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This study presents a state-space modelling framework for the purposes of stock assessment. The stochastic population dynamics build on the
notion of correlated survival and capture events among individuals. The correlation is thought to arise as a combination of schooling behaviour,
a spatially patchy environment, and common but unobserved environmental factors affecting all the individuals. The population dynamics model
isolates the key biological processes, so that they are not condensed into one parameter but are kept separate. This approach is chosen to aid the
inclusion of biological knowledge from sources other than the assessment data at hand. The model can be tailored to each case by choosing
appropriate models for the biological processes. Uncertainty about the model parameters and about the appropriate model structures is then
described using prior distributions. Different combinations of, for example, age, size, phenotype, life stage, species, and spatial location can be
used to structure the population. To update the prior knowledge, the model can be fitted to data by defining appropriate observation models.
Much like the biological parameters, the observation models must also be tailored to fit each individual case.
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Introduction
Because the size of a fish stock can very seldom be observed directly
without error, the credibility of a population assessment can be only
assessed as a combination of two criteria: realistic assumptions and
the ability to predict observations using the assessment model
(Kuparinen et al., 2012). From these, the latter is of secondary im-
portance: it is possible to formulate a flexible statistical model that
may fit the data very well with a few parameters that would not
even have the hidden status of the stock as a parameter to be

estimated. This study deals with the former by proposing a
generic population dynamics model which can be customized for
a specific population by representing a wide variety of different
assumptions and life history choices.

While generic formulations of this kind already exist, they are
limited in their ability to model and admit uncertainty about
process error (Bull et al., 2002; Mäntyniemi et al., 2013a; Methot
and Wetzel, 2013). Models that account for both process variation
and observational uncertainty are called state-space models

# International Council for the Exploration of the Sea 2015.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly
cited.

ICES Journal of

Marine Science
ICES Journal of Marine Science (2015), 72(8), 2209–2222. doi:10.1093/icesjms/fsv117

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jukuri

https://core.ac.uk/display/52281779?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:samu.mantyniemi@helsinki.fi
mailto:samu.mantyniemi@helsinki.fi
mailto:samu.mantyniemi@helsinki.fi
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


(Newman et al., 2006; Buckland et al., 2007). While recognized
as superior to deterministic models, the practical application of
state-space models has been hindered by computational difficulties
(Newman et al., 2009). One of the most recent advances in the area is
the age-structured length-based model we presented in Mäntyniemi
et al. (2013a) and applied in Mäntyniemi et al. (2013b). The model
included multiple parameters for process error variances of different
kinds, which in turn were treated as uncertain. The model formula-
tion was based on explicitly defined random effects, which were
also estimated using Markov chain Monte Carlo simulation. In this
study, our approach is slightly different: we seek to reduce the
number of process error variance parameters and to integrate the
random effects out analytically whenever possible.

It is widely recognized that grouping behaviour, clustered
environment, and environmental stochasticity lead to overdis-
persed probability distributions for organism counts in demography,
time, and space (e.g. Richards, 2008; Linden and Mantyniemi, 2011;
Dorazio et al., 2013), compared with baseline situation representing
independent behaviour under constant environment. As recently
shown by Linden and Mantyniemi (2011), the variance structure
of the count distribution depends on the assumptions made
about these processes. While the processes leading to overdispersion
can be modelled explicitly by formulating hierarchical model struc-
tures, both Bayesian and maximum likelihood estimation of model
parameters become more difficult when the number of parameters
increases with the introduction of random effects (Richards, 2008).
In cases where the random effects are not of direct interest, the par-
ameter estimation can be greatly expedited if the random effects can
be integrated out analytically. Lindén and Mäntyniemi (2011)
showed that when the interest lies in the modelling of rate or inten-
sity parameters, the negative binomial distribution can be often used
as the marginal distribution of univariate count data either exactly
or approximately.

In this study, we consider the case where the parameters of inter-
est are the proportion vector and/or the order of a multinomial
model and overdispersion is known to be present in the process
under study. This includes the simple Binomial model as a special
case. We propose to use the Dircihlet-Multinomial (DM) distribu-
tion (also known as multivariate Pólya or Dirichlet compound
multinomial distribution) as an overdispersed alternative for the
standard multinomial model. The DM distribution is used regularly
in some other areas of science, for example, in modelling the bursti-
ness of words in a text (Xu and Akella, 2008) and to estimate the
ammunition allocation in military combat modelling (Kvam and
Day, 2001). However, except the univariate special case called
Beta-Binomial distribution (e.g. Mäntyniemi and Romakkaniemi,
2002; Richards, 2008; Dorazio et al., 2013), the use of this distribu-
tion seems uncommon in ecology and fisheries literature (Hulson
et al., 2012). Another notable exception is the use of the DM dis-
tribution in the context of determining the effective sample size
(Hulson et al., 2012). It is noteworthy that the cases above deal
with the observational processes but not population dynamics.

The remainder of the study is structured as follows. Next section
introduces and derives the process error distribution from assump-
tions about the dependent behaviour of fish. The third section shows
how this process error model can serve the general population
dynamics model and shows a way to reparameterize the model
from a computational viewpoint. Appendices cover the relevant
properties of the DM distribution and its approximation, an exem-
plary growth matrix, and a simulation study with known parameter
values.

Process error distribution
The variance of the conditional probability distribution that
describes the transition of the population structure and abundance
over a period is often called “process error”. It serves to measure
the uncertainty that the analyst would have about the next state of
the population in the case that the current state was known. While
state-space models are becoming more common in fisheries stock
assessment, the process error distribution has gained relatively
little attention. A common choice has been to use a lognormal dis-
tribution either for abundances or for instantaneous mortality rates
(e.g. Mäntyniemi et al., 2013a; Maunder et al., 2015). The purpose
of this section is to look into the transition process in more detail
and study the properties of the transition distribution under differ-
ent assumptions about the process. We start from simplistic
assumptions and work towards more realistic cases. The exemplary
context is survival, but the same principles hold for capture, detec-
tion, and migration events. After deriving the process error distribu-
tions, we propose approximations that can be expected to ease the
computational load of the models. Equation numbers used in this
section refer to the equations in Table 1, which summarizes the
resulting model structures.

Independent survival
We start by considering the univariate transition in a survival
process, where each of Nt individuals survives (or not) to the next
time-step, so that the population size in the next time-step is
Nt+1 ≤ Nt . Each fish can be thought to have their own tendency
w1, . . . ,wNt

to survive, which could also be called survival probabil-
ity through a time-step. It should be noted at this point that this is
not a Bayesian probability but a parameter that describes the prop-
erty of the individual: we think that fish i with wi = 0.27 would
survive in 27% of all potential and equally likely conditions that
may occur during the time-step. Analyst’s knowledge of wi can
then be quantified using the Bayesian degree of belief in the form
of prior p(wi). The event of survival of fish i can be described
using an indicator variable zi, which has Bernoulli distribution
with parameterwi (Figure 1a). The degree of belief about the survival
of fish i is then P(zi = 1) =

�
wip(wi)dwi = E(wi) = m , which is just

the mean of the prior distribution. It is worth noting that the prior
variance of wi does not affect this probability (Mäntyniemi et al.,
2005).

If all fish are assumed to be independent and exchangeable in
respect to their survival, then the distribution of the survivors is
simply a binomial distribution [Equation (1), Mäntyniemi et al.,
2005]. This includes the case where all fish are believed to have
exactly the same probability of survival, i.e. V(wi) = 0.

Temporal variation in survival
Let us now consider the case where the mean survival probabilities
mt of different time-steps are seen as exchangeable, and consequent-
ly as conditionally i.i.d random draws from a distribution with mean
E(mt) = n and variance V(mt) = d. A practical functional form for
the temporal variation is a Beta-distribution with parameters
a = nh andb = (1 − n)h, so that d = n(1 − n)(h+ 1)−1. Then,
the annual mean survival probabilitiesmt can be integrated out ana-
lytically (Figure 1c, when st = sk = 1) and the marginal distribution
of survivors given the previous population size and the parameters
that describe the temporal variation is a Beta-Binomial distribution
where parameter h controls the temporal variation (Equation 2).
When h is large, annual mean survival probabilities are highly
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concentrated around the mean, and small values indicate a higher
degree of variation.

Schooling behaviour
When fish form schools either actively or passively, the assumption
of independence in survival becomes violated. A school of fish may
be able to feed and evade predators more effectively, so that the
success of the group benefits all of its members (Magurran, 1990).
On the other hand, the failure of the grouping strategy means
reduced chance of success for all fish in the school. This is expected
to increase the variance of the number of survivors. This kind of cor-
related survival process can be modelled in number of ways, of which
three are presented here.

Schools of equal size
An extreme assumption is that each group contains exactly st ≤ Nt

individuals, which all either survive or die together. The popula-
tion can then be thought to consist of kt = Nt/st independent
groups that have mean survival probabilitymt. If this mean survival
probability is believed to vary in time (Figure 1c) in the same way
as in the previous case, the mean and variance of the number of
survivors are

E(Nt+1) = Ntn,

V(Nt+1) = Ntn(1 − n)st
Nt/st + h

1 + h
.

When st¼ 1, the distribution is exactly the same Beta-Binomial as in
the previous case. Binomial distribution is the limiting model of this
model, when group size is one and there is no temporal random vari-
ation in the mean survival probability, i.e. when h � 1. While it is
hardly realistic that all schools of fish would have the same number
of individuals, this can be seen as a practical way for approximating
the effect of schooling on the number of survivors by using a Beta-
Binomial distribution with these mean and variance (Equation 3).

Conditional probability and correlation
Probably, many different mechanisms can lead to a situation where a
successful decision of an individual can increase the chances of the
others to survive. For example, when a predator spots a batch of prey,
the other predators nearby can use that information and follow
to the same batch. A prey, on the other hand, may find a way to
escape from the predators and others may follow the example.
Similarly, a fish that finds a way out from a fishing trap can also
lead the whole group to the freedom. Consider two individuals
randomly chosen from the population, and assume that both have
survival probability mt. If the survival of one or the other does not
change the survival probability of the other one, then fish can be
modelled as independent and the binomial model results for the
total number of survivors. However, if the survival of one or the
other changes the survival probability of the other one to lt . mt ,
then the survivals are positively correlated (Figure 1b) and the
assumptions of the binomial distribution no longer hold. In this
case, the correlation between the survivals of the two randomly
chosen fish is rt = (lt − mt)/(1 − mt) and the covariance is
(lt − mt)mt . The variance of the total number of survivors is then
obtained as the sum of all elements of the covariance matrix
between all the fish in the population. As shown by Hisakado
et al. (2006), in this case, the distribution of Nt is exactly Beta-
Binomial (Equation 4).

Independent random schools
Another possibility is to derive the mean and variance of the number
of survivors by thinking about the size of the schools as a random
process. Assume that the population consists of kt groups, where
by definition each group is assumed to have at least one individual,
and other individuals then join these groups randomly. Hence, each
group consists of y j,t + 1 ≥ 1, j = 1, . . . , kt individuals, where y j,t is
the number of additional fish in the group. Individuals may show
correlated or independent behaviour when joining these groups.
For the sake of generality, we consider the correlated case here:
assume that the correlation between individuals in the grouping

Table 1. Parameterization of the Beta-Binomial distribution under different assumptions about the correlation in the survival process.

Case Number of survivors Parameters

(1) Independent survival Nt+1|Nt,mt � Bin (Nt,mt) Nt ¼ number of individuals at time t
mt ¼ mean survival probability of individuals at
time t

(2) Temporal variation in
independent survival

Nt+1|Nt, n,h � Beta − Bin(Nt, nh, (1 − n)h) Nt

n ¼ expected mean survival probability over time
h ¼ concentration of mean survival probability

(3) Schools of equal size and
temporal variation

Nt+1|Nt, n,h, st � Beta − Bin(Nt,nh
∗, (1 − n)h∗)

h∗ = (Nt − st)h
(st − 1)h+ Nt − 1

Nt

n

h

st ¼ group size
(4) Correlated individuals Nt+1|Nt,mt, rt � Beta − Bin (Nt,mth

∗∗, (1 − mt)h∗∗)
h∗∗ = 1

rt
− 1

Nt

mt
rt ¼ correlation in survival

(5) Random schools Nt+1|Nt,mt, kt,ct � Beta − Bin (Nt,mth
∗∗∗, (1 − mt)h∗∗∗)

h∗∗∗ = Nt − jt/(Ntmt(1 − mt))
jt/(Ntmt(1 − mt)) − 1

jt = kts
′ + kt(kt − 1)s′′

s′ = mt

kt

N2
t (1 − mt)

kt
+ (Nt − kt) 1 − 1

kt

( )
(1 + (Nt − kt − 1)ct)

( )

s′′ = −m2
t

k2
t

(Nt − kt)(1 + (Nt − kt − 1)ct)

Nt

mt
kt ¼ number of groups
ct ¼ correlation in grouping process

State-space population dynamics model for Bayesian stock assessment 2211



process isct . In other words, if individual i happens to choose group
j, then a randomly chosen individual chooses the same group with
probability 1/kt + (1 − 1/kt)ct. In this case, the vector of additional
fish (y1,t, . . . , ykt ,t) in each group is a Dirichlet-Multinomial distribu-
tion (details in Appendix 1), which is a multivariate extension of the
Beta-Binomial

(y1,t, . . . ,ykt ,t)|kt,ct,Nt � DM Nt − kt,
1

kt
, . . . ,

1

kt

( )
(1/ct−1)

( )

and the total number of fish in each group is xj,t = yj,t + 1 . Next, we
assume that each of these groups would survive independently with
probabilitywt and use a Bernoulli-distributed indicator variable zj,t

to denote whether group j survived or not. The number of survivors
from each group is then obtained as zj,tx j,t . Finally, the total number

of survivors is the sum of survivors from each group (Figure 2). Our
suggestion is to approximate this distribution using a Beta-Binomial
distribution (Equation 5).

Estimation of the variance parameters
In the previous sections, we introduced a few parameters that can be
used to describe the process variance. In the Bayesian context, the
parameter estimation is a process of gathering existing knowledge
of the parameters and formulating this knowledge using a prior
probability distribution. Depending on the assumed model struc-
tures and the type and amount of data available, this prior distribu-
tion may or may not become updated. In our view, the choice of the
parameterization should be primarily made based on the biological
knowledge of the population under study: this should make it easier
to express the prior knowledge in a biologically meaningful way.

Figure 1. Graphical models describing different assumptions about the survival process. Ovals represent uncertain variables that are given a prior
distribution. Arrows represent the direction of conditional specification: arrows point from conditioning factor to the dependent variable.
Multivariate distributions are denoted using undirected arcs. Variables that are integrated out from the final model are shown on grey background.
The resulting probability distributions and their parameters are given in Table 1. Model (a) corresponds to independent survival of individuals,
model (b) specifies schooling behaviour with the concept of correlation, and model (c) represents both temporal variation of mean survival and
schooling behavior.
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For example, instead of assigning a prior distribution for the size of
the schools, it may be more relevant to think about the number of
schools and let the size of the schools then depend on the
population size and the number of schools.

For random schools, there are two parameters to think about,
which both relate to the schooling process. For fixed schools and
random variation in the survival rate, the size (or number) of the
schools is the biologically meaningful parameter, whereas the
amount of random variation in the survival rate is representing
researchers lack of knowledge on upcoming environmental condi-
tions and their effect on the survival. Thus, the former defines the
minimum variance in the survival process, which cannot be
reduced by improved understanding about the effects and future
values of environmental covariates. This has obvious impacts on
the testing of hypotheses about the effects of environmental covariates
using state-space population dynamic models (Maunder et al., 2015).

In other words, in addition to such a mechanistic interpretation,
the overdispersion parameter h can be seen to represent unex-
plained variation (Warton and Hui, 2011) in multinomial regres-
sion, which means that the DM distribution can be considered as
an alternative model to random effects logistic regression, where
the random effects have been analytically integrated out.

In the context of the estimation of population age or size structure,
the concept of effective sample size is often used to describe the
amount of overdispersion in the sampling process compared with
dispersion of data expected under the assumption of independence
of individuals (Hulson et al., 2011, 2012). The cause for this overdis-
persion is that instead of being independent, the fish sampled either
from catch or from population tend to be dependent because fish

of similar size and age are caught together at the same sampling occa-
sion. Because of this dependence, the effective sample size is consid-
ered to be lower than the actual sample size. Perhaps, the easiest way to
understand effective sample size is to think about the variance of the
proportion of samples in a certain class. Under the assumption of
independence, the distribution of counts is Binomial x|N, p �
Bin(N, p) and the variance of the proportion is V(x/N) =
p(1 − p)/N. However, if the variance appears to be larger, this can
be matched by V(x/N) = p(1 − p)/Neff , Neff , N. The full distribu-
tion can be modelled using a Beta-Binomial x|N, p,Neff � Beta−
Bin(N, pv, (1 − p)v), where v = N(1 − Neff )/(Neff − N). In the
context of population dynamics, it is analogous to think about effect-
ive population size regarding the variation in the transition process.
For example, for a fixed school size and random variation in the
transition rate, the effective population size can be obtained as
Neff,t = Ntst(1 − h)/(Nt + s2

t h).

The general population dynamics model
The scope of the modelling approach is a set of populations that are
either physically and/or mentally connected. The mental connec-
tion here means that the person assessing the populations believes
that information about one population is relevant to the knowledge
of other populations. By physical connection, we mean movement
or other interaction between populations and also the situation
where all populations are affected by same external factors such
as environmental conditions and fishery operations. An extreme
example of minimal physical connection might be a mixed fishery
of non-interacting species. At the other extreme, we could define
the set of populations using a spatial grid where each cell of the
grid interacts with its neighbours in terms of migration: fish of all
sizes and ages might move between these “populations”.

Within each population, individuals can be further structured
according to at least one attribute, such as age, size, or maturity
stage. Modelling the dynamics within each population boils down
to defining the transition that may occur during a time-step.

The setup of the problem is the following. The total population is
assumed to be closed in the sense that there is no immigration and
no emigration, but there may be movement between subpopula-
tions. Multiple fishing fleets are harvesting the population at the
same time, although the harvesting pressure can be highly different
in different periods of time.

For the sake of concreteness, we derive the model structure in the
context of a size-structured population. However, without loss of
generality, the size classes can be substituted by any other means
of structuring the population. For the simplicity of notation, we
first derive the model for one subpopulation and describe the ex-
change between subpopulations after that. This section concentrates
on the core population dynamic equations that we envisage would
be the same for all case studies. Parameters that are not explicitly
defined here are assumed to be given a case-specific prior distribu-
tion, which can include anything from setting a fixed value to a
complex hierarchical model with functions of environmental cov-
ariates and/or other model parameters.

While the size distribution of the population can be best under-
stood in a continuous domain, we specify the model in terms of dis-
cretized size distribution. The vector of breakpoints is denoted as
(I1, I2, . . . , Ik∗+1), where k∗ is the number of size classes and Ik

denotes the lower bound of kth size bin. The upper bound of kth
size bin is Ik+1. The state of the population at the beginning of time-
step t is then summarized by vector nt = (nt,1, . . . , nt,k∗ ), where nt,k

denotes the number of individuals in size class k.

Figure 2. Graphical model describing a survival process where
randomly formed schools of fish survive independently. The resulting
probability distribution for the number or survivors is given in Table 1.

State-space population dynamics model for Bayesian stock assessment 2213



Growth
The somatic growth of individuals is assumed to take place instantly
at the beginning of each time-step. Within a discrete size distribu-
tion, the individual variation in growth is reflected as random move-
ments of individuals between length bins. Each individual may stay
in the same bin or move to higher bins. Each individual would have
different probabilities of moving to higher bins depending on their
age and individual growth parameters. However, in a
size-structured model, there is no bookkeeping of individuals and
their ages, which makes the modelling of growth variation a challen-
ging task.

From the point of view of individuals, it would make sense to use
a triangular transition matrix to move individuals between length
bins. However, this leads to undesirable behaviour of the length
distribution at the population level: eventually, all individuals of a
cohort would belong to the highest length class which contradicts
the usual situation where the variance of size at age increases with
age and reaches an asymptote at the same rate as the mean size. It
turns out that a square transition matrix can partially solve the
problem at the population level, although such a matrix does not
work as a growth model for an individual. The growth matrix is
denoted as

gt =

gt,1,1 gt,1,2 · · · gt,1,k∗

gt,2,1 gt,2,2 · · · gt,2,k∗

..

. ..
. . .

. ..
.

gt,k∗,1 gt,k∗,2 · · · gt,k∗,k∗

⎛
⎜⎜⎜⎝

⎞
⎟⎟⎟⎠,

where gt,i,j denotes the probability of an individual to move to bin
j from bin i. Appendix 2 contains a brief example on the derivation
of this matrix for the von Bertalanffy growth model.

If individuals are assumed to jump between size classes inde-
pendently, then each row vector of gt acts as a probability vector
for a multinomial distribution and elements of nt provide the
order parameter for each multinomial:

(zt,k,1, zt,k,2, . . . , zt,k,k∗ ) � Multi(nt,k, (gt,k,1, gt,k,2, . . . , gt,k,k∗ )).

The state of the population after the growth is then found as the
element-wise sum of all such vectors:

n(G)
t =

∑k∗

i=1

zt,i,1,
∑k∗

i=1

zt,i,2, . . . ,
∑k∗

i=1

zt,i,k∗

( )
.

Given the size frequencies at the beginning of the time-step and the
growth matrix, the new vector of expected size frequencies after the
growth is given by

E(n(G)
t ) = nt × gt

and the covariance matrix is

COV(n(G)
t ) =

∑k∗

k=1 nt,kgt,k,1(1 − gt,k,1) −
∑k∗

k=1 nt,kgt,k,1gt,k,2 . . . −
∑k∗

k=1 nt,kgt,k,1gt,k,k∗

−
∑k∗

k=1 nt,kgt,k,2gt,k,1

∑k∗

k=1 nt,kgt,k,2(1 − gt,k,2) · · · −
∑k∗

k=1 nt,kgt,k,2gt,k,k∗

..

. ..
. . .

. ..
.

−
∑k∗

k=1 nt,kgt,k,k∗gt,k,1 −
∑k∗

k=1 nt,kgt,k,k∗gt,k,2 . . .
∑k∗

k=1 nt,kgt,k,k∗ (1 − gt,k,k∗ )

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠.

Mortality and survival
Natural and fishing mortality are modelled as instantaneous rates
that are assumed to stay constant throughout the time-step.
Additional multipliers for these rates are provided in the model
structure, so that lengths of the time-steps do not need to be equal
and repeating seasonal patterns can be accounted for. If the patterns
are not exactly known, prior distribution can be used to reflect this
uncertainty. All mortality rates can have hierarchical priors with
covariates as in Mäntyniemi et al. (2013a, b). The random variation
in the mortality process is modelled using the concept of correlated
survival events as described in “Process error distribution”.

Individuals in the same size class are assumed to have same in-
stantaneous annual natural mortality rate Mt,k and fleet-specific
annual fishing mortality rate Ft,k,j, where j denotes the fleet. These
rates are assumed to be constant throughout the time-step. Total in-
stantaneous mortality rate is then

Zt,k = d(M)
t Mt,k + d(F)t

∑j∗

j=1

Ft,k,j,

where j∗ denotes the number of fishing fleets. Effective length of
time-step (as a fraction of a year) for natural mortality is denoted as
d(M)

t and for fishing mortality as d(F)t . Based on the instantaneous
rates, the probabilities of individuals dying naturally (rt,k), being
caught by fleet j (gt,k,j) and surviving to the next time-step (pt,k)
can be found using the results of Baranov (Xiao, 2005):

pt,k = exp(−Zt,k),

gt,k,j =
d(F)t Ft,k,j

Zt,k
(1 − exp(−Zt,k)),

rt,k =
d(M)

t Mt,k

Zt,k
(1 − exp(−Zt,k)).

As discussed in the previous sections, positive correlation between
individuals may arise as a consequence of social behaviour, such
as schooling, and from varying environmental conditions that
affect all the individuals in a same way. Such a joint variation can
be modelled using a DM distribution (Appendix 1), which can be
explicitly parameterized using the correlationkbetween individuals

(ct,k,1, . . . , ct,k, j∗ , n(S)
t,k, dt,k)

� DM n(G)
t,k , 1/k− 1

( )
(gt,k,1, . . . , gt,k, j∗ ,pt,k, rt,k)

( )
,

where ct,k,j denotes the number of individuals of length class k
caught by fleet j, n(S)

t,k is the number of individuals of length class k
that survive to next time-step, and dt,k represents the number of
individuals that died from natural causes.
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Reproduction
The number of eggs spawned within each population is defined as
the sum of eggs laid by each class of the population. For each
class, the number of eggs produced is a function of the proportion
of the population that spawns at that time-step, proportion of
mature females, and number of eggs produced by a mature
female. Each of these quantities can be given a prior distribution,
which in turn may depend on other variables such as female
weight and relative fecundity. The prior can have a hierarchical
structure with hyperparameters and covariates. Spawning is
assumed to take place at the beginning of a time-step, before
growth. The number of eggs laid at spawning is calculated as

Et,1 = d(E)t

∑k∗

k=1

nt,kmt,k ft,krt,kwt,k,

where mt,k is the proportion of mature individuals in size class k, ft,k

is the mean number of eggs per unit of female weight, rt,k is the pro-
portion of females in size class, wt,k is the mean weight of females and
d(E)t is the proportion of mature population that spawns at time t.
The proportion of females can be made a function of other variables
in the model. It is also possible to model males and females separately
as subpopulations.

Depending on the chosen length of time-steps, and length inter-
vals Ik, recruits resulting from a specific spawning time can be added
to population at the beginning of the next time-step, or the recruit-
ment to the population can take place multiple time-steps after the
spawning. To implement such a delay without breaking the Markov
property of the model specification, the egg cohorts are tracked until
they reach the desired age for recruitment:

Et+1,a+1 = Et,a, a = 1, . . . , a∗.

The number of new recruits is then obtained as

Rt+1 = stEt,a∗ ,

where st is the proportion of eggs that survive to recruits. Thus, eggs
laid within some earlier time-step are used to predict the recruit-
ment using a model for the survival of eggs in the same manner as
in Mäntyniemi et al. (2013a), Methot and Wetzel (2013), and
Pulkkinen and Mäntyniemi (2013). The survival function can
take any functional form defined by the analyst (e.g. Ricker,
Beverton–Holt, Shepherd, and Hockey-Stick), and uncertainty
about the form can be accounted for by using Bayesian model aver-
aging (Mäntyniemi et al., 2013a; Pulkkinen and Mäntyniemi, 2013).

The recruits are added to the population at the beginning of each
time-step, so the total population size at the beginning of time-step
t + 1 is Rt+1 +

∑k∗

k=1 n(S)
t,k and the population state is obtained as

nt+1 = (n(S)
t,1 + p(R)t+1,1Rt+1, n(S)

t,2 + p(R)t+1,2Rt+1, . . . , n(S)
t,k∗

+ p(R)t+1,k∗Rt+1),

where pt+1,k is the proportion of recruits that enter size class k. The
prior distribution for these proportions must be case-specific to
match the current understanding.

Movement between populations
When G . 1 subpopulations or spatial areas are included, a move-
ment matrixVk,t must be specified for each class k (e.g. age, size, or
stage). This matrix describes how large proportion of individuals of
the class stay in their current subpopulation/area and how large pro-
portion moves to each of the other populations/areas. Rows of the
matrix must sum up to 1. The population state after the movement
can then be obtained as

(nt+1,k,1, . . . , nt+1,k,G) ×Vk,t,

where nt+1,k,g denotes the number of individuals in size class k
in subpopulation g after adding the new recruits to each of the
subpopulations.

The elements of the matrix can be treated as fully known or they
can be given a prior distribution. The matrix can stay constant over
time or it may vary according to hierarchical model with hyperpara-
meters and explanatory variables. If the populations represent fish
of, say, different growth rates, then the movement matrix can be
used to model the degree of heritability using an identity matrix
for all other classes than the recruits.

Reparameterization
Typical fisheries data contain more information about relative tem-
poral changes in population size than about the absolute abun-
dance. Therefore, all the state variables are expected to have high
posterior correlation with the overall abundance, which can be for-
mulated as mean abundance or as the abundance of a chosen refer-
ence time-step or as a function of the carrying capacity of the
environment (Millar and Meyer, 2000).

Similar kind of relationship is likely to exist between the popula-
tion size at the beginning of time-step and the size structure of the
population. Good information about the size distribution is often
available, but the total population size is not well known.

The two points above suggest that it is beneficial to reparameter-
ize the model, so that the temporal changes in abundance are treated
as uncertain parameters scaled by a single parameter that represents
the overall abundance. In the same manner, the state of the popula-
tion should be seen as a product of total population size and a vector
of proportions of size classes.

We define the temporal change in total population size by

Nt+1 = Ntqt + Rt+1,

where Nt is the population size relative to the population size at the

beginning of the first time-step N∗ =
∑k∗

k=1 n1,k

( )
, qt is the propor-

tion that survives to the next time-step (derived later), and Rt+1 is
the number of recruits relative to N∗. A prior must be assigned to
N∗. All subsequent population sizes are defined by N∗ through
the above deterministic equation. The stochastic transition is then
modelled by defining the recruitment and survival processes as non-
linear Markovian stochastic processes.

We start the derivation of the model by defining the state of the
population at the beginning of a time-step in terms of relative size
class frequencies Ft = (ft,1, . . . ,ft,k∗ ) and the total population
size NtN

∗ . After growth, the vector of probabilities that describe
the chance to find a randomly chosen individual in any of the
length classes can be computed as

F(G)
t = Ft × gt.
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The fishing and natural mortality processes further divide the
potential fates of individuals to multiple categories. The probability
vector for surviving to next time-step is given by

Qt = (f(G)
t,1 pt,1, . . . ,f

(G)
t,k∗pt,k∗ ),

the probability vector for getting killed by fishing fleet j is

Lt,j = (f(G)
t,1 gt,1,j, . . . ,f

(G)
t,k∗gt,k∗,j),

and the probability vector for natural mortality is

Pt = (f(G)
t,1 rt,1, . . . ,f

(G)
t,k∗rt,k∗ ).

The stacked vector (Qt,Lt,1, . . .Lt,j∗ ,Pt) then sums up to 1 and
represents the fate of an individual that has been randomly selected
from the population at the beginning of the time-step. The next step
is to consider the situation in the end of the time-step in terms of the
number of individuals belonging to each potential category. The
number of individuals at size class that survive to the next time-step
is represented by vector

n(S)
t = (n(S)

t,1, . . . , n(S)
t,k∗ ),

the numbers at size class killed by fishing fleet j are

ct,j = (ct,1,j, . . . , ct,k∗,j),

and the numbers at size of individuals that died for natural causes are

dt = (dt,1, . . . , dt,k∗ ).

Now, assuming exchangeability between individuals, and assuming
that the fates of individuals are correlated with coefficientk, then the
stacked vector of numbers at size class can be modelled using the DM
distribution

(n(S)
t , ct,1, . . . , ct,j∗ , dt)
� DM N∗Nt, 1/k− 1

( )
(Qt,Lt,1, . . . ,Lt,j∗ ,Pt)

( )
.

The distribution of the total number of survivors is then
Beta-Binomial (Appendix 1)

∑k∗

k=1

n(S)
t,k � Beta − Bin N∗Nt, 1/k− 1

( )(
∑k∗

k=1

f(G)
t,k pt,k, 1/k− 1

( )
1 −

∑k∗

k=1

f(G)
t,k pt,k

( ))
.

In other words, E(qt) =
∑k∗

k=1 f
(G)
t,k pt,k. The above Beta-Binomial

distribution can be approximated very closely using a
Beta-distribution (Appendix 3):

Nt+1 =
∑k∗

k=1

n(S)
t,k ≈ qtN

∗Nt,

qt � Beta(E(qt)h∗
t , (1 − E(qt))h∗

t ),

where h∗
t = N∗Nt/(k(N∗Nt − 1) + 1).

Given the number of survivors, the numbers at size of the
survivors are again DM

n(S)
t,k � DM

∑k∗

k=1

n(S)
t,k, 1/k− 1
( )

Qt

( )
,

which can be very closely approximated by using a Dirichlet
distribution

n(S)
t,k ≈ ut

∑k∗

k=1

n(S)
t,k,

ut � D(Qth
∗
t ).

As can be seen from above, this model formulation allows one to
write the population transition with a single multivariate distribu-
tion for which the probability mass function is known.

Tailoring the model to a specific case
The model above describes a generic stochastic population dynam-
ics life cycle that may fit to a large variety of different populations.
The process of tailoring the model to describe the knowledge of a
particular population involves formulation of prior knowledge of
the life history traits such as somatic growth rates, maximum size,
size at maturation, relative fecundity, survival of eggs, and size of
recruits. For example, A. Gårdmark et al. (unpublished material)
used this modelling framework and structured subpopulations by
age and defined subpopulations by different growth parameters.
They tracked length at age for both groups and modelled the recruit-
ment as a function of environmental covariates while allowing for
uncertain autoregressive unexplained variation at the same time.

The second category of information includes knowledge of the
exploitation process. For fishery, this includes background knowl-
edge of the availability of fish to the fishery and about the size select-
ivity of the fishing gear. For Northern Baltic herring, the three fleets
were assumed to have constant fishing mortality over all sizes, but
the mechanical selectivities of the gears were given prior distribu-
tions based on literature and expert elicitation (A. Gårdmark
et al., unpublished material). This approach made it possible to
account for the fact that most herring that go through the mesh
die to their wounds.

The third task in each case study is to link the available data to rele-
vant states of the population. Typically, the state of the population
cannot be observed without an error, but can be seen through
potentially selective sampling processes. The key is then to create
appropriate statistical models to describe how the data become
collected. As an example, A. Gårdmark et al. (unpublished material)
developed observation models for total catch in numbers, age distri-
bution from catch sampling foreach fleet, and for population biomass
observed in acoustic surveys. See also Appendix 4 and Whitlock et al.
(2015) for examples about biological and observational models.

In addition to the herring case study, assessments of Bothnian
Sea herring stock using this model were also reported to the ICES
benchmark assessment of pelagic stocks in 2012 (ICES, 2012). The
assumptions included, for example, autocorrelated recruitment
deviations, density-dependent catchability, and structural uncertainty
about the form of the stock–recruitment function. According to
the results, catchabilities of all three fleets were estimated to be
density-dependent to some extent and the Beverton–Holt stock–
recruitment model gained almost 100% posterior probability.
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Discussion
The integrated state-space stock assessment framework that we have
described in this study can be seen to merge existing approaches in a
new way. The implementation within a general-purpose Bayesian
estimation software is similar to Mäntyniemi et al. (2013a) and
brings a huge variety of building blocks available for the stock assess-
ment scientist: almost every population dynamic parameter can be
modelled using a hierarchical model that uses environmental cov-
ariates, but still assumes existence of variation from other sources
as in Mäntyniemi et al. (2013b). The unexplained variation can
also have autocorrelation, which can be given a prior distribution.
Uncertainty about functional forms and about covariates to be
included or excluded can be taken into account using the Carlin
and Chib (1995) approach to computation by expressing the
model as a mixture of the alternative models as in Mäntyniemi
et al. (2013b). This work combines the generic structure of the
Stock Synthesis (SS) framework (Methot and Wetzel, 2013) with
the flexibility in modelling the process errors and covariates
described in Mäntyniemi et al. (2013a). The model described in
Mäntyniemi et al. (2013a) was age-structured and tracked the
mean length for each cohort using a growth model, but lacked the
possibility to admit that not all fish have the same growth para-
meters. This is possible in SS (Methot and Wetzel, 2013; Taylor
and Methot, 2013) and the same is now possible within the model
presented here.

Here, we have formulated a generic state-space population
dynamics model that can be efficiently reparameterized and
closely approximated by using the scaled Dirichlet distribution.
The derivation of process error was based on the degree of depend-
ence between the individuals, a novel concept in population dynam-
ics modelling.

However, the original model and its reparameterization make
different assumptions about how the individuals are correlated,
at least when size structure is used. The original formulation
assumes that all fish within a size class are correlated, but independ-
ent of fish in the other size classes. This might make sense if the indi-
viduals show a very high degree of size aggregation. But, there is also
a theoretical drawback: the discrete length classes were introduced
in the first place to approximate the continuous length distribution.
The approximation can be then made more precise by increasing the
number of length classes. In the limit, each class contains only one or
zero individuals, which means that all individuals would actually be
independent of each other. In contrast, the approximation assumes
that all fish are correlated irrespective of their size. The dependence
is assumed to be similar in both the survival and growing processes,
which may not be realistic: growth is likely less correlated than the
survival.

Within the approximating model, the problem can be potentially
fixed by expressing the population transition using a generalized
DM mixture model, which would make it possible to have different
degree of correlation in the growth process compared with the
survival process. However, such a generalized covariance structure
can lead to computational problems. In such a case the generalized
DM mixture can be potentially approximated by a scaled generalized
Dirichlet distribution (Tzu-Tsung, 1998) in the same way that the
DM can be approximated using a scaled Dirichlet (Appendix 3).

The model structure was presented here as a size-structured
process. However, the same equations can be applied also for
other structuring variables. In principle, the only change needed is
to define the growth matrix in a suitable way depending on the

structuring variable. In an age-structured model, the growth
matrix would be interpreted as ageing matrix, and in a stage-
structured model, the growth matrix would take the role of the
state transition matrix. If an age-structure is used, it is still possible
to track the mean size of individuals at age using a suitable growth
model, although the effects of size variation cannot be fully taken
into account.

While the fact that the DM can handle the overdispersion com-
pared with multinomial distribution with only one additional par-
ameter is conceptually simple, this can also be seen as a restriction of
the approach. The built-in assumption is that whatever causes the
overdispersion, the resulting correlation of the underlying events
is equal for all the categories. A counter example could be found
in the context of the example of individuals moving and distributing
to different areas. If, for example, one of the areas is a reproduction
area and others are feeding areas, then the grouping behaviour
might be stronger in the movement between feeding areas, but the
movement to reproduction area might be more independent
process for mature fish (or the other way around) and therefore
less (or more) overdispersion could be expected in counts of
individuals found in the reproduction area.

This type of situation could be modelled by breaking the process
down to conditional DM distributions, where the population would
be first split between reproduction and feeding areas with smaller
overdispersion parameter then the further split within feeding areas
could be modelled using a DM with higher overdispersion. The
resulting count vector including all areas cannot be expressed as a
DM distribution. However, based on the properties of the generalized
Dirichlet distribution (Tzu-Tsung, 1998), it seems likely that the dis-
tribution of the count vector could have a closed form expression
as a mixture of a generalized Dirichlet and a multinomial distribu-
tion. The generalized Dirichlet distribution has twice the number
of parameters than a Dirichlet distribution, and can therefore
represent more complex covariance structures (Tzu-Tsung, 1998).

Another direction for future research is to study if different simul-
taneous sources of overdispersion can be explicitly separated by using
the DM distribution (or its potential generalization) in the same way
as is possible with the negative binomial distribution (Linden and
Mantyniemi, 2011). We took the first step on that direction by pre-
senting the case where both the schooling behaviour and the temporal
variation of the transition rate were affecting the process variance at
the same time. This possibility to explicitly account for schooling be-
haviour in population dynamics also opens new research questions
for basic research: how much do we know about the schooling
behaviour of different species in different situations?

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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Appendix 1
Properties of the DM distribution
The DM distribution can be derived in number of ways (Madsen
et al., 2005; Bi, 2006). One way is to consider a hierarchical model
where a proportion vector ( p1, . . . , pk) follows a Dirichlet
distribution

( p1, . . . , pk) � Dir(h(m1, . . . ,mk)),

where mi is the expected proportion of class i = 1, . . . , k and
parameter h controls the covariance matrix of the distribution.
The proportions are then used as parameters for a multinomial
distribution

(x1, . . . , xk) � Multi(N, ( p1, . . . , pk)).

Integrating over the proportions pi gives the DM distribution as
the marginal distribution of the count vector, denoted as

(x1, . . . , xk) � DM(N,h(m1, . . . ,mk)).

The probability mass function of the DM distribution is

P((x1, . . .,xk)|h, (m1, . . .,mk)) =
N!∏k

i=1 (xi!)
G(h)

G(h+N)
∏k

i=1

G(xi +hmi)
G(hmi)

.

The mean is E(xi) =miN. The variance is V(xi) =mi(1+mi)N
(N +h)/(1+h), which approaches the variance of the multi-
nomial distribution as h�1. The covariance is COV(xi,xj) =
−mimjN(N +h)/(1+h), which also reduces to multinomial co-
variance in the limit.

The marginal and conditional distributions of elements and sub-
vectors of the count vector are analytically available. The marginal
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distributions of the elements are Beta-Binomial (Bi, 2006)

xi � Beta − Bin N,hmi,h
∑k

j=1

mj − mi

( )( )
.

Vector elements can be combined, and the distribution of the result-
ing vector is DM. For example:

(x1 + x2, x3 + x4, x5, . . . , xk) � DM(N,h(m1 + m2,m3

+ m4,m5, . . . ,mk)).

Given the sum of a subvector, the counts in the subvector follow a
DM distribution. For example:

(x5, . . . , xk) � DM
∑k

i=5

xi,h(m5, . . . ,mk)
( )

.

Appendix 2
Growth matrix from the von Bertalanffy growth model
The probabilities gt,i,j are determined as follows. Denote by L(i) the
length of individuals at time t, which were in length class i at time
t21. Assume then that L(i) is distributed as

L(i) � N(m(i)
L ,s2

L),

for all t = 1, 2, . . .. The parameters of the distribution are obtained
from the von Bertalanffy (VB) growth model as

m
(i)
L = (L1 − li)(1 − e−k) + li

and

s2
L = s2

L1
(1 − e−2k),

where L1 and s2
L1

are the asymptotic expected value and variance,
respectively, for the length distribution of old individuals, and
k . 0 is a parameter controlling the growth rate. The Equation for
the expected value is a straightforward application of the VB
growth model, whereas the variance can be motivated by interpret-
ing the VB model as an AR(1) process, see derivation below for
details. Finally, denoting the cumulative distribution function of
the normal distribution by F, the probabilities gt,i,j are obtained as

gt,i,j =
F((I j+1 − m(i)

L )/sL) −F((Ij − m(i)
L )/sL)

F((Im+1 − m(i)
L )/sL) −F((I1 − m(i)

L )/sL)
.

For the derivation of the transition variance s2
L, we consider the VB

growth model

Lt = (L1 − Lt−1)(1 − e−k) + Lt−1 + 1t,

with an additive error term 1t � N(0,s2
L), for all t = 1, 2, . . ..

Here, the time index t refers to the growth history of an individ-
ual, so that Lt is the length of the individual at age t.

Assume now that t . M for some constant M. By setting
c = (1 − e−k)L1 and w = e−k, the model can then be interpreted

as an AR(1) process

Lt = c + wLt−1 + 1t,

for which E(Lt) = L1 and Var(Lt) = s2
L1

as M � 1. Finally, by
standard properties of AR(1) processes, it follows that

s2
L = s2

L1
(1 − e−2k).

Appendix 3
Dirichlet approximation of the DM distribution
In this section, we show that the Dirichlet multinomial distribution
can be approximated using a single Dirichlet distribution. Such an
approximation may be necessary for computational reasons. The
Dirichlet density is faster to evaluate than DM because it includes
fewer calls to the gamma function and statistical software commonly
have built in functions and sampling routines for the Dirichlet dis-
tribution while the implementation of DM is more rare. The idea is
to express the count vector as the product of a proportion vector and
total count, then find a Dirichlet distribution for the proportion
vector using moment matching, so that the mean and covariance
matrix of the resulting count vector matches the corresponding
statistics of the original DM distribution.

First, we derive the mean vector and covariance matrix of pro-
portions based on the DM distribution. The mean is given by

E
xi

N

( )
= 1

N
Nmi = mi,

the variance is

V
xi

N

( )
= 1

N2
N

N + h

1 + h
mi(1 − mi) =

N + h

N(1 + h)mi(1 − mi),

and the covariance can be obtained as

COV
xi

N
,

xj

N

( )
= − 1

N2
N

N + h

1 + h
mimj = − N + h

N(1 + h)mimj.

Next, we define a proportion vector (f1, . . . ,fk) �
D(h∗(m1, . . . ,mk)), where the mean vector is (m1, . . . ,mk), the
variance is given by V(fi) = mi(1 − mi)/(h∗ + 1), and the covari-
ance is COV(fi,fj) = −mimj/(h∗ + 1). Now, it is easy to see that
setting h∗ = N(1 + h)/(N + h) − 1 provides exactly the same co-
variance matrix as is obtained from the DM distribution. As a
summary, the DM count vector can be approximated by

(x1, . . . xk) ≈ N(f1, . . . ,fk).

The obvious drawback of the approximation is that 0 and N are not
included in the support of the distribution. In predictive simulation,
this can be mitigated to some extent by rounding. When calculating
the likelihood for the parameters given a count vector, values close to
0 and N can be used for approximation.

Appendix 4
Simulation study
The data-generating and estimation models for the simulated data
are age-structured with a maximum age of 12, 20 time-steps, and
two fleets. The models account for process error in survival and re-
cruitment. The general population dynamics model (GPDM) for
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simulated data has observation models for the total catch, the pro-
portion of the total catch accounted for by the landings and discards
of each of the two fleets, and the age structure in the landed catch of
the first fleet. Observation models for total catch and proportions
of the catch from each fleet can be found in unpublished material
(R. Whitlock et al.), while the observation model for the catch age
composition is provided below. Observations were simulated as-
suming Beverton–Holt stock–recruitment dynamics, while uncer-
tainty about the functional form of the stock–recruitment curve was
admitted in the estimation model.

Data were simulated in two steps: first, a vector of parameters was
simulated from the priors for fishing mortality and biological para-
meters. Annual total fishing mortality rates were given independent
lognormal priors with a prior coefficient of variation (CV) of 0.15
(Figure A1a); maximum fishing mortality rates for each of the
two fleets Fmaxt were then obtained by multiplying total annual
fishing mortality by a vector of values for the proportion of the
total fishing mortality accounted for by the first fleet, and its com-
plement. The proportion of the total fishing mortality accounted
for by the first fleet was assumed to decline approximately linearly
over the 20-year period, from 0.66 in the first year to 0.20 in the
final year (Figure A1b). The model is parameterized for a hake-like
species: priors for biological parameters in simulations were the
same as those used for the ECOKNOWS Cyclades mixed fishery
case study, except stock–recruitment parameters, which were
given priors corresponding to demographic equilibrium (i.e.
steady-state population dynamics in the absence of fishing).

In the second step, population dynamics were projected forwards
with the selected parameter vector and vectors of observations were
sampled from their prior predictive distributions in the same way as
was used for the parameters. The CV of the total catch in biomass
was determined within the model for generation of observations.

We present results from two GPDM estimation runs with the
same simulated dataset; one with and one without an observation
model for the age composition of the landed catch of the first
fleet. In both estimation model runs, the steepness of the logistic
curves describing length-specific discard probabilities was fixed to
21 for both fleets, while lengths corresponding to a 50% discarding
probability were estimated. Mechanical selectivity parameters were
fixed to the values used to simulate observations in the run without
age composition data, and estimated for the first fleet in the run with
age composition data. The full model specification used for the

Figure A1. Prior distribution of fishing mortality used in the data
generation (a) and the assumed proportion of fleet1 (b).

Table A1. Summary of posterior distributions for biological and selectivity parameters from runs of the GPDM using simulated data, with and
without an observation model for the age composition of the first fleet’s catch.

Parameter name Parameter
Simulated
data value Prior

Posterior without age
composition observation model

Posterior with age composition
observation model

Natural mortality M 0.25 0.18 (3.6 × 10202) 0.21 (3.2 × 10202) 0.24 (3.2 × 10202)
SR slope a 3.5 × 1026 2.1 × 10206

(2.0 × 1026)
2.8 × 10206 (3.6 × 10207) 3.2 × 10206 (4.4 × 10207)

SR carrying capacity K 0.58 1.3 (2.1) 1.5 (0.87) 0.77 (0.15)
Asymptotic length L1 78 79 (4.2) 77 (3.4) 78 (2.1)
von Bertalanffy growth

coefficient
k 0.13 0.12 (8.8 × 10203) 0.12 (4.7 × 10203) 0.13 (4.6 × 10203)

Length–weight parameter a log(aw) 25.4 25.4
(4.4 × 10202)

25.5 (4.2 × 10202) 25.4 (2.4 × 10202)

Length–weight parameter b bw 3.2 3.2 (2.4 × 10202) 3.2 (2.1 × 10202) 3.2 (2.0 × 10202)
Length at 50% selectivity L50

1 10.1 11 (7.0) – 11 (1.5)
Logistic selectivity slope n1 0.34 0.46 (0.28) – 0.40 (0.26)
Length at 50% discarding

probability, fleet 1
DL50

1 29 25 (15) 27 (1.1) 29 (1.0)

Length at 50% discarding
probability, fleet 2

DL50
2 15 25 (15) 15 (0.78) 15 (1.0)

Process error inverse
variance parameter

h 38 20 (3.3 × 1002) 24 (5.7) 23 (4.8)

Initial population size N1 4.2 × 1007 5.1 × 1007

(3.6 × 1007)
5.1 × 1007 (1.8 × 1007) 4.8 × 1007 (1.7 × 1007)

Posteriors are summarized as median and standard deviation in parentheses.
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simulation study is provided in JAGS language (Supplementary
data).

DM observation model for the landed catch age structure
The expected age distribution in the catch (retained fish) of fleet j is
given by:

dt,a,j =
gt,a,j(1 − Dsela,j)ft,a/(1 − pt)∑A

a=1 gt,a,j(1 − Dsela,j)ft,a/(1 − pt)
,

where dt,a,j is the proportion of fish of age a in the landed catch
of fleet j at time t and Dsela,j is an age-specific discard probability
for fleet j. The proportions of fish of age a in the landed catch
from fleet j, vt,a,j were assumed to follow a Dirichlet distribution:

vt,1:12,j � Dirichlet(avt,1:12,j),

with shape parameters avt,1:12,j given by: avt,a,j = 100dt,a,j. Observed
numbers of fish of different ages in the landed catch of fleet

j were then assumed to follow a Multinomial distribution:
xt,1:12,j � Multinomial(vt,1:12,jNt,j), where xt,a,j is the observed
number of fish of age a in the landed catch of fleet j at time t, and
Nt,jis the effective sample size of aged fish in the landed catch of
fleet j at time t.

When the GPDM was fitted to simulated time-series of total
catch and fleet proportion data, updating of priors for population
dynamics and selectivity parameters occurred (Table A1).
Addition of an observation model for the simulated age compos-
ition of one of the fleet’s catches resulted in more precise and less
biased estimates of abundance and recruitment (Figures A2 and
A3); posteriors for biological parameters (e.g. natural mortality,
stock recruitment carrying capacity (K), VB growth parameters
and length–weight parameters) were also more precise and/or
less biased (medians closer to the “true” simulated data value)
when both catch volume and composition data were available
(Table A1). In both data scenarios, the “true” stock recruitment
functional form (Beverton–Holt) was given a posterior probability
of 1, indicating that the catch data alone were informative about the
form of the stock–recruitment relationship.

Figure A2. Posterior distributions of total abundance, recruitment, catch, and fishing mortality from a simulation study with an observation model
for the total catch in biomass only. Each panel shows 200 trajectories randomly drawn from the posterior distribution (grey lines); the thick black
line shows the true simulated values.
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Handling editor: Shijie Zhou

Figure A3. Posterior distributions of total abundance, recruitment, catch, and fishing mortality from a simulation study with observation models
for total catch in biomass and age distribution in the catch. Each panel shows 200 trajectories randomly drawn from the posterior distribution (grey
lines); the thick black line shows the true simulated values.
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