220,598 research outputs found

    A Kalman Filter Approach for Biomolecular Systems with Noise Covariance Updating

    Full text link
    An important part of system modeling is determining parameter values, particularly for biomolecular systems, where direct measurements of individual parameters are typically hard. While Extended Kalman Filters have been used for this purpose, the choice of the process noise covariance is generally unclear. In this chapter, we address this issue for biomolecular systems using a combination of Monte Carlo simulations and experimental data, exploiting the dependence of the process noise covariance on the states and parameters, as given in the Langevin framework. We adapt a Hybrid Extended Kalman Filtering technique by updating the process noise covariance at each time step based on estimates. We compare the performance of this framework with different fixed values of process noise covariance in biomolecular system models, including an oscillator model, as well as in experimentally measured data for a negative transcriptional feedback circuit. We find that the Extended Kalman Filter with such process noise covariance update is closer to the optimality condition in the sense that the innovation sequence becomes white and in achieving a balance between the mean square estimation error and parameter convergence time. The results of this chapter may help in the use of Extended Kalman Filters for systems where process noise covariance depends on states and/or parameters.Comment: 23 pages, 9 figure

    A unified approach to linking experimental, statistical and computational analysis of spike train data

    Get PDF
    A fundamental issue in neuroscience is how to identify the multiple biophysical mechanisms through which neurons generate observed patterns of spiking activity. In previous work, we proposed a method for linking observed patterns of spiking activity to specific biophysical mechanisms based on a state space modeling framework and a sequential Monte Carlo, or particle filter, estimation algorithm. We have shown, in simulation, that this approach is able to identify a space of simple biophysical models that were consistent with observed spiking data (and included the model that generated the data), but have yet to demonstrate the application of the method to identify realistic currents from real spike train data. Here, we apply the particle filter to spiking data recorded from rat layer V cortical neurons, and correctly identify the dynamics of an slow, intrinsic current. The underlying intrinsic current is successfully identified in four distinct neurons, even though the cells exhibit two distinct classes of spiking activity: regular spiking and bursting. This approach – linking statistical, computational, and experimental neuroscience – provides an effective technique to constrain detailed biophysical models to specific mechanisms consistent with observed spike train data.Published versio

    Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

    Full text link
    This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.Comment: Published in Journal of Machine Vision and Application

    Comparisons of nonlinear estimators for wastewater treatment plants

    Get PDF
    This paper deals with five existing nonlinear estimators (filters), which include Extended Kalman Filter (EKF), Extended H-infinity Filter (EHF), State Dependent Filter (SDF), State Dependent H-Infinity Filter (SDHF) and Unscented Kalman Filter (UKF) that are formulated and implemented to estimate unmeasured states of a typical biological wastewater system. The performance of these five estimators of different complexities, behaviour and advantages are demonstrated and compared via nonlinear simulations. This study shows promising application of UKF for monitoring and control of the process variables, which are not directly measurable
    • …
    corecore