8,695 research outputs found

    Brief Announcement: Almost-Tight Approximation Distributed Algorithm for Minimum Cut

    Full text link
    In this short paper, we present an improved algorithm for approximating the minimum cut on distributed (CONGEST) networks. Let λ\lambda be the minimum cut. Our algorithm can compute λ\lambda exactly in \tilde{O}((\sqrt{n}+D)\poly(\lambda)) time, where nn is the number of nodes (processors) in the network, DD is the network diameter, and O~\tilde{O} hides \poly\log n. By a standard reduction, we can convert this algorithm into a (1+ϵ)(1+\epsilon)-approximation \tilde{O}((\sqrt{n}+D)/\poly(\epsilon))-time algorithm. The latter result improves over the previous (2+ϵ)(2+\epsilon)-approximation \tilde{O}((\sqrt{n}+D)/\poly(\epsilon))-time algorithm of Ghaffari and Kuhn [DISC 2013]. Due to the lower bound of Ω~(n+D)\tilde{\Omega}(\sqrt{n}+D) by Das Sarma et al. [SICOMP 2013], this running time is {\em tight} up to a \poly\log n factor. Our algorithm is an extremely simple combination of Thorup's tree packing theorem [Combinatorica 2007], Kutten and Peleg's tree partitioning algorithm [J. Algorithms 1998], and Karger's dynamic programming [JACM 2000].Comment: To appear as a brief announcement at PODC 201

    Pricing for Online Resource Allocation: Intervals and Paths

    Full text link
    We present pricing mechanisms for several online resource allocation problems which obtain tight or nearly tight approximations to social welfare. In our settings, buyers arrive online and purchase bundles of items; buyers' values for the bundles are drawn from known distributions. This problem is closely related to the so-called prophet-inequality of Krengel and Sucheston and its extensions in recent literature. Motivated by applications to cloud economics, we consider two kinds of buyer preferences. In the first, items correspond to different units of time at which a resource is available; the items are arranged in a total order and buyers desire intervals of items. The second corresponds to bandwidth allocation over a tree network; the items are edges in the network and buyers desire paths. Because buyers' preferences have complementarities in the settings we consider, recent constant-factor approximations via item prices do not apply, and indeed strong negative results are known. We develop static, anonymous bundle pricing mechanisms. For the interval preferences setting, we show that static, anonymous bundle pricings achieve a sublogarithmic competitive ratio, which is optimal (within constant factors) over the class of all online allocation algorithms, truthful or not. For the path preferences setting, we obtain a nearly-tight logarithmic competitive ratio. Both of these results exhibit an exponential improvement over item pricings for these settings. Our results extend to settings where the seller has multiple copies of each item, with the competitive ratio decreasing linearly with supply. Such a gradual tradeoff between supply and the competitive ratio for welfare was previously known only for the single item prophet inequality

    Tight Bounds for Gomory-Hu-like Cut Counting

    Full text link
    By a classical result of Gomory and Hu (1961), in every edge-weighted graph G=(V,E,w)G=(V,E,w), the minimum stst-cut values, when ranging over all s,tVs,t\in V, take at most V1|V|-1 distinct values. That is, these (V2)\binom{|V|}{2} instances exhibit redundancy factor Ω(V)\Omega(|V|). They further showed how to construct from GG a tree (V,E,w)(V,E',w') that stores all minimum stst-cut values. Motivated by this result, we obtain tight bounds for the redundancy factor of several generalizations of the minimum stst-cut problem. 1. Group-Cut: Consider the minimum (A,B)(A,B)-cut, ranging over all subsets A,BVA,B\subseteq V of given sizes A=α|A|=\alpha and B=β|B|=\beta. The redundancy factor is Ωα,β(V)\Omega_{\alpha,\beta}(|V|). 2. Multiway-Cut: Consider the minimum cut separating every two vertices of SVS\subseteq V, ranging over all subsets of a given size S=k|S|=k. The redundancy factor is Ωk(V)\Omega_{k}(|V|). 3. Multicut: Consider the minimum cut separating every demand-pair in DV×VD\subseteq V\times V, ranging over collections of D=k|D|=k demand pairs. The redundancy factor is Ωk(Vk)\Omega_{k}(|V|^k). This result is a bit surprising, as the redundancy factor is much larger than in the first two problems. A natural application of these bounds is to construct small data structures that stores all relevant cut values, like the Gomory-Hu tree. We initiate this direction by giving some upper and lower bounds.Comment: This version contains additional references to previous work (which have some overlap with our results), see Bibliographic Update 1.

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    Minimum Cuts in Near-Linear Time

    Full text link
    We significantly improve known time bounds for solving the minimum cut problem on undirected graphs. We use a ``semi-duality'' between minimum cuts and maximum spanning tree packings combined with our previously developed random sampling techniques. We give a randomized algorithm that finds a minimum cut in an m-edge, n-vertex graph with high probability in O(m log^3 n) time. We also give a simpler randomized algorithm that finds all minimum cuts with high probability in O(n^2 log n) time. This variant has an optimal RNC parallelization. Both variants improve on the previous best time bound of O(n^2 log^3 n). Other applications of the tree-packing approach are new, nearly tight bounds on the number of near minimum cuts a graph may have and a new data structure for representing them in a space-efficient manner
    corecore