8 research outputs found

    Particle-resolved simulation of freely evolving particle suspensions: Flow physics and modeling

    Get PDF
    The objective of this study is to understand the dynamics of freely evolving particle suspensions over a wide range of particle-to-fluid density ratios. The dynamics of particle suspensions are characterized by the average momentum equation, where the dominant contribution to the average momentum transfer between particles and fluid is the average drag force. In this study, the average drag force is quantified using particle-resolved direct numerical simulation in a canonical problem: a statistically homogeneous suspension where an imposed mean pressure gradient establishes a steady mean slip velocity between the phases. The effects of particle velocity fluctuations, particle clustering, and mobility of particles are studied separately. It is shown that the competing effects of these factors could decrease, increase, or keep constant the drag of freely evolving suspensions in comparison to fixed beds at different flow conditions. It is also shown that the effects of particle clustering and particle velocity fluctuations are not independent. Finally, a correlation for interphase drag force in terms of volume fraction, Reynolds number, and density ratio is proposed. Two different approaches (symbolic regression and predefined functional forms) are used to develop the drag correlation. Since this drag correlation has been inferred from simulations of particle suspensions, it includes the effect of the motion of the particles. This drag correlation can be used in computational fluid dynamics simulations of particle-laden flows that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior

    A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes

    Get PDF
    In this paper we show and discuss the use of a versatile interaction potential approach coupled with an immersed boundary method to simulate a variety of flows involving deformable bodies. In particular, we focus on two kinds of problems, namely (i) deformation of liquid-liquid interfaces and (ii) flow in the left ventricle of the heart with either a mechanical or a natural valve. Both examples have in common the two-way interaction of the flow with a deformable interface or a membrane. The interaction potential approach (de Tullio & Pascazio, Jou. Comp. Phys., 2016; Tanaka, Wada and Nakamura, Computational Biomechanics, 2016) with minor modifications can be used to capture the deformation dynamics in both classes of problems. We show that the approach can be used to replicate the deformation dynamics of liquid-liquid interfaces through the use of ad-hoc elastic constants. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as deforming drop in a shear flow or a cross flow. We show that the same potential approach can also be used to study the flow in the left ventricle of the heart. The flow imposed into the ventricle interacts dynamically with the mitral valve (mechanical or natural) and the ventricle which are simulated using the same model. Results from these simulations are compared with ad- hoc in-house experimental measurements. Finally, a parallelisation scheme is presented, as parallelisation is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies on hundreds of distributed memory computing processors

    Analysis of dispersed multiphase flow using fully-resolved direct numerical simulation: Flow physics and modeling

    Get PDF
    Fully resolved simulation of flows with buoyant particles is a challenging problem since buoyant particles are lighter than the surrounding fluid.As a result, the two phases are strongly coupled together.In this work, the virtual force stabilization technique is used to simulate buoyant particle suspensions with high volume fractions.It is concluded that the dimensionless numerical model constant CvC_v in the virtual force technique should increase with volume fraction.The behavior of a single rising particle, two in-line rising particles, and buoyant particle suspensions are studied.In each case, results are compared with experimental works on bubbly flows to highlight the differences and similarities between buoyant particles and bubbles.Finally, the drag coefficient is extracted from simulations of buoyant particle suspensions at different volume fractions, and based on that, a drag correlation is presented.Then velocity fluctuations in the carrier phase and dispersed phase of a dispersed multiphase flow are studied using particle-resolved direct numerical simulation.The simulations correspond to a statistically homogeneous problem with an imposed mean pressure gradient and are presented for a wide range of dispersed phase volume fractions, Reynolds number based on mean slip velocity, and density ratios of the dispersed phase to the carrier phase.The velocity fluctuations in the fluid and dispersed phase at the statistically stationary state are quantified by the turbulent kinetic energy (TKE) and granular temperature, respectively.It is found that the granular temperature increases with decrease in density ratio and then reaches an asymptotic value.The qualitative trend of the behavior is explained by the added mass effect, but the value of the coefficient that yields quantitative agreement is non-physical.It is also shown that the TKE has a similar dependence on the density ratio for all volume fractions studied here other than Ï•=0.1\phi=0.1.The anomalous behavior for Ï•=0.1\phi=0.1 is hypothesized to arise from the interaction of particle wakes at higher volume fractions.The study of mixture kinetic energy for different cases indicates that low-density ratio cases are less efficient in extracting energy from mean flow to fluctuations.The ultimate objective of this study is to understand the dynamics of freely evolving particle suspensions over a wide range of particle-to-fluid density ratios.The dynamics of particle suspensions are characterized by the average momentum equation, where the dominant contribution to the average momentum transfer between particles and fluid is the average drag force.In this study, the average drag force is quantified using fully-resolved direct numerical simulation in a canonical problem: a statistically homogeneous suspension where a steady mean slip velocity between the phases is established by an imposed mean pressure gradient.The effects of particle velocity fluctuations, clustering, and mobility of particles are studied separately.It is shown that the competing effects of these factors could decrease, increase, or keep constant the drag of freely evolving suspensions in comparison to fixed beds at different flow conditions.It is also shown that the effects of clustering and particle velocity fluctuations are correlated.Finally, a correlation for interphase drag force in terms of volume fraction, Reynolds number, and density ratio is proposed. Since this drag correlation has been inferred from simulations of particle suspensions, it includes the effect of the motion of the particles. This drag correlation can be used in computational fluid dynamics simulations of particle-laden flows that solve the average two-fluid equations where the accuracy of the drag law affects the prediction of overall flow behavior

    An immersed boundary method for particles and bubbles in magnetohydrodynamic flows

    Get PDF
    This thesis presents a numerical method for the phase-resolving simulation of rigid particles and deformable bubbles in viscous, magnetohydrodynamic flows. The presented approach features solid robustness and high numerical efficiency. The implementation is three-dimensional and fully parallel suiting the needs of modern high-performance computing. In addition to the steps towards magnetohydrodynamics, the thesis covers method development with respect to the immersed boundary method which can be summarized in simple words by From rigid spherical particles to deformable bubbles. The development comprises the extension of an existing immersed boundary method to non-spherical particles and very low particle-to-fluid density ratios. A detailed study is dedicated to the complex interaction of particle shape, wake and particle dynamics. Furthermore, the representation of deformable bubble shapes, i.e. the coupling of the bubble shape to the fluid loads, is accounted for. The topic of bubble interaction is surveyed including bubble collision and coalescence and a new coalescence model is introduced. The thesis contains applications of the method to simulations of the rise of a single bubble and a bubble chain in liquid metal with and without magnetic field highlighting the major effects of the field on the bubble dynamics and the flow field. The effect of bubble coalescence is quantified for two closely adjacent bubble chains. A framework for large-scale simulations with many bubbles is provided to study complex multiphase phenomena like bubble-turbulence interaction in an efficient manner
    corecore