW
1 ;

2. the embedding and simulation occur in the game Shim(O0)
GJKW;

3. the reduction step ends in the game Shim(O1)
GJKW.
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Step 1: Refactorisation (GameGJKW
1 (F) and Shim(O0)

GJKW(F))

The refactoring step in GJKW is more complicated than in prior schemes (EDL and
CM). The reason is that it later supports the easier embedding and simulation steps
occurring in GameGJKW

1 and Shim(O0)
GJKW. In the pen and paper proof of the GJKW’s

scheme, they introduced the compute-relevant queries steps (see Figure 5.1), which now
can be seen here. So, one can insert the compute-relevant queries to all oracles that
the adversary can call and start pre-computing the signatures. The compute-relevant
queries are introduced into sub-steps, which are next.

3 Sub-Steps

Every time the adversary queries which contains message m, the signature computation
on a message is expected in three sub-steps. In the first sub-step, it refactors and
samples b, and r and ignores the result with Lazy random oracle. In the second step,
samples b, r and h, observe the result of b and r with Eager random oracle and ignores
the results of h. In the third step, samples c and the value of h is extracted to use as
input to the G random oracle. The reason for samplings at a different level supports
unwanted samplings that are not needed and can only insert the samplings if the values
are not used and are sampled (see Listing 5.11).

Listing 5.11: Transformation of samplings in three sub-steps
(** Sub -step 1: Anticipate sampling of b and r **)
local module CR_b (B : Bt.RO) (R : Rt.RO) (H : Ht.RO) (G : Gt.RO) = {

proc compute_relevant(m) = {
B.sample(m);
R.sample(m);

}
}.
(** Sub -step 2: anticipate sampling of h **)
local module CR_h (B : Bt.RO) (R : Rt.RO) (H : Ht.RO) (G : Gt.RO) = {

proc compute_relevant(m) = {
var b, r;
b <@ B.get(m);
r <@ R.get(m);
H.sample(m, b);

}
}.
(** Sub -step 3: anticipate sampling of c **)
local module CR_g (B : Bt.RO) (R : Rt.RO) (H : Ht.RO) (G : Gt.RO) = {

proc compute_relevant(m) = {
var b, r, h;
b <@ B.get(m);
r <@ R.get(m);
h <@ H.get(m, b);
G.sample(h, h ^ Game1.sk, gg^r, h^r, m);
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}
}.

Earlier, it was mentioned that one of the differences between this scheme and the EDL
or CM is the compute-relevant queries steps. For a message m, the queries to H(m, ⋆),
G(⋆, ⋆, ⋆, ⋆,m), and Signsk(m) are relevant for message m. The compute-relevant oracle
is inserted in GameGJKW

1 (F) (see O, in the l.h.s. of Figure 5.7) whenever the adver-
sary asks for a signature or hash from H or G. The GameGJKW

1 (F) is parametrised
by CompRel and all random oracles (B,R,H,G). The CompRel is a type module
parametrised by random oracles (B,R,H,G), and a module of this type implements
the compute-relevant queries.

[Shim(O0)
GJKW(H,G, S)]

The transition from GameGJKW
0 to the CDH adversary A happens with small hops in

Shim(O0)
GJKW and Shim(O1)

GJKW. The game Shim(O0)
GJKW is similar toGameGJKW

0 ,
except the procedure Sign in GameGJKW

0 is slightly different (see Figure 5.7 to see the
difference). The GameGJKW

0 (F) computes the signature after the computed-relevant
oracle, whereas in the Shim(O0)

GJKW, the message is searched in the map.

In EasyCrypt, the game Shim(O0)
GJKW is defined in Listing 5.12, where the game takes

Oracles as a parameter (see Listing 5.13).

Listing 5.12: Shim takes module Oracles as a parameter
local module Shim (O : Oracles) = {

var sk : zmod
var qs : msg fset
var ms : (msg , (group * (zmod * zmod) * bool)) fmap
var m : msg
var y : group
var c : zmod
var s : zmod
var b : bool
var h : group
var bm : bool
var gb : group
module O’ = {

proc h(m, b) = {
var r;
O.compute_related(m);
r <@ O.h(m, b);
return r;

}
proc g(h, y, a, b, m) = {

var r;
O.compute_related(m);
r <@ O.g(h, y, a, b, m);
return r;

}
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proc sign(m) = {
O.compute_related(m);
qs <- qs ‘|‘ fset1 m;
return oget ms.[m];

}
}
proc run() = {

var pk, sig , pi, c’;
O.init ();
Bt.RO.init ();
Rt.RO.init ();
qs <- fset0;
ms <- empty;
gb <$ dgp;
sk <$ dZp;
pk <- gg ^ sk;
(m, sig) <@ A(O’). forge(pk);
(y, pi, b) <- sig;
(c, s) <- pi;
h <@ O.h(m, b);
c’ <@ O.g(h, y, gg ^ s * pk ^ -c, h ^ s * y ^ -c, m);
bm <@ Bt.RO.get(m);
return c = c’ /\ !m \in qs

/\ y = h ^ sk /\ bm <> b;
}
proc distinguish = run (* Fit the RO distinguisher interface *)

}.

Listing 5.13: Shim takes module Oracles as a parameter
module type Oracles = {

proc init() : unit
proc h(m : msg , b : bool) : group
proc g(h : group , y : group , a : group , b : group , m : msg) : zmod
proc compute_related(m : msg) : unit

}.

The pen and paper proof of compute-relevant 5.1 queries has conditional statements,
making states stateless instead of stateful. By removing the if statements in the
machine-checked formalisation, intermediate games are easier to implement in Easy-
Crypt.

Next, the embedding and simulation step occurs in the game Shim(O1)
GJKW, as men-

tioned earlier.

Step 2: Embedding and Simulation (Shim(O1)
GJKW(H,G, CompRel))

The steps of embedding and simulation occur simultaneously for GJKW’s proof, unlike
EDL and CM’s proofs which occurred separately. In the machine-checked formalisation
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GameGJKW
0 (H,G, S)

1 : bm ← false
2 : sk←$Fq

3 : b←$ {0, 1}
4 : pk← gsk

5 : y ← hsk

6 : (m, σ)← A(O).forge(pk)

7 : σ ← (y, π, b)

8 : π ← (c, s)

9 : h← H.get(m, b)

10 : A← gspk−c

11 : B← hsy−c

12 : c′ ← G.get(h, y,A,B,m)

13 : bm ← B.get(m)

14 : win← c = c′ ∧ ¬m ∈ QS

Shim(O0)
GJKW(H,G, S)

ms : (m, (σ = (y, π = (c, s), b)))fmap

1 : bm ← false
2 : sk←$Fq;

3 : b←$ {0, 1}
4 : pk← gsk

5 : gb ← gd

6 : (m,σ)← A(O′).forge(pk)
7 : σ ← (y, π, b)

8 : π ← (c, s)

9 : h← O.h(m, b)

10 : A← gspk−c

11 : B← hsy−c

12 : c′ ← O.g(h, y,A,B,m)

13 : bm ← Bt.RO.get(m)

14 : win← c = c′ ∧ ¬m̃ ∈ QS

∧ (y = hsk) ∧ (bm ̸= b)

O

1 : Oracle H⌊
compute-relevant queries
h← H(m, b)

2 : Oracle G⌊
compute-relevant queries
c← G(h, y,A,B,m)

3 : Oracle Sign

compute-relevant queries
b← B.get(m)

r ← R.get(m)

h← H.get(m, b)

c← G.get(h, hsk, gr, hr,m)

return (hsk, (c, (c · sk+ r)), b)

O′

1 : Oracle H⌊
compute-relevant queries
h← H(m, b)

2 : Oracle G⌊
compute-relevant queries
c← G(h, y,A,B,m)

3 : Oracle Sign⌊
compute-relevant queries
return ms.[m]

Figure 5.7: The difference b/w GameGJKW
0 and Shim(O0)

GJKW
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of GJKW, there is no failure event to account for now, and the embedding step becomes
failure-event-free. The two steps occur in the game Shim(O1)

GJKW(F) (as shown in
r.h.s. of the Figure 5.8). The CDH challenge is embedded into the responses given to
H queries, and then the compute-relevant queries do the simulation.

[Shim(O1)
GJKW(H,G, CompRel)]

The Figure 5.8 shows that the red texts represent the changes between them in two
consecutive games, and the following section describes how they are equivalent.

The game Shim(O1)
GJKW modifies the oracle H to embed the CDH challenge in the

log of forger queries. The oracle H is revealed to the forger, which then can compute
its output as gbgd for uniformly sampled d, which can be kept alongside the oracle’s
response. Also, logging d in H does not affect the adversary’s viewpoint as computing
both gbgdand gd generate the uniform distribution over G when d is uniform in Fq and
d is not used. Note that the failure event bad was already accounted for in the previous
game, which occurred when the query to oracle G made by the signing oracle was not
fresh. So, here in this game, the oracle G is now set to value c.

The simulation step happens in the compute-relevant, now in the oracle Sign. The
compute-relevant simulates the proof of discrete logarithm equality, which relies on
the property of zero-knowledge without using the secret key. The modification of the
oracle Sign, which samples a fresh value of h, does not change the behaviour whether
it appeared in H or in the signing query, and the adversary can not distinguish this
change. This is because both oracles are already programmed.

In EasyCrypt, the oracles of two games, Shim(O0)
GJKW and Shim(O1)

GJKW, are proved
with equivalences of lemmas, keeping the above statements in mind. The above state-
ments capture the behaviour of the two games and are written as invariants in the pre
and post conditions of the equivalence lemmas. The lemmas of oracles for equivalences
are not delved into discussions. Thus, the probability of these two games can be written
as: Pr[Shim(O0).run()@ &m: res] = Pr[Shim(O1).run()@ &m: res]

Step 3: Reduction

Oracles were now simulated without using the secret key, and a CDH challenge was
embedded. At this final stage, if the forger F wins the (Shim(O1)

GJKW) and shows a
successful forgery (m, (σ = y, (π = (c, s)) then the adversary from Figure 5.3 succeeds
in solving its given instance.
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Shim(O0)
GJKW
H,G,S

ms : (m, (σ = (y, π = (c, s), b)))fmap

1 : bm ← false ;sk←$Fq;

2 : b←$ {0, 1}
3 : pk← gsk

4 : gb ← gd

5 : (m,σ)← A(O′).forge(pk)here?
6 : σ ← (y, π, b)

7 : π ← (c, s)

8 : h← O.h(m, b)

9 : A← gspk−c

10 : B← hsy−c

11 : c′ ← O.g(h, y,A,B,m)

12 : bm ← Bt.RO.get(m)

13 : win← c = c′ ∧ ¬m̃ ∈ QS

∧ (y = hsk) ∧ (bm ̸= b)

Shim(O1)
GJKW(H,G, CompRel)

hm : (m · bool, h-resp)fmap
gm : ((group, group, group, group,msg), zmod)fmap

1 : bm ← false
2 : b← Bt.RO.get(m)

3 : pk← gShim.sk

4 : gb ← gd??

5 : (m,σ)← A(O′).forge(pk)here?
6 : σ ← (y, π, b)

7 : π ← (c, s)

8 : Wrapper O′
9 : h← gd? do we need this now?

10 : y← pkd

11 : A← gspk−c

12 : B← hsy−c

13 : c′ ← O.g(h, y,A,B,m)

14 : win← c = c′ ∧ ¬m̃ ∈ QS

∧ (y = hsk) ∧ (bm ̸= b)

O′

1 : Oracle H⌊
compute-related queries
h← H(m, b)

2 : Oracle G⌊
compute-related queries
c← G(h, y,A,B,m)

3 : Oracle Sign⌊
compute-related queries
return ms.[m]

O′

1 : Oracle H(x)

compute-related queries
y←$Fq

if (x /∈ hm)⌊
hm[x]← h

return hm[x]

2 : Oracle G(x)

compute-related queries
y←$Fq

if (x /∈ gm)⌊
gm[x]← c

return gm[x]

3 : compute-related (CompRel)

if m /∈ Shim.ms

b← Bt.RO.get(m)

s← Rt.RO.get(m)

d←$Fq

hm.[(m, b)]← SHQuery d
h← gd

c←$Fq

pk← gShim.ms

y ← pkd

A← gspk−c

B← hsy−c

c′ ← O.g(h, y,A,B,m)

Shim.ms.[m]← (y, (c, s), b)

Figure 5.8: The difference b/w Shim(O0)
GJKW and Shim(O1)

GJKW
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Then the following lemma states that the probability that the adversary wins the game
Shim(O1)

GJKW) is bounded by the probability of the simulation that solves the CDH
challenge.

Pr[Shim(01).run()@ &m:res] ≤ Pr[CDH(Simulator(A).run() @ &m: res)] .

Finally, one can bound the probability of the EUF-CMA of GJKW is bounded by the
sum of the probabilities of lemmas 16 and 17.

Pr[EUF-CMA(H,G,GJKW,A).run() @ &m: res]

≤ (qG + 1)

p

+ 2 · Pr[CDH(Simulator(A)).run() @ &m: res] .

5.6 Reflecting on the proof pattern

From the formalisation of EDL and CM, we identified a proof pattern or a proof structure
which we claim as a contribution. The proof pattern is general enough to be applied to
similar signature schemes. The research investigated that there is a similar signature
scheme by Goh, Jarecki, Katz and Wang (GJKW) [6], whose security is also based on
a tight discrete logarithm. So, this chapter aimed to formalise the GJKW’s scheme by
applying the same proof pattern and technique we used for EDL and CM schemes. To
our knowledge, this is the first machine-checked formalisation of GJKW’s scheme using
the EasyCrypt proof assistant. However, the formalisation of GJKW’s scheme required
some work before applying the proof pattern.

For the formal verification of the scheme, the proof goes with two sections of simplifi-
cations with events (res ∧ ŷ ̸= ĥsk) and (res ∧ ŷ = ĥsk) at points 1 and 2, respectively,
and both simplifications help eliminate other unnecessary events and cases. The first
simplification follows that if the forger F outputs a valid forgery where ŷ ̸= ĥsk, Game0
is bounded by the bad event in Gamebad, where it encounters the failure event. The
probability of occurring such an event is at most (qG+1)

p . Unlike the EDL and CM
schemes, the GJKW scheme only encounters one failure event, and this is because, in
the first simplification, it ignores forgeries where forgeries rely on unsoundness proof
of non-interactive zero-knowledge (NIZK) for now. In addition, the transition from
Game0 to Gamebad allows to bound its probability by simply counting the number of
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queries and identifying a neat bound on the adversary. In the second simplification of
GJKW’s proof, the forger F outputs a valid forgery where ŷ = ĥsk, then the proof further
splits into sections A and B. Before heading with further splits, one should add the
probability of events(res ∧ ŷ ̸= ĥsk) and (res ∧ ŷ = ĥsk), bounded by the probability of
event res in Game0. The second simplification removes the cases where the adversary
guesses the value of b̂, which is used for her forgery. In contrast to the pen-and-paper
proof of the GJKW’s scheme, the machine-checked proof has the value of bm̂, which is
not independent of the view of the forger, if she made any query to the random oracle
on message m̂. In response to H queries with m̂ as a message, it samples bm̂, branches
the value sampled before, and the value is returned to the adversary from the oracle.
Therefore, it depends on the value sampled for bm̂. So, after bounding the event, the
forger F on point 2 had not requested a signature on the message earlier, and the value
of bm̂ can or cannot be viewed by the F, which gives them further splits of A and B.
If the value of bm̂ is independent of the view of the forger, then the probability for
event (res ∧ ŷ = ĥsk ∧ b̂ = bm̂) is at most 1/2. When the value is b̂ ̸= bm̂ with event
(res ∧ ŷ = ĥsk ∧ b̂ ̸= bm̂), the proof of GJKW utilises the four-step proof structure
(refactor, embedding, simulation and reduction) of EDL and CM schemes. Unlike the
EDL and CM schemes, the first step of refactorisation in GJKW has complex proof steps.
However, later, it helps to have significantly more straightforward steps for embedding
and simulation. The compute-relevant queries from the pen and paper proof of GJKW
are introduced in the refactorisation step. The embedding and simulation steps occur at
the same time in this proof, where the CDH challenge is embedded into random oracle
H and simulates the zero-knowledge proof. Finally, the reduction step shows that if the
forger wins the game, then the simulator succeeds in breaking the CDH challenge. Un-
like the formal verification of the prior schemes, the GJKW scheme had only one failure
event in the first simplification section. The reason for bounding the failure event earlier
is that the rest of the proof becomes simpler to bound and reasoning outside evolves
slightly easier. During the formal development of the scheme, the first simplification
removes the if-and-else statements from the games. The signing oracle of Game0 makes
the sampling operation for b and r instead of sampling in distributions. So, instead of
sampling a fresh value every time one gets the same message m, one can retrieve the
value sampled before. This way, the proof first de-randomises if the message is signed,
which returns all signatures. Here, it ensures that b and r are produced pseudoran-
domly from m, and the rest is deterministic computation. Despite the fact that the
scheme was thought to be very similar to the EDL and CM schemes, pushing the game
transformations to a successful conclusion took an immense amount of work, and the
effort involved in its ideation was not scalable as it took eight months to produce almost
two thousand lines of code in EasyCrypt.
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5.7 Lessons Learned

During the formal development of the GJKW’s scheme in EasyCrypt, the initial machine-
checked formalisation suffered a little with complicated if-and-else statements in the pen
and paper proof. Goh et al. [6] introduced additional steps called relevant queries before
answering the query. The adversary performs the steps whenever the first relevant query
for some message is made. For a message m, the queries to H(m, ⋆), G(⋆, ⋆, ⋆, ⋆,m),
and Signsk(m) are relevant for the message m. In the relevant query steps, firstly, the
random oracle produces bm, which maps m to bm. Secondly, the internal map is modified
whenever the queries to H are made to (m, bm); it outputs the hm = H(m, bm) = gγm ,
where γm ∈ Zq is A, and stores m, bm, γm. Lastly, instead of computing the y = hsk,
it computes y = pkγm and simulates non-interactive zero-knowledge proof. The values
c and s are distributed by the honest verifier zero-knowledge property of the proof
system and compute A = gspk−c, and B = hskm · y−c (y = pkγm = (gsk)γm = hskm).
Setting σm = (y, c, s, bm), defining H(hm, y, A,B,m) = c and stores (sig,m, σm). So,
if the relevant query is asked, then the adversary always has a valid signature for any
message for which a relevant query has been asked.

Immediate goals include further unifying all the sections and sub-sections with sub-steps
from the Diagram 5.4 and merging them as a formal Shim.
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Chapter 6

Conclusion

Modern cryptography has extended to elaborated functionalities that can only be achieved
by being implemented in the cryptographic systems interacting with other constructions.
As a result of functionality expansions, the errors in the cryptographic proofs are mostly
oversight; in fact, the proofs have become challenging to check due to being lengthy and
complicated. The key issue is not just to check whether the cryptographic proofs are
error-free but also to verify if the cryptographic systems function well; therefore, it has
become one of the main challenges many cryptographers face. In 2005, Halevi [7] ad-
vocated designing a tool-supported framework to help cryptographers build and verify
their cryptographic proofs. So this led to the development of machine-checked tools
which ensure the correctness of the proofs and provide confidence and high assurance
in the security proofs.

This thesis utilises the EasyCrypt framework to report on the first machine-checked for-
mal verification of three digital signature schemes, i.e., Goh and Jarecki [16] (EDL),
Chevallier-Mames [17] (CM) and Goh, Jarecki, Katz and Wang [6] (GJKW).1 The se-
curity of all three signature schemes is based on tight reductions to the CDH problem.
The machine-checked proofs of the schemes are achieved using the code-based game-
playing technique that Shoup [15] advocated for verification. Chapter 4 explained in
detail that achieving the machine-checked proofs for both EDL and CM scheme; both
schemes were reformulated and showed that the statements of the security reductions
are concrete and constructive. The formalisation effort of EDL and CM schemes sought
similarities and factors them out. The EDL and CM schemes were formally defined
with three intermediate games, which bridge the gap between the EUF-CMA game and
the CDH game. The thesis gave a deep insight into these intermediate games as an

1EDL: https://gitlab.com/fdupress/edl/-/tree/master/edl
CM: https://gitlab.com/fdupress/edl/-/tree/master/cm
GJKW: https://gitlab.com/fdupress/edl/-/tree/master/gjkw
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instance of a common game called Shim. The formalisation showed that any two suc-
cessive games differ only in the oracles provided to the Shim. This research provides
the first comprehensive use of the game Shim, which allowed only to focus reasoning on
the parts of the proofs that change between the successive games and helps reduce the
boilerplate proof amount. The insight gained from the formalisation of both schemes
was further generalised and outlined in a generic three-step proof structure (embed-
ding, simulation and reduction). In the generic three-step proof, the embedding relied
on the underlying challenge into random oracle answers; the simulation relied on the
zero-knowledge proof, and the reduction relied on the soundness of the zero-knowledge
proof and underlying CDH problem. The proof extracted in such a pattern could be
reusable and can be applied to similar signature schemes whose security is based on a
tight discrete logarithm.

Moreover, the EDL and CM schemes relied on freshness to finish the reduction; however,
the GJKW scheme does not rely on freshness to push the reduction. The latter case
is because when an adversary makes a query to the H oracle with a message m̂, the
value is inserted in the map as if the signing oracle had queried it with a message m̂.
So, essentially, the adversary can never request the signatures, so it is unlikely that
the adversary has guessed it. The research contributes to the understanding of formal
verification of digital signature schemes based on reducing a tight discrete logarithm.

Goh and Jarecki [16] present the EDL scheme, which is existentially unforgeable
under a chosen-message attack (EUF-CMA), in the random oracle model. The scheme
is constructed over a group where the CDH problem is hard. Consequently, the scheme
gives a tighter reduction than most other discrete logarithm-based signature schemes
that support shorter signatures. The reason for choosing this scheme was to start
the PhD research with some simple scheme for the formalisation, using the EasyCrypt.
Another reason for choosing the scheme was that the security proof of the scheme does
not make use of the Forking Lemma [1], and EasyCrypt is unable to use the lemma
yet. In fact, the scheme holds a Schnorr proof and is used as a zero-knowledge proof of
discrete logarithm equality rather than as a proof of knowledge. So, for those reasons,
the research began to formalise the first machine-checked proofs of Goh and Jarecki’s
scheme [16] (EDL) in EasyCrypt proof assistant. While developing the machine-checked
proofs, the research found some minor mistakes in the original proof of Goh and Jarecki’s
scheme. They overlooked the mistake, leading the thesis to some imprecise security
bounds. One can find the details in the section 4.3. Instead, the thesis proved a very
close bound, similar to the EDL scheme given by Chevallier-Mames [17], with minor
changes to address the formal details.

The second machine-checked formal verification of the scheme was by Chevallier-
Mames [17], and the security reduction is also tightly related to the CDH problem.
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Chevallier-Mames [17] claims that his signature is efficient, and the results are smaller
than the EDL signature scheme. He also corrected the EDL scheme and presented it
with his scheme [17]. The insights gained from the first formalism assisted in formalising
the second scheme, which was the proof of the Chevallier-Mames (CM) in EasyCrypt.
The difference in this formalisation is that the message is not included in the random
oracle query, which served as the second base for the proof of discrete logarithm equal-
ity. Instead, the message is included as input to the challenge-generating random oracle
query, similar to the standard Schnorr signatures. So this difference supports the se-
curity of the scheme but without additional randomness. The thesis shows that this
scheme has an almost similar underlying proof structure to machine-checked proofs of
the EDL scheme.

For the formal development of the CM scheme, the EDL proof was replayed over the CM
scheme. The formal Shim was reused with minor tweaks and showed that proof differs
only in the probability bounding and reduction step. The thesis shows that the proof
carries over similar objects as the similarities were sought out and attempted to factor
the proofs out. There is an exception in the reduction step, which had an additional
case to be considered. The formalisation of both schemes allows identifying the proof
principles that could be adapted to other existing or new signature schemes to obtain
new proofs of tight security.

The thesis has argued earlier that insight gained from the generalisation of EDL
and CM schemes has potential. The thesis claimed that the proof structure extracted
from the generalisation could be applied to similar signature schemes of tight security
and a similar signature is the scheme of Goh, Jarecki, Katz and Wang [6]. So, this
research formalised the third scheme, which is the scheme of Goh et al. [6] (GJKW)
using the EasyCrypt. The machine-checked proofs of the scheme have some additional
steps, and that is because the pen and paper proofs of the scheme are slightly different
from the EDL and CM schemes, but the GJKW delivers the same security, that is, the
tight discrete logarithm-based reductions. The main difference in the pen and paper
proof of the GJKW’s scheme is that they have shortened the size of the scheme to
improve the EDL signature scheme and removed the random salt. For that, the signer
has a hidden, random selector bit, called bm related to each message the signer signs.
To improve the efficiency, Goh et al.[6] suggested avoiding having the signer maintain
the record of all (m, bm) pairs. One could have the signer producing bm and the value r
as deterministic pseudorandom functions of the message m. The result is the same way
the signature is produced each time a particular message is signed. The pen and paper
proof of the GJKW’s scheme has additional steps called compute-relevant queries, where
the adversary performs three steps whenever the first relevant query for the message
is made. After spending a lot of effort and time, the thesis simplified the proofs into
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two sections for the machine-checked security proofs of the GJKW scheme. The purpose
of the two sections of the simplifications is to eliminate unnecessary events and cases.
During the formal verification of the scheme, the security proofs also benefited from the
proof steps structure (refactor, embedding, simulation and reduction) of the EDL and
CM schemes. Despite the fact that the scheme was thought to be very similar to the
EDL and CM schemes, pushing the game transformations to a successful conclusion took
an immense amount of work, and the effort involved in its ideation was not scalable.

The formalisation of all three schemes had its challenges, and transforming the formal-
ism into EasyCrypt was another work. The initial version of the formal proofs for EDL
and CM schemes took longer than GJKW, but once the knowledge was gained for the
machine-checked proofs, it became more manageable but still challenging to achieve a
successful conclusion.

6.1 Future Work

At the beginning of this research, after formalising EDL and CM schemes, it was sug-
gested that a more immediate extension would be to consider the schemes by Katz and
Wang [63] and Goh et al. [6] (GJKW), which also benefit from tight discrete logarithm-
based reductions. The research immediately started to formalise the later scheme. As it
was to extend the proof schema and leverage the scheme’s technique of unpredictability
as opposed to full randomness—of the second base h would extend the class of signature
schemes whose security could be machine-checked at a minimal cost. The formalisation
of the GJKW scheme proves that similar techniques can be reused.

Immediate goals include unifying the GJKW’s scheme, which has sections and sub-
sections from bounding the failure event to computing relevant query steps and the
formal proof structure (refactoring, embedding, simulating and reduction). The game
transformations are laid out already for the scheme, and it would be advantageous to
develop a common game, just like Shim, which we had for the EDL and CM schemes.
Just like those two schemes, the intermediate games can be written as instances of a
common game. Then one can easily have proof-steps to introduce a general approach
to prettify this scheme. Further work in this area helps extract the abstract game
transformations and security statements required to obtain generic proofs from the
machine-checked proofs of all three signature schemes and be able to instantiate them
all. Extracting such abstracts is a gap in EasyCrypt proof assistant. The new insights
gained from this research may assist in filling this gap in EasyCrypt proof assistant. The
comparisons of the security proofs with EasyCrypt proofs are guidelines and manuals to
start the formalisation of similar signature schemes. The overview of the proofs with
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visual representations guides the naive user to formalise the complicated cryptographic
constructions. As mentioned in the chapter, simplifying and dividing into subsections
can help formalise complicated and complex signature schemes.

In the pen and paper proof of Goh et al. [6], they presented two schemes whose secu-
rities are tightly related to the Diffie-Hellman problems. Their first scheme was based
on the hardness of the Computational Diffie-Hellman (CDH) problem, and the second
was based on the hardness of the Decisional Diffie-Hellman (DDH) problem. It was
impossible to formalise the later scheme due to time constraints; therefore, the scheme
based on DDH is untouched. Further research could usefully explore how to formalise
the second scheme of GJKW, using the EasyCrypt. The thesis has provided a deeper
insight into the machine-checked formalisation of the discrete-based signature schemes
equipped with tight proofs; therefore, it would require less effort to formalise the second
scheme (based on DDH) of GJKW using the EasyCrypt proof assistant.

One of the more significant findings to emerge from all the machine-checked proofs
are that this research identified the same proof schema, which is applied three times.
Although the pen and paper proofs of the three schemes (EDL, CM and GJKW) are all
different, the principles that make them secure are the same. The formal verification
of all three schemes benefited from the approach of the proof schema. This approach
will prove helpful in expanding the understanding of how formal verification of related
signature schemes benefits from tight discrete logarithm-based reductions.

The original EDL scheme was proposed by Chaum and Pedersen [18] for use in a tamper-
resistant wallet. Signature computation was meant to be split, with the host producing
the value h and a proof of its well-formedness, and the wallet produce the rest of the
signature. Direct Anonymous Attestation schemes [121] are very similar in their struc-
ture. They are widely deployed in Trusted Platform Modules, and ECC-DAA [122] is
now part of a FIDO alliance standard (as ECDAA). This makes DAA schemes excellent
targets for formalization on the back of the results presented here.

This research has discussed why the above schemes are formalised in EasyCrypt. The
thesis has provided a deeper insight into the machine-checked formal verification of the
digital signature schemes based on the reduction of the discrete logarithm. The process
of learning and adopting the machine-checking proofs was challenging in the first 12-18
months of the research work. However, the joy of proving the goals in EasyCrypt was
undefinable. A slight limitation of this research is not having the full knowledge of
cryptography, which is why this research did not dig deeper into the cryptography to
develop new verified signature schemes in EasyCrypt. Nonetheless, the main contribution
was learning and being skilful in the machine-checked formal verification field, using
the proof assistant. Further research might explore using different proof assistants and
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gaining knowledge about being a cryptographer as these two aspects go hand in hand.

The generalisation discussed in chapter 4 has noted that the results and associated proof
artefacts can open new directions to push formalisation into. As the security proofs of
both EDL and CM schemes have similar objectives and the formalisation effort of this
research sought out their similarities and factored them out, which can be reusable or
some parts can be replayed to other similar constructions. The proof pattern extracted
from the generalisation could lay a building block for the formalisation effort.



Appendix A

The following figure displays the original pen and paper definitions of EDL [16], CM [17]
and GJKW [6] signature schemes.

EDL Scheme

sk←$Zq

y ← gsk

r←$ {0, 1}nr

h← H(m, r)

z ← hsk

k←$Zq

u← gk

v ← hk

c← H′(g, h, y, z, u, v)

s← k + c · sk

σ ← (z, r, s, c)

CM Scheme

sk←$Zq

y ← gsk

k←$Zq

h← H(u)

z ← hsk

u← gk

v ← hk

c← G(m, g, h, y, z, u, v)

s← k + c · sk

σ ← (z, s, c)

GJKW Scheme

sk←$Zq

y1 ← gsk

b-bit
h← H′(b,m)

y2 ← hsk

r←$Zq

A← gr

B ← hr

c← H(h, y2, A,B,m)

s← c · sk+ r

π ← (c, s)

σ ← (y2, π, b)

Figure A.1: EDL, CM and GJKW schemes from their original paper
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