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Abstract

This thesis presents a numerical method for the phase-resolving simulation of rigid parti-
cles and deformable bubbles in viscous, magnetohydrodynamic flows. The presented ap-
proach features solid robustness and high numerical efficiency. The implementation is three-
dimensional and fully parallel suiting the needs of modern high-performance computing.
In addition to the steps towards magnetohydrodynamics, the thesis covers method develop-
ment with respect to the immersed boundary method which can be summarized in simple
words by ”From rigid spherical particles to deformable bubbles”. The development com-
prises the extension of an existing immersed boundary method to non-spherical particles
and very low particle-to-fluid density ratios. A detailed study is dedicated to the complex
interaction of particle shape, wake and particle dynamics.
Furthermore, the representation of deformable bubble shapes, i.e. the coupling of the bub-
ble shape to the fluid loads, is accounted for. The topic of bubble interaction is surveyed
including bubble collision and coalescence and a new coalescence model is introduced.
The thesis contains applications of the method to simulations of the rise of a single bubble
and a bubble chain in liquid metal with and without magnetic field highlighting the major
effects of the field on the bubble dynamics and the flow field. The effect of bubble coalescence
is quantified for two closely adjacent bubble chains.
A framework for large-scale simulations with many bubbles is provided to study complex
multiphase phenomena like bubble-turbulence interaction in an efficient manner.





Zusammenfassung

Die vorliegende Dissertation behandelt eine numerische Methode für die phasenauflösende
Simulation von festen Partikeln und deformierbaren Blasen in viskosen, magnetohydrody-
namischen Strömungen. Der vorgestellte Ansatz zeichnet sich durch solide Robustheit und
hohe numerische Effizienz aus. Die Implementierung ist dreidimensional, vollständig parallel
und entspricht den Ansprüchen des modernen Hochleistungsrechnens.
Neben den notwendigen Erweiterungen mit Bezug auf die Magnetohydrodynamik widmet
sich die Dissertation der Methodenentwicklung bezüglich der Immersed-Boundary-Methode,
welche mit den einfachen folgenden Worten zusammengefasst werden kann: ”Von festen,
sphärischen Partikeln zu deformierbaren Blasen”. Die Entwicklungsschritte umfassen die
Erweiterung einer existierenden Immersed-Boundary-Methode auf nicht-sphärische Partikel
sowie auf sehr niedrige Verhältnisse von Partikel- zu Fluiddichte. Eine umfassende Studie
untersucht die komplexe Wechselwirkung zwischen Partikelform, dem Nachlauf und der Par-
tikeldynamik.
Des Weiteren wird der Abbildung deformierbarer Blasenformen Rechnung getragen, d.h. die
Kopplung von Blasenform und Fluidlasten wird behandelt. Die Thematik der Blaseninter-
aktion, welche Blasenkollision und -koaleszenz beinhaltet, wird im Sinne eines Überblicks
diskutiert und in der Folge wird ein neues Koaleszenzmodell entwickelt und eingeführt.
Die Dissertation enthält Anwendungen der Methode bezüglich der Simulation des Aufstiegs
einer Einzelblase und einer Blasenkette in Flüssigmetall, in denen die Auswirkung eines
Magnetfeldes auf die Blasendynamik und das Strömungsfeld beleuchtet wird. Ferner wird
der Einfluss der Behandlung der Blasenkoaleszenz am Beispiel zweier nah beieinander auf-
steigender Blasenketten quantifiziert.
Die vorliegende Arbeit stellt das Rüstzeug für umfassende Simulationen von Strömungen mit
vielen Blasen im großen Maßstab. Komplexe Mehrphasenphänomene wie Blasen-Turbulenz-
Interaktion können nun in effizienter Weise untersucht werden.
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1 Introduction and Research Goals

1.1 The simulation of multiphase flows

Multiphase flows with rigid particles, drops and bubbles are of significant relevance in many
engineering applications reaching from microfluidic devices as lab on a chip gear to envi-
ronmental flows like sediment erosion processes in river beds. In metallurgical applications,
bubbles are injected into the liquid metal to stir, to refine the melt, and to homogenize the
physical and chemical properties of the alloy [74]. In these gas-liquid metal flows, external
magnetic fields are used for contactless, electromagnetic flow control [87]. Due to the opacity
of the liquid metal, the impact of the magnetic field on the bubbles is still unclear [319].
The topic multiphase flows in itself is of great interest in fundamental research. However,
it is also vital for the understanding and optimization of complex industrial applications.
Here, the subject multiphase flows is examined with special focus on magnetohydrodynamic,
gas-liquid metal flows.
A variety of numerical methods has been developed to study the wide range of multiphase
flows [215, 307]. Turbulent dispersed multiphase flows in dilute systems are reviewed in [8]
with a specific focus on point particle methods. To clarify the terminology used here, the
term particle denotes an element of the dispersed phase, be it a bubble, drop or a rigid
body [37]. In point particle simulations, the characteristic length of the particle is smaller
than the grid spacing and therefore the fluid-particle interaction needs to be modeled. In
contrast, the geometry of the particle, as well as the fluid-particle interaction are directly
resolved in phase-resolving simulations. For bubbles, the Navier-Stokes equations are often
solved in a one-fluid formulation and the interface between the gaseous and liquid phase is
dealt with for example by a level-set [253] or a front-tracking algorithm [275]. In the one-
fluid formulation, gas and liquid are treated as a single fluid with spatially varying physical
properties while the surface tension force is introduced at the gas-liquid interface. With this
approach, the deformation of the bubble is directly accounted for. Bubbles in liquid metals
are characterized by high Reynolds numbers, large density ratios and high surface tension
and are therefore difficult to handle with classical methods [74, 319]. The large density ratio
between the phases yields a high pressure jump at the interface and the surface tension force
becomes problematic [275]. Both aspects can lead to numerical issues and reduced compu-
tational efficiency.
For rigid particles, the geometry-resolving simulation by means of an immersed boundary
method (IBM) has become increasingly popular in recent years [179, 282, 136]. The IBM is
an Euler-Lagrange approach and the motion of the solid particle is determined by solving
an equation of motion for the rigid body. The particle-fluid-coupling is achieved, e.g., by
introducing additional forcing terms to the Navier-Stokes equation to account for the no-slip
condition at the particle surface. High numerical efficiency can be obtained by the usage
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of an IBM for the simulation of many particles in turbulent flow [297, 283]. It is therefore
tempting to use an IBM for the representation of bubbles in contaminated systems, such as
liquid metal systems, where a no-slip condition is appropriate at the interface [168, 2].
The development of such an IBM, as a numerical method for the simulation of bubbles in
metallurgical, magnetohydrodynamic flows, is the main goal of this thesis.
If research in fluid mechanics is briefly classified into the three phases, 1) method develop-
ment, 2) gathering of data and physical interpretation, and 3) derivation of lower order mod-
els, closures and correlations, this thesis is mainly assigned to the first segment. Throughout
the method development, limitations of the approach, possible improvements, and future
challenges towards large scale applications are addressed.
The remainder of the introductory chapter is structured as follows. At first, the class of
multiphase flows, which is of interest in this thesis, is approached from a physical point of
view. The physical parameters describing the multiphase flows that will be considered are
introduced in Section 1.1.1 below. The capabilities of the original IBM [136, 134], forming
the base of this thesis and chosen to study these flows, are stated briefly and necessary
improvements are motivated. In Section 1.2, the governing equations and the original nu-
merical method for their solution are stated. Finally, the detailed goals of the thesis are
formulated in Section 1.3.

1.1.1 Physical parameters

This paragraph outlines the physical parameters which characterize the multiphase flows to
be studied. Starting from the parameters for a single particle in an unbounded fluid, further
non-dimensional numbers are introduced to address multiple particles, bounded geometries
and the impact of a magnetic field.

Single particles
The flow of an incompressible fluid is characterized by the Reynolds number, Re, describing
the ratio of inertial to viscous forces. A typical example is the flow around a fixed sphere,
where Re is based on the free-stream velocity and the diameter of the sphere. The problem of
a single, homogeneous particle rising or falling under the effect of buoyancy in a Newtonian
fluid, which is at rest at infinity, is described by the Galilei number, G, the particle-to-fluid
density ratio, πρ and at least one particle-shape parameter, X, [63]. The Galilei number
is a Reynolds number based on the gravitational velocity scale as discussed below, and it
determines the mean vertical velocity of the body to be used for the definition of Re. Hence,
three parameters adequately characterize the single particle problems,

Re =
uref Lref

ν
, πρ =

ρp
ρf
, X = f(shape) , (1.1)

with uref and Lref being a reference velocity and length scale, respectively. The particle den-
sity is denoted as ρp, the fluid density as ρf , and ν is the kinematic viscosity of the carrier
fluid. The viscosity ratio between the phases appears as another parameter for drops and
bubbles in clean systems, but it is dispensable for rigid particles or bubbles in contaminated
systems [2], which are of interest here. Hence, the Reynolds number characterizes the wake
behind the body, the density ratio describes the relation of particle to fluid inertia, and the
shape parameter marks the level of geometric anisotropy [63].
The interaction of the fluid flow with the particle motion and shape is one of the key as-
pects of this thesis. Figure 1.1 was inspired by [63] and provides an explanatory view of
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how the physical parameters of (1.1) are used to investigate this interaction. The sketch
composes the three-dimensional parameter space spanned by Re, πρ and X. A large amount
of work has been invested towards the understanding of the dynamics of single particles
[168, 63, 113, 37]. Figure 1.1 is used to summarize some of this research and to point to the
chapters of this thesis where it is detailed.
The inset Figure 1.1a) shows a regime map of wake forms for fixed spheroids and disks as a
function of Re and X modified from [36] and including two wake visualizations from present
simulations. Fixed bodies can be interpreted as particles with πρ →∞, i.e. they have a very
large inertia and do not react to excitations by the flow. In Section 3.4, the wake regimes are
discussed in detail and the interplay between the wake and the particle dynamics is inves-
tigated by moving towards smaller πρ and successively releasing specific degrees of freedom
with respect to the particle motion.
Figure 1.1b) displays trajectory regimes of rising and falling spheres as a function of Re and
πρ modified from [113]. The trajectories comprise vertical, oblique and intermittent paths,
as well as a zig-zag regime. Further, the plot indicates the corresponding wake forms where
R, 2R and 4R denotes the number of vortex rings per cycle.
Bubbles can be seen as very light particles with πρ ≪ 1. Their shape is governed by Re and
the ratio of deforming fluid loads to stabilizing surface tension. The latter is expressed by
the Eötvös number, Eo, introduced below. Figure 1.1c) illustrates a regime map of bubble
shapes modified from [37, 165]. The aspect ratio of a bubble rarely exceeds a value of four
[165]. In the presence of vortex shedding for high Re, the shape of the bubble can become
time-dependent. The representation of bubble shapes is studied in Chapter 4.
For illustration, Figure 1.1d) shows the dynamics of falling disks with X > 10 modified from
[69, 172]. The ordinate is formed by the dimensionless moment of inertia I∗ = Idisk/(ρfd

5) =
π/64X−1πρ, where X = d/t with d the diameter and t the thickness of the disk. For low
Re, a steady fall is observed for all I∗. Periodic oscillations without flips are found for low
I∗ and the path is a roughly vertical. The disk tumbles for high I∗. It continuously drifts
sideways while turning end-over-end [69]. In between, a chaotic regime is observed where the
disk glides sideways and flips with irregular time lags. Particles of high aspect ratio are not
considered in this thesis, but some similarities are also apparent for moderately anisotropic
ellipsoids.
The blue-shaded area in Figure1.1 designates the region of applicability of the original IBM
[136] for spheres, X = 1, with πρ & 0.4. The zig-zag regime of spheres is thus is not ac-
cessible by the original IBM. The original method is discussed in Section 1.2 below. The
limitation in terms of Re is indistinct and it is basically only given by the available compu-
tational resources and the chosen parallelization of the code addressed briefly in Section 3.1.3.

For spheroidal particles, the length scale is given by the sphere-volume equivalent diameter
Lref = deq =

3
√

6Vp/π, where Vp is the particle volume. The gravitational velocity scale,
ug, is an appropriate choice for the reference velocity, uref , of a single spheroidal particle
freely ascending or settling under gravity g. This reference velocity is given by uref = ug =
√

|πρ − 1| g deq. The Reynolds number based on ug and deq is denoted as Galilei number
(Archimedes number) and is defined as

G =

√

|πρ − 1| g d3eq
ν

=
ug deq
ν

= Reg . (1.2)

It characterizes the ratio of buoyancy to viscous forces and is known a priori in experiments



4 1 Introduction and Research Goals

�

���

�

�

��

��� ����

���

Figure 1.1 Parameter space for single particles spanned by Reynolds number, Re, density ratio,
πρ, and shape parameter, X, [63]. a) Fixed spheroids and disks. b) Rising and falling spheres. c)
Bubble shapes. d) Falling disks. All figures have been modified from the literature. In particular,
a) the regime borders relate to [36], b) the sketches and regimes are adopted from [113], c) the
curves are digitized from [37], and sub-figure d) is a concentrate of [69, 172]. The blue-shaded area
shows the region of applicability of the original IBM [136] for spheres with πρ & 0.4.
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on free settling or ascent. For these kinds of problems, the Reynolds number based on the
average vertical velocity is an outcome of the experiment.
For bubbles, the shape parameter X can be correlated to the Eötvös number, Eo, as the
ratio of buoyancy force to surface tension force,

Eo =
|ρf − ρp| g d2eq

σ
, (1.3)

where σ denotes the surface tension.
The governing non-dimensional numbers of any specific problem can be derived employing
the Buckingham theorem [28]. Additional and alternative parameters can be obtained by
the combination of these non-dimensional numbers and the usage of, e.g., length ratios. It
is not of interest at this stage to go into the details of other dimensionless numbers, such as
the Weber, Ohnesorg, or Stokes number. These are defined later on where used.

Multiple particles
The method development documented in this thesis strives towards an approach capable of
dealing efficiently with many rigid particles or bubbles. The fractional volume occupied by
the disperse phase governs the degree of particle interaction, such as the rate of inter-particle
collisions or the occurrence of bubble coalescence. For the rather dilute and anisotropic sys-
tems studied in Chapter 6 and 7, the number of bubbles is parametrized by a local gas
volume flux expressed as a non-dimensionalized bubble detachment frequency.

Bounded geometries
With the method used throughout the thesis, the outer geometry of the computational do-
main is cuboidal. The lengths are grouped in a list and are expressed as a multitude of
the characteristic length, L = (Lx, Ly, Lz) Lref . In the presence of outer walls, the above
statement provides the confinement ratio(s). Other relevant lengths, like for example the
position of the bubble injection nozzle in Chapter 6, are also expressed in terms of the ref-
erence length scale.

Magnetic field
When a static, external magnetic field is applied and the magnitude of this field dominates
the flow-induced field in the electrically conducting fluid, a single further parameter describes
the relative strength of the electromagnetic forces. Further details are provided in Chapter
2. The Hartmann number, Ha, is traditionally used for channel flows,

Ha = B Lref

√

σe
µf

, N =
σeB

2 Lref

ρf uref
=
Ha2

Re
, (1.4)

where Ha represents the ratio of electromagnetic forces to viscous forces [43, 139]. Alter-
natively, the magnetic interaction parameter (also known as Stuart number), N , can be
employed, which is often done when dealing with immersed objects. A combination of Ha
and Re yields N according to (1.4), and N is the ratio of electromagnetic forces to inertial
forces [139, 319]. The electric conductivity is denoted by σe and the dynamic viscosity by
µf . Immersed objects are assumed to be perfectly insulating. In the studies of this thesis,
homogeneous magnetic fields B are applied with constant magnitude B.
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1.2 Immersed boundary method and multiphase code

PRIME

This section is dedicated to the statement of the original method that forms the basis of
this thesis. The method represents an Euler-Lagrange approach for the phase-resolving
simulation of particulate flows. The Navier-Stokes equations of an incompressible fluid are
solved and an immersed boundary method (IBM) is employed for spherical, rigid particles.
The method was reported by Uhlmann in [282], and was successively improved by Kempe
and Fröhlich [136, 135, 134]. First, the governing equations are given in continuous form.
Then the numerical implementation into the code PRIME (Phase-Resolving SIMulation
Environment) is stated for future reference.

1.2.1 Continuous phase

The unsteady three-dimensional Navier-Stokes equations are solved for a Newtonian fluid of
constant density, which represents the continuous or carrier phase in the multiphase context.
The continuity equation and the momentum equations read

∇ · u = 0 , (1.5)

∂u

∂t
+ (u · ∇)u = − 1

ρf
∇p+ ν∇2u+ f , (1.6)

with the usual nomenclature u = (u, v, w)T being the velocity of the continuous phase
along the Cartesian coordinates x, y, z. Furthermore, p is the pressure and f a volumetric
force. The latter is of specific interest as it carries the coupling information to the disperse
phase. The coupling between the embedded particle and the fluid is realized by introducing
additional volume forces f in the right hand side of (1.6). These volume forces are localized
at the particle surface and impose a no-slip condition between the phases [282, 136, 179].
Moreover, f will also be extended to assimilate the Lorentz force in magnetohydrodynamics
as discussed in Chapter 2.

1.2.2 Disperse phase

The motion of a rigid particle (index p) can be described by a translation of its center of mass
xp and the rotation of the solid-fluid interface around xp. For a single spherical particle, the
motion is obtained by solving the Newtonian linear and angular momentum equations

mp
dup

dt
= ρf

∮

S

τ · nS dS + Vp(ρp − ρf ) g +Fcol , (1.7)

Ip
dωp

dt
= ρf

∮

S

r× (τ · nS) dS +Mcol . (1.8)

where τ = −Ip/ρf + ν
(

∇u+∇uT
)

is the hydrodynamic stress tensor, with I being the
identity matrix, and p the pressure without its hydrostatic part. The surface integrals thus
give the force and torque acting from the fluid on the particle. Here, up and ωp designate
the linear and angular velocity of the spherical particle, while mp denotes its mass and
Ip = 2/5mpr

2
p its moment of inertia. The vector nS denotes the outward-pointing normal
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vector of the interface S, and r identifies a point on S with respect to the position of the
center of mass of the particle, xp. Note that the hydrostatic component in the continuous
pressure field p has been eliminated in (1.6). Therefore, the buoyancy force appears as a
source term proportional to the density difference on the right hand side of (1.7). The forces
and moments due to inter-particle and particle-wall collision are denoted as Fcol and Mcol

and their modeling is introduced separately in [135, 134] and Section 7.4. For simplicity, the
terms are excluded from the discussion of the fluid-particle interaction until then.

1.2.3 Original method

The original method is outlined in detail in [136, 134]. The original IBM was implemented
in the code PRIME and is re-called here in the present notation for completeness and later
reference. The equations for the continuous phase are solved on a Cartesian grid with stag-
gered grid arrangement employing a second-order finite volume method. More details on the
discrete variable arrangement and the staggered control volumes are provided in Section 2.1.
The grid is structured with coordinates xi,j,k and has a constant grid spacing h in all three
directions. Details on the spatial discretization are given in [134] and not reproduced here.
Within the IBM, the surface of each individual particle is described using a set of Lagrangian
forcing points (index fp). Figure 1.2 illustrates the method and also summarizes the present
nomenclature. The transfer between the Cartesian grid and the Lagrangian points is accom-
plished by regularized delta functions δh addressed in Section 3.3.4.

Figure 1.2 Schematic graph of IBM.

A low-storage Runge-Kutta three-step method with implicit treatment of the viscous terms
by a Crank-Nicolson scheme is used for time integration. The full algorithm of the original
IBM for Runge-Kutta step k reads:

ũ− uk−1

∆t
= 2αk ν ∇2u k−1 − 2 αk ∇

(

p k−1

ρf

)

− γk ∇ · (uu) k−1 − ζk ∇ · (uu) k−2 , (1.9a)

ui(x
(l)
fp) =

Nx
∑

i=1

Ny
∑

j=1

Nz
∑

k=1

ũ(xi,j,k) δh(xi,j,k − x
(l)
fp) h

3 , (1.9b)

f
(l)
fp =

u d(x
(l)
fp)− ui(x

(l)
fp)

∆t
, (1.9c)
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f (xi,j,k) =

Np
∑

p=1

NL
∑

l=1

f
(l)
fp δh

(

xi,j,k − x
(l)
fp

)

∆VL , (1.9d)

∇2u∗ − u∗

αk ν ∆t
= − 1

αk ν

(

ũ

∆t
+ f

)

+∇2uk−1 , (1.9e)

∇2(δp)k =
∇ · u∗
2αk∆t

, (1.9f)

pk = pk−1 + (δp)k − αk∆t ν∇2(δp)k , (1.9g)

uk = u∗ − 2αk∆t∇(δp)k , (1.9h)

uk
p = uk−1

p − ∆t
ρp ρf

mp (ρp − ρf )

NL
∑

l=1

f
(l)
fp ∆VL + 2 αk ∆t g , (1.9i)

ωk
p = ω

k−1
p − ∆t

ρp ρf
Ip (ρp − ρf )

NL
∑

l=1

(x
(l)
fp − xk

p)× f
(l)
fp ∆VL , (1.9j)

xk
p = xk−1

p + αk ∆t
(

uk
p + uk−1

p

)

, (1.9k)

ud(x
(l)
fp) = u

(l)
fp = uk

p + ω
k
p ×

(

x
(l)
fp − xk

p

)

. (1.9l)

An intermediate velocity field ũ is computed explicitly with (1.9a), which is used for the
IBM forcing procedure. This velocity field is interpolated to the Lagrangian forcing points
by the regularized delta function (1.9b). A Lagrangian force ffp is obtained at each forcing
point by the direct forcing method (1.9c) from the difference of the desired velocity at
this forcing point ud(xfp) and the interpolated velocity ui(xfp) divided by the time step
∆t. Then, ffp is transferred to the Cartesian grid yielding f (xi,j,k), where the spreading
(1.9d) is realized again by the regularized delta function. The Helmholtz equation (1.9e) is
obtained by including the Eulerian force, reformulating (1.9a) with implicit viscous terms
and subtracting the resulting equation from (1.9a) [136]. Note that, the resulting velocity
field u∗ does not fulfill the solenoidal constraint. A pressure projection step is conducted
by solving the Poisson equation (1.9f), correcting the pressure field (1.9g) and computing
the divergence-free velocity field uk (1.9h). The particle momentum equations (1.7) and
(1.8) are discretized and advanced in time employing the assumption of rigid body motion
to the particle interior [282]. This yields (1.9i) and (1.9j) which are solved for the new
particle velocities uk

p and ω
k
p . The particle position is updated (1.9k), while the change of

orientation is irrelevant for spherical particles. Finally, the velocity at the particle surface is
determined by (1.9l) to be employed in the forcing procedure in the next Runge-Kutta step.
The Runge-Kutta coefficients used here are [258, 136]:

αk=1 = 4/15 , αk=2 = 1/15 , αk=3 = 1/6 ,
γk=1 = 8/15 , γk=2 = 5/12 , γk=3 = 3/4 ,
ζk=1 = 0 , ζk=2 = −17/60 , ζk=3 = −5/12 .

(1.10)

The overall scheme is very efficient and robust. Since the fluid density is spatially constant
throughout the entire Cartesian grid, a constant coefficient Poisson equation is obtained
without a marked pressure jump. The forcing procedure is only conducted at the particle
surface and an artificial fluid motion develops inside the particle. Even though not stated
explicitly here, the method is fully parallelized to suit the needs of modern high performance
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computing [281, 134].
Several modifications to the original method from [282] were applied, and three of them
are explained briefly here with more detail provided in [136, 135]. The first modification
improves the accuracy of the boundary condition at the particle surface. Additional forcing
loops are introduced in an efficient way excluding multiple solutions of the Poisson equation
as discussed in [136]. The above scheme was modified as follows:

0) Compute once (1.9a) to (1.9e) and set u(m=0) = u∗.

Do m = 1, nf

1) Perform interpolation (1.9b), forcing (1.9c) and spreading (1.9d).

2) Conduct a velocity correction u(m) = u(m−1) +∆t fm(xi,j,k).

end do

3) Set u∗ = u(nf ), solve the Poisson equation for the pressure correction (1.9f) and con-
tinue the algorithm (1.9a).

4) In the particle momentum equations (1.9i) and (1.9j), the force and torque acting on
the particle are determined using the information from 0) and all additional loops, i.e.

employing
∑nf

0 f
(l)
fp .

With the additional forcing, the error in the no-slip boundary condition is reduced. The
excellent computational performance is retained as the costly solution of the Poisson equation
is excluded from the iterative procedure.
The second improvement documented in [136] involves a modification of particle momentum
equations (1.9i) and (1.9j). The assumption of a rigid body rotation for the ’artificial’ fluid
inside the particle is removed enabling particle-to-fluid density ratios smaller than unity
(πρ & 0.4). This is revisited in more detail in Section 3.2.3. Finally, a very elaborate collision
model for spherical particles was developed in [135, 134]. It allows for the numerically
efficient treatment of oblique collisions of spherical particles in viscous flow and is discussed
in Section 7.4. This IBM provides a very effective framework for the simulation of many
spherical particles in bounded geometries.
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1.3 Research objectives

The original IBM stated in Section 1.2 is specifically tailored for the efficient, phase-resolving
simulation of multiphase flows with many rigid particles. It allows for particle-to-fluid density
ratios slightly smaller than unity. The particle shape is restricted to a spherical geometry.
The ultimate goal of this thesis is the application of a variant of this IBM towards bubbles
in liquid metals and the study of the impact of magnetic fields. To achieve this, numerous
improvements of the IBM are necessary. Apart from the changes in methodology, the un-
derlying physics shall also be studied. The scenarios dealt with range from a single rigid
particle to a flow with many interacting bubbles. The thesis has been structured as follows:

- Chapter 2 is dedicated to the extension towards magnetohydrodynamics (MHD). The
Navier-Stokes equations are altered by the Lorentz force extension and coupled to
the electromagnetic equations. A rigorous validation of the MHD implementation is
conducted and the main effects of a magnetic field on laminar and turbulent channel
flows are characterized. Furthermore, immersed insulating objects are accounted for.

- Chapter 3 deals with the evolution of the IBM towards a wider range of applicability.
The method is modified to account for the orientation and motion of non-spherical par-
ticles and for very light particles. The flow around spheroidal particles is studied with
and without magnetic field, and the physical mechanisms leading to path oscillations,
like the zig-zag motion of a bubble, are examined.

- In Chapter 4, an approach is introduced to represent deformable bubbles accurately
and efficiently. The bubble shape is described analytically and it is determined from
the unsteady fluid loads.

- Chapter 5 presents an extensive study on the rise of a single bubble in an aligned
magnetic field in liquid metal. The interplay between the bubble wake, the bubble
dynamics and the field is analyzed.

- A bubble chain exposed to an aligned magnetic field is examined in Chapter 6. The
disperse phase statistics and the induced global flow field in the mold are compared
with and without magnetic field. This gives implications towards electromagnetic flow
control.

- Chapter 7 provides a view on bubble interaction comprising collision and coalescence.
The computation of the inter-particle distance is addressed for complex particle shapes.
Also the current status towards bubble collision modeling is surveyed. A new coales-
cence model is developed and applied to quantify the impact of bubble coalescence.

A much more versatile numerical method is proposed which retains the numerical efficiency of
the original IBM. Chapter 8 summarizes the modifications and findings and further research
directions are suggested.



2 Magnetohydrodynamics

2.1 Physical and numerical model for MHD

The present work was partly conducted in the collaborative research center 609 (Sonder-
forschungsbereich, SFB 609 ) entitled ”Electromagnetic Flow Control in Metallurgy, Crystal
Growth and Electrochemistry”. This framework inter-connected more than twenty research
projects and existed over a period of twelve years. All of these projects had the common
ground of magnetohydrodynamics (MHD) studied by both experiments and numerical sim-
ulations and reaching from fundamental research to industrial applications. A large deal of
the research in this field is reviewed and gathered in a special topics issue of the European
Physical Journal [87].
The mathematical backbone of MHD is built upon the Navier-Stokes Equations covering the
hydrodynamics and the Maxwell Equations describing electromagnetism. The coupling of
both fields of physics is realized via the Lorentz force. A general access to MHD is provided
for instance by the textbooks [43, 182], and the historical evolution of MHD and future
trends are reviewed in [229].
A categorization of the vast number of phenomena related to MHD can by achieved by means
of the magnetic Reynolds number, Rm = µ0σeLu, where µ0 is the magnetic permeability of
free space, σe is the electric conductivity and L and u are a characteristic length scale and
velocity scale, respectively. High magnetic Reynolds numbers, Rm ≫ 1, relate to solar and
astrophysical processes, as for instance the generation of Alfvén waves [3]. Another example
are problems associated with the earth’s magnetic field addressed, e.g., by experiments and
numerical studies of the geodynamo [88, 261].
Basically all terrestrial MHD applications fall in the range of low magnetic Reynolds number,
i.e. Rm ≪ 1. Here, only a few examples from this extensive field of MHD applications shall
be provided for illustration. These references originate from the research gathered in the
SFB 609. Stirring and mixing of liquid metals can be achieved effectively and contactless by
magnetic fields and was studied numerically and experimentally in [262, 263, 218]. Further
contents within the electromagnetic processing of materials are casting and solidification
which were, e.g., studied in [271, 177, 255]. Liquid metal two-phase flows [74, 244, 320] will
be dealt with in more detail in Chapter 5 and Chapter 6. Electromagnetic flow control is
a key aspect to influence the crystal growth process [105, 76] which furnishes the materials
for the semiconductor industry. Besides the liquid metal applications also the flow in low-
conducting fluids can be altered by magnetic fields. One interesting field is electrochemistry,
where magnetic fields show a substantial impact on the evolution of hydrogen bubbles during
electrolysis [117, 301] or on the electrodeposition process [192, 191].
For low magnetic Reynolds numbers, the induced magnetic field is negligible compared to
the applied, external magnetic field. The mathematical formulation simplifies substantially
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compared to the full MHD equations. The resulting equations and their numerical treatment
are outlined in the next paragraph.

2.1.1 Lorentz force

For an electrically conducting fluid moving in a magnetic field, the Lorentz force appears as
an additional volumetric force on the right hand side of the Navier-Stokes equation (1.6).
The Lorentz force is determined by

fL =
1

ρf
(j×B) , (2.1)

with B being the magnetic induction or magnetic flux density, which is often just referred
to as magnetic field. In the present work, only temporally constant magnetic fields are
addressed. The current density, j, is governed by Ohm’s law which reads

j = σe (−∇Φ + u×B) , (2.2)

where the scalar Φ denotes the electric potential. We now discuss the case of constant electric
conductivity σe = const. From charge conservation,

∇ · j = 0, (2.3)

follows a Poisson equation for the electric potential

∇2Φ = ∇ · (u×B) . (2.4)

A closed system of equations is given by (2.4) for the electric potential Φ, (2.2) yielding
the current density, j, and finally (2.1) provides the Lorentz force fL to be included in the
Navier-Stokes equation. The numerical treatment of this system and the coupling to the
fluid momentum equation are addressed next.

2.1.2 Coupling to Navier-Stokes solver

The Lorentz force extension to the existing flow solver, outlined in Section 1.2 and [134,
136], is developed here. A similar strategy is prosecuted as shown in [145, 94, 152]. There
are several ways of coupling the electrodynamic equations to the hydrodynamic equations.
Since the introduction of a second Poisson equation is computationally costly, multi-time
stepping might be beneficial for some applications. Here, the electrodynamic equations are
solved in every sub-step of the Runge-Kutta time-integration scheme. For completeness and
comparison to the original method (1.9), the full MHD algorithm is given for one Runge-
Kutta sub-step. For the k-th Runge-Kutta sub-step, the following procedure is run through.
A preliminary current is computed,

j∗ = σe
(

−∇Φk−1 + uk−1 ×B
)

, (2.5)

which does not fulfill the solenoidal constraint (2.3). Thus, then a Poisson equation for the
correction of the electric potential δΦ is solved,

∇2δΦ = ∇ · j∗, (2.6)
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to obtain a divergence free current,

jk = j∗ −∇δΦ, (2.7)

and the electric potential is corrected accordingly

Φk = Φk−1 + δΦ. (2.8)

The solution of the Poisson equation is obtained using the same solvers as for the pressure
correction (2.12), possibly with a different convergence criterion. These highly efficient
solvers are provided by the library hypre [65] and incorporate pre-conditioning and multigrid
techniques. Finally, the Lorentz force is computed from

f kL =
1

ρf

(

jk ×B
)

. (2.9)

The Lorentz force is added to the volume force term f̃ k = f kb + f kL, with fb being a given
volumetric force distribution, e.g. to drive a channel flow.
A predictor step, also including the pressure gradient, is conducted to compute the interme-
diate velocity field ũ,

ũ = uk−1 +∆t

(

2αk

[

ν∇2u− 1

ρf
∇p

]k−1

+ 2αk f̃ k − γk [(u · ∇)u]k−1 − ζk [(u · ∇)u]k−2
)

.

(2.10)
At this stage, the IBM volume force, f kIBM , obtained from (1.9d), is incorporated by f k =
f̃ k + f kIBM to account for immersed boundaries. A Helmholtz equation, required for the
implicit treatment of viscous terms, then yields the non-divergence free velocity field u∗,

∇2u∗ − u∗

2αkν∆t
= − 1

αkν

(

ũ

∆t
+ f k

)

.+∇2uk−1 (2.11)

The Poisson equation for the correction of the pseudo-pressure is solved,

∇2δp =
∇ · u∗
2αk∆t

, (2.12)

The pressure correction is conducted and the divergence-free velocity field is obtained.

pk = pk−1 + δp− αk∆t ν∇2δp (2.13)

uk = u∗ − 2αk∆t∇δp (2.14)

While the three-step Runge-Kutta scheme is of third order accuracy, the implicit Crank-
Nicolson scheme for the viscous terms is only of second order so that overall second order
convergence is obtained for the time integration scheme [219, 134, 282]. This order of conver-
gence is retained when considering the MHD extension as shown below. The Lorentz force,
and the electrodynamic quantities are computed based on the divergence free velocity field.
Using e.g. u∗ leads to significant errors as discussed in the student thesis of Koschichow
[142]. In contrast, the usage of u∗ as the basis for the forcing procedure in the IBM also
yields low errors in the inner boundary conditions for u after the pressure correction.
The spatial discretization of the electrodynamic equations is realized by second-order finite
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volumes on a staggered Cartesian grid analogous to the hydrodynamic equations [97, 134].
The discretized equations are given in Appendix A. A comparison of collocated versus stag-
gered MHD variable arrangement is provided in [94] where the authors also favor the stag-
gered variant for reasons of numerical stability. Figure 2.1 shows a schematic drawing of
a single control volume. The scalar quantities - pressure and electric potential - are saved
cell-centered, whereas vector quantities - velocity, current density, volume forces - are stored
on the faces of the cell. Only homogeneous magnetic fields are considered in this work. The
implementation in PRIME, however, was done in a more general way to allow for spatially
varying magnetic fields, as for instance used in [104]. Then the components of the magnetic
field are also saved on the faces of the cell. The staggered arrangement can also be inter-
preted as a shift of the control volumes for, e.g., the velocity components by half the width
of the cell in the respective coordinate direction. The pressure component in the momentum
balance is then already determined on the faces of this shifted control volume without the
need for additional interpolation.
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Figure 2.1 Staggered arrangement for hydrodynamic and electrodynamic variables.

The evaluation of the cross product terms to determine the current density (2.2) and the
Lorentz force (2.1) requires the interpolation of the respective values to the correct face posi-
tions on the staggered grid [94]. In the case of no externally applied current, the net current
in the computational domain has to vanish, i.e.

∫

j dV = 0. A non-conservative interpolation
leads to an error in this integral formulation and to a parasitic Lorentz force [145]. The used
interpolation scheme is based on the procedure developed in [195] and is outlined in Appendix
A. For the uniform and mildly stretched grids studied in this work, the present variable ar-
rangement and interpolation strategy provided good conservation properties. Very strong
clustering of grid points was not considered here, since also the implemented hypre-solvers
for the Poisson equation show degraded performance in this case (see [134]-Appendix B). In
the case of a cell-centered variable arrangement, a fully conservative scheme for the current
density on rectangular collocated grids is provided in [196], and the extension to arbitrary
collocated grids is given in [197]. Conservation properties of finite difference schemes on
non-uniform meshes are also discussed in detail in [184].



2.1 Physical and numerical model for MHD 15

2.1.3 Boundary conditions

Appropriate boundary conditions have to be stated for the solution of the MHD equations.
The treatment of the hydrodynamic boundary conditions and their implementation into the
code PRIME is discussed in [134] and not repeated in detail here. In PRIME, only cuboidal
computational domains are considered. Periodic boundary conditions, inlet and convective
outlet conditions, as well as no-slip and free-slip walls are considered for the Navier-Stokes
equations.
For the simulations with inflow and outflow conditions presented, e.g., in Section 3.4, an
additional correction of the outflow velocity profile was implemented to improve global mass
conservation. First, an already very good estimate for the outlet velocity, u0

out, is obtained
from the time integration of

∂uout

∂t
+ Uconv

∂uout

∂n
= 0 , (2.15)

where n denotes the direction normal to the boundary pointing outwards. For the convection
velocity, Uconv, usually a value similar to the reference velocity is chosen. Then an additional
mass flow correction is performed by scaling the outlet velocity profile,

uout =
ṁin

ṁout

u0
out , (2.16)

which is then prescribed as the Dirichlet boundary condition u|out = uout. Additional MPI
communication is necessary to obtain the global inlet and outlet mass fluxes, e.g. in x-
direction ṁout =

∫

out
ρfu

0
outdA.

The electrodynamic boundary conditions are realized in an analogous fashion. Periodic con-
ditions, insulating walls, as well as a prescribed current density are considered.

Periodic: To account for plane periodicity, the values for j and Φ are copied from the last
cell to the first cell in the respective direction. Periodic conditions are stated in the libraries
PETSC and hypre for the parallel data structure and the solvers.

Insulating walls: The boundary conditions for a non-conducting wall [152] are given by

jn = 0,
∂Φ

∂n
= 0. (2.17)

To allow for an accurate evaluation of the face-to-face interpolation discussed above at the
boundaries, an extrapolation of the non-normal current components to the ghost cells is
performed by Lagrangian polynomials [145] (see also Section 3.3).

Dirichlet condition: In order to study the impact of a prescribed external current, a
Dirichlet condition for the current can be set on the boundaries. Attention should then be
given to global charge conservation. The combined effect of a magnetic field and a prescribed
current creating a defined average Lorentz force was studied for instance in [104, 103], where
this Lorentz force was used to compensate gravity.

Zero gradient: As a special case of a Neumann condition, the zero gradient constraint
was implemented for the current density, ∂jn

∂n
= 0, i.e. the gradient normal to the boundary

vanishes.
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2.1.4 Parallelization

The parallelization of the MHD equations is based on domain decomposition using one ghost
cell in each direction with no additional corner ghost cells. The approach towards large scale
computations with the code PRIME is outlined in more detail in [134]. Parallel solvers are
incorporated from the library hypre [65]. The parallel data structure is provided by the
library PETSc [9] which is MPI based. A division of the cuboidal domain in again cuboidal
subdomains is conducted taking into account proper load balancing by PETSc. In addition
to the already fully parallel hydrodynamic solver in PRIME, two further MPI-vectors are
introduced storing the current density and electric potential fields. The correction of the
electric potential δΦ and correction of the pseudo-pressure δp use the same MPI-vector to
save memory.
Only the gradient of the electric potential enters the equations above. Thus the level of Φ
itself is not fixed. For reasons of boundedness and to reduce numerical errors, a reference
value Φref is needed. In the present studies, Φ is initialized in a reasonable way (e.g. all
zeros) and during the course of the simulation Φref is chosen as the value in the origin of the
laboratory coordinate system. In the rare case of expected substantial Φ-oscillations in the
origin, Φref is set to be the spatial average of Φ over the entire domain computed by global
MPI-routines.
Extensive speed-up and scale-up test were conducted for the PRIME code without magnetic
field. Excellent performance was measured for up to 16384 cores and problem sizes up to
1.4· 109 cells on the JUQUEEN machine in Jülich [296].
Table 2.1 provides information on the parallel performance in the case that the MHD equa-
tions need to be solved. Two different test cases are considered: The first one is the turbulent
MHD channel flow addressed in Section 2.4. When the same problem with Ncells = 16.8· 106
is computed on four times the number of processes, the computation time per time step is
reduced by a factor of 3.88 corresponding to 0.97 of the ideal speedup. The second test case
addresses the ascent of a single bubble in an aligned magnetic field of Chapter 5. Using
eight times the processes for eight times the computational cells yields a constant computa-
tion time per iteration and process. When the number of processes is doubled for the large
problem size, the wall-clock time per time step is reduced to half the time (0.98 of the ideal
speedup).

Table 2.1 Parallel performance of the MHD solver on two different machines at ZIH Dresden.
The problem size is denoted as Ncells, the number of processes as Nproc, and the computational
cost is given as the average wall-clock time per time step.

case Ncells Nproc wall-clock time
turbulent MHD channel flow 16.8· 106 32 8.85 s
(IBM iDataPlex dx360M2) 16.8· 106 128 2.28 s
single bubble ascent 16.8· 106 16 15.8 s
(SGI Altix) 134· 106 128 15.4 s

134· 106 256 7.85 s

In summary, the very good parallel performance of the code is retained when considering a
magnetic field. The additional CPU -time with magnetic field compared to the case without
magnetic field depends very much on the nature of the test case. For the two test cases
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examined here, the additional cost was only about 20%. It increased to about 60% for other
cases where the solution of the Poisson equation for the electric potential required more
iterations than that for the pressure.

2.2 Laminar wall-bounded MHD flows

2.2.1 MHD channel flow

In order to validate the implementation of the MHD equations outlined above, several rather
simple laminar test cases are conducted. The first case is the so-called Hartmann flow named
after the Danish physicist Julius Hartmann (1881-1951), who was the first to conduct exper-
iments with liquid metals in channels in 1937 [99, 100]. The configuration of the simulation
features the flow between two infinite parallel plates under the impact of a uniform magnetic
field. The simulations of the MHD channel flow are conducted for Hartmann numbers of
Ha = 0, 10 and 100, where the Hartmann number Ha = B Ly

√

σe/µf quantifies the influ-
ence of the electromagnetic forces compared to the viscous forces. A constant mass flux is
applied by adjusting the driving volume force fb in time, and the bulk Reynolds number is
chosen as Reb = 100 = ub 2H/ν, with H being the channel half-width. Periodic boundary
conditions are applied in streamwise direction, no-slip, insulating walls bound the flow in
y-direction. A free-slip condition is imposed for the velocity and a zero-gradient condition
for the current in spanwise direction.
The resulting one-dimensional problem is discretized in a domain of dimension Ly = 2H
with Ny = 128 cells, where an equidistant grid as well as a non-uniform grid are considered.
In the latter case, the grid is stretched according to a geometric series with a factor of 1.025
away from the walls to obtain a better resolution of the Hartmann layers in case of a wall-
normal magnetic field. The Hartmann layers are very thin boundary layers whose thickness
scales as Ha−1Ly [189]. The time-step size is adapted to yield CFL = 0.5.

First, the case B = By is considered, i.e. a wall-normal orientation of the uniform magnetic
field. This test serves primarily as a validation of the calculation of the Lorentz force and the
boundary conditions. The current has only one non-zero component which is a function of
the wall normal coordinate, i.e. jz(y). The current streamlines run in the positive z-direction
in the channel center, close at infinity and return in opposite direction in the Hartmann layers
close to the wall [145]. A mean spanwise electric field exists for this case, which is independent
of y. This electric field follows from

∫

j dV = 0 and is given by ez = −1/2By

∫

u dy [152].
Charge conservation is automatically fulfilled for this case and no Poisson equation for the
electric potential needs to be solved.
An analytical solution can be derived [43],

u(y) = u0

[

1− cosh(Ha (y −H)/H)

cosh(Ha)

]

, (2.18)

where the centerline velocity u0 and the bulk velocity ub are related by ub ≈ u0 (1− 1/Ha)
for Ha > 5 [15, 21].
Figure 2.2 shows the simulation results of the velocity profile u(y) for the different Hartmann
numbers. With increasing Ha, the velocity profile becomes flatter and the boundary layers
grow thinner. The right graph of Figure 2.2 displays a zoom into the near-wall region and a
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comparison to the analytical solution. The agreement is excellent.

Figure 2.2 Hartmann flow with B = By. Velocity profiles u(y) for Ha = 0, 10 and 100, as well
as comparison against analytical solution [43] for closeup into the near wall region (right).

Second, the case B = Bz is considered, i.e. a spanwise orientation of the uniform magnetic
field. This test serves as a validation of the solution of the Poisson equation for the electric
potential.
The velocity profile remains unchanged by the spanwise magnetic field compared to the
purely hydrodynamic parabolic profile. Using the hydrodynamic profile with dp/dx < 0
[260],

u(y) = −
L2
y

2µ

dp

dx

(

1− y

Ly

)

y

Ly

, (2.19)

and v = w = 0, the analytical solution for Φ(y) is derived from (2.2) and (2.3). The
analytical solution reads in the present case

Φ(y) = Bz

L2
y

2µ

dp

dx

(

y

2
− y2

3Ly

)

y

Ly

+ CΦ, (2.20)

with CΦ = const. A potential difference builds up between the two plates. The comparison
of the present simulation results with the analytical solution is shown in Figure 2.3a) and
very good agreement is found.

2.2.2 MHD duct flow

The MHD flow in an infinitely long duct with quadratic cross section is studied. In this case,
the gradient of the electric potential and the cross product of the velocity and the magnetic
field contribute to the current density field simultaneously. Two simulations of the laminar
flow are conducted, considering Ha = 10 and Ha = 100 for a fixed bulk Reynolds number
of Reb = 100. Information on the turbulent counterpart can, e.g., be found in [146]. The
general effects of the wall-normal, uniform magnetic field, B = By, are sketched in Figure
2.3b). The sketch is adopted from [189] and adapted to the present nomenclature. The
purely hydrodynamic profile consist of a symmetric parabola. It is altered by the Lorentz
force leading to a flatter core and differing shapes of the velocity profiles in y- and z-direction.
A current in the positive z-direction is induced in the channel center. Due to the presence of
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the insulating walls, the current stream lines have to close through the thin Hartmann layers
near the y-walls in negative z-direction. A potential difference builds up in the z-direction
and so-called side layers form at these wall. The thickness of the side layer scales with
Ha−1/2Lz whereas the Hartmann layer scales with Ha

−1Ly [189].

a) b)
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Figure 2.3 a) MHD channel flow with spanwise magnetic field. Comparison of magnetic potential
against analytical solution from (2.20). b) MHD duct flow. Configuration and principal effects
adopted from [189] and adapted to the present nomenclature.

For the simulation of the two-dimensional problem, a domain of extents Ly = Lz = 2H
is discretized with Ny = Nz = 128 cells. The numerical grid is stretched according to a
geometric series with a factor of 1.025 away from the insulating walls. All other parameters
are unchanged compared to the one-dimensional problems studied above.
The simulation results are gathered in Figure 2.4. The electromagnetic quantities are shown
by streamlines of the electric current density, j, and a contour of the magnetic potential,
Φ, for Ha = 100 in Figure 2.4a). An analytical solution for this problem in form of a
series expansion is available from [254]. Figure 2.4b) provides a comparison of the present
simulation against this analytical solution for both Hartmann numbers studied. The velocity
profiles u(y) at z = H and u(z) at y = H agree very well with the analytical data. An
illustration of the influence of the magnetic field on the two-dimensional velocity field u(y, z)
is shown in sub-figures c) and d) for Ha = 100 and Ha = 10, respectively. The plots give
an impression of the MHD-specific boundary layers and the asymmetry generated by the
homogeneous magnetic field.

2.3 Insulating disperse phase

In order to represent non-conducting embedded objects, the electric conductivity is made
phase-dependent. In case of an insulating disperse phase, the current stream lines are sup-
posed to circumvent the immersed non-conducting particles and the current cannot penetrate
the phase boundary. A phase indicator function α is introduced to distinguish the electric
conductivities of the different phases in a very similar fashion as, e.g., in standard front
capturing methods [307] like the volume of fluid method (VOF). Ohm’s law then reads

j = σe(α) (−∇Φ + u×B) , (2.21)
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a)
�

j

- j
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b)

c) Ha = 100 d) Ha = 10

Figure 2.4 MHD duct flow. a) Streamlines of the electric current density, j, and contour of
magnetic potential, Φ, for Ha = 100. b) Velocity profiles u(y) at z = H and u(z) at y = H for
Ha = 10 and Ha = 100 with comparison to analytical solution [254]. c) and d) Velocity field
u(y, z) for Ha = 100 and Ha = 10, respectively.

with

α =







0, continuous phase, e.g. liquid metal

1, disperse phase, e.g. gas bubble.
(2.22)

The phase indicator α ∈ [0, 1] is obtained from a second order accurate approach for the cal-
culation of the cut cell volumes using a signed-distance level-set representation of the phase
interface [136], which is also discussed in Section 3.2.3. In the present work, the disperse
phase is assumed to be perfectly insulating, i.e. its electric conductivity vanishes. The em-
ployment of electric boundary conditions on the bubble surface can be realized in the context
of a magnetohydrodynamic immersed boundary method [94]. With the latter approach, an
IBM correction is introduced to Ohm’s law in the vicinity of the non-conducting immersed
surface, S, to ensure jS = 0 [94]. In a very similar way, we here impose zero electric current
inside the entire bubble employing a phase-dependent conductivity, σe(α), with α = 1 inside
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the bubble and σe(α = 1) = 0 [102]. It follows directly from (2.21) that the current density
inside the insulating disperse phase is zero. An extension to the more general case of different
electric conductivities of the disperse and the continuous phase is not straight forward as the
artificial flow field inside the immersed object would also lead to a non-physical current field.
In the discrete representation of (2.21), the jump in the electric conductivity is smeared out
over one grid cell by the phase indicator function α. The implementation was stable for
all simulations presented below as well as in the computations presented in [101, 102, 104].
Only for very fine grids (dp/∆x & 100) and substantial magnetic interaction N & 1, local
fluctuations occurred directly at the interface. This is a known phenomenon in VOF-like
approaches known as spurious or parasitic currents [275]. Smoothing of the interface over
more cells and therefore relaxing the gradients at the phase boundary did again yield stable
convergence. This was realized by a single application of a smoothing filter with a stencil
width of three in all three directions, where the weight of the center cell was chosen as 0.4
and the six neighbor cells of the equidistant grid were weighted with 0.1 similar to the filter
in [240].
It should be noted that the representation of immersed insulators by σe(α) yields a certain
discrepancy concerning the wall-tangential current components in comparison to the formu-
lation of the boundary conditions for an insulating wall coinciding with a grid line of the
Cartesian grid (Section 2.1.3). Due to the isotropic electric conductivity all current com-
ponents are zero inside the immersed body and thus reduced in the cut cell volumes. Also
the face-to-face interpolation of the current components for the evaluation of the Lorentz
force makes use of values from inside the immersed body yielding some error. Nevertheless,
a phase-dependent electric conductivity based on a continuous phase indicator is a standard
approach when dealing with MHD multiphase flows resulting in good agreement with experi-
mental data as shown for instance by the VOF simulations in [107, 178]. Quantitative access
to the error in the electric current near the phase boundary in comparison to an analytical
solution is provided in the following sections.
The next paragraphs present several test cases for purpose of validation. They are summa-
rized in Table 2.2.

Table 2.2 Overview of test cases for the insulating disperse phase. The abbreviation BC stands
for boundary condition.

I Current flux around insulating sphere, comparison to potential flow theory
IIa MHD duct, single phase, Ha = 10, equidistant grid
IIb MHD duct, immersed insulating sphere with only electric BC
IIc MHD duct, moving, insulating sphere with electric and hydrodynamic BC

2.3.1 Electric current flux around an insulating sphere

The first test (case I in Table 2.2) is a purely electrodynamic one. The current flux around an
insulating sphere is studied and the results are compared to the analytical solution obtained
from potential flow theory. The primary aim is an estimate of the accuracy, stability and
order of convergence in the absence of a flow field and in the case of electrodynamic immersed
boundaries.
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An insulating sphere of diameter dp is placed in the center of a cubical domain of size L =
(12.8, 12.8, 12.8) dp. Two equidistant grids are considered with a resolution of dp/∆x = 10
and dp/∆x = 20, respectively. Dirichlet boundary conditions (BC) are applied for the electric
current with the far field assumption j = (j0, 0, 0) on all outer boundaries. The Neumann
condition ∂Φ/∂n = 0 is set for the electric potential on all outer boundaries. The flow
solver is switched off, i.e. only the MHD equations are considered to determine the resulting
current field and the magnetic potential.
An analytical solution can be derived from potential flow theory by the superposition of a
three-dimensional dipole and a constant current j0 in x-direction [153],

j = j0ex +
j0d

3
p

16

(

1

r3
ex − 3

ex · r
r5

r

)

, (2.23)

where the vector pointing from the center of the sphere xp to the point considered is de-
noted by r and its absolute value is r. Note that the analytical solution is unbounded in
the center of the sphere. The comparison and the error analysis are therefore restricted
to points with r ≥ dp/2. We receive the following one-dimensional profiles of the x-
component of the electric current for straights intersecting the center of the sphere. Along
x, equation (2.23) yields jx(x, yp, zp) = j0

[

1− d3p/ (8|x− xp|3)
]

, and along y one gets

jx(xp, y, zp) = j0
[

1 + d3p/ (16|y − yp|3)
]

.
The comparison of the simulation results against the analytical solution is shown in Figure
2.5 for the two spatial resolutions studied, and very good agreement is found.

a) b)

Figure 2.5 Insulating sphere in cross current. Profiles of jx(x) (b) and jx(y) (b) plotted along
lines through the center of the sphere for the two spatial resolutions dp/∆x = 10 and dp/∆x = 20,
and comparison against the analytical solution (2.23) [153].

The maximum current obtained from (2.23) is given by jx,max = jx(xp, yp±dp/2, zp) = 3/2j0,
in contrast to the flow around cylinder where it is jx,max = 2j0. The two spatial resolutions
considered yield maximum currents near the sphere of jx,max = 1.351j0 for dp/∆x = 10
and jx,max = 1.463j0 for dp/∆x = 20. Note that the staggered grid points do not coincide
necessarily with the sphere surface. For this test case, the maximum errors occur in the direct
vicinity of the sphere. This is to be expected because cut cells of mixed electric conductivity
exist at the phase boundary. The current within the sphere is zero. Overall low absolute
errors in the current field are observed and a good resolution of the steep gradients in the
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current field is obtained. Also the tangential current components agree very well with the
analytical reference even very close to the sphere. Table 2.6 summarizes the error analysis.
Second order convergence in the RMS absolute error compared to the analytical solution is
obtained, where the errors were computed from the profile jx(x, yp, zp).

a)

Case dp/∆x Error Order

I 10 4.14· 10−3
20 1.19· 10−3 1.9

IIa 12.8 4.03· 10−2
25.6 1.01· 10−2 2.0
51.2 — ref.

IIb 12.8 3.93· 10−2
25.6 9.47· 10−3 2.1
51.2 — ref.

IIc 12.8 6.54· 10−2
25.6 1.88· 10−2 1.8
51.2 — ref.

b)

Figure 2.6 Insulating disperse phase. a) Error analysis and convergence study. b) Case IIc -
MHD duct flow with immersed, moving, insulating sphere. Displayed are an instantaneous contour
of the velocity u, streamlines of the electric current and a surface mesh on the sphere showing a
subset of the Lagrangian discretization.

2.3.2 MHD duct flow with an immersed insulating sphere

The second test (case II in Table 2.2) deals with the previously introduced MHD duct flow,
but with an additional immersed insulating sphere. The goal is to test the accuracy and the
convergence of the method with electric and hydrodynamic immersed boundary conditions
under the influence of a wall normal magnetic field. The non-dimensional numbers governing
the single phase test case are Reb = 100 and Ha = 10 as also studied above. Again, the
domain is bounded by insulating walls in y- and z-direction and the uniform magnetic field
acts in y-direction. The test case is subdivided in three variants a, b, c and three grids
are considered as summarized in Table 2.6. The respective time-step size is chosen to yield
CFL = 0.5.
Variant IIa is the standard single phase MHD duct flow as above, but on an equidistant grid
and with a longer extent of the domain in x-direction. The case is repeated to control the
setup and to double-check the order of convergence for the single phase MHD. Additionally,
different error formulations are tested using both the analytical solution and the solution on
the finest grid, as well as different error measures which will be discussed below.
For variants IIb and IIc, an insulating sphere of dp/L = 0.4 is placed in the center of the
cubical domain of extent L = 1. In the case IIb, only the electrodynamic immersed boundary
conditions are considered. The sphere is embedded with σe = 0, but no hydrodynamic BC
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are considered at the phase boundary, i.e. there is no forcing of a no-slip condition at the
interface.
In the case IIc, both electric BC and a no-slip condition at the interface are considered.
Furthermore, the sphere is constantly rotating and linearly oscillating with ωp,z = 1 and
up = 0.2ub sin(2πt) where ub = 1. A qualitative impression of the test case is given in Figure
2.6. The surface mesh on the sphere shows a subset of the Lagrangian discretization. The
plot shows an instantaneous contour of the streamwise velocity u which is forced to a no-slip
condition on the moving sphere. The streamlines of the electric current, which are parallel
to the z-axis in the single phase case in the channel center (see Figure 2.4a), are distorted
to go around the insulator.
When refining the spatial resolution of the staggered grid, the positions of the gridpoints do
not coincide. Therefore, the calculation of a numerical error is not trivial and contains an
additional interpolation step. Different interpolation strategies and their influence on the
determination of the order of convergence were considered in the student thesis of Noack
[199]. In the present case, the interpolation of the coarse grid solution to the points on the
reference grid is performed accurately using either the regularized delta function (Section
3.3.4), or the Moving Least Squares (MLS) framework with quadratic basis functions (Ap-
pendix K). Both interpolations give basically the same results and both are accurate enough
to not distort the results of the convergence study. For case IIa and IIb, the RMS absolute
error of the velocity component u was obtained in a plane x = const. which intersects the
sphere very close to the center and which coincides with a x-position of the Cartesian refer-
ence grid. For case IIc, this plane was kept constant in time while the sphere moved and an
additional time-averaging was performed over 50 periods of the oscillation.
Initially, a simulation with a spatial resolution of dp/∆x = 102.4 had been planned as the
reference solution. However, the very steep gradient at the interface led to poor convergence
due to local fluctuations in the current and the magnetic potential, the reason for which
was addressed above. The fluctuations are damped if the smoothing filter is applied. The
solution is then not longer valid as a reference and the results on the dp/∆x = 51.2 were
used instead. The results for the numerical error and the order of convergence are summa-
rized in Table 2.6. Second order convergence is obtained for test cases IIa and IIb. The
original convergence behavior of the flow solver is thus retained when the MHD equations
with phase-dependent electric conductivity are considered. A minor reduction of the con-
vergence order is observed when applying the hydrodynamic IBM [136], where a value of 1.8
is computed for the present configuration.

2.3.3 Pseudo compressibility concept

In this paragraph, an alternative way of solving numerically the governing equations for the
electric current and the electric potential is described, which can be especially beneficial
when dealing with an insulating disperse phase.
A major difficulty for the solution of the incompressible Navier-Stokes equations is the ab-
sence of an independent equation for the pressure. Only the pressure gradient contributes
to the momentum equation and the pressure is not present in the continuity equation. Usu-
ally, a combination of the latter equations, leading to a Poisson equation for the pressure
(or a similar quantity), is solved to build up a pressure field and to satisfy the continuity
constraint for the velocity at the same time. A different approach is the coupling of velocity
and pressure by means of a pseudo or ’artificial compressibility’ [35, 201].
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This strategy is adopted here for the coupling of the electric current and the electric poten-
tial. A weak compressibility, i.e. a temporal change in charge density, is introduced to the
charge conservation equation 2.3. The coupled system then reads

0 = ∇ · j+ 1

β

∂Φ

∂τ
(2.24)

j = σe(α) (−∇Φ + u×B) .

An iterative solution of (2.24) can now be obtained using a standard time integration scheme
in pseudo time τ for each Runge-Kutta sub-step of physical time t.
The values for β and τ have to be configured. They determine the convergence speed and the
stability of the method. The corresponding values for the hydrodynamic artificial compress-
ibility are related to the speed of sound [201]. For the electrodynamic case, the expression
βτσe/∆x

2 . 1 might be used as a first orientation.
The approach was tested for all problems presented in this chapter. Good convergence and
identical results compared to the approach employing a Poisson solver could be obtained for
all steady state test cases presented above, i.e. MHD channel flow, MHD duct flow, sta-
tionary insulating sphere cases. Also, good performance concerning the residual divergence
of the current density per time step, as well as the computing time per time step could
be achieved for smooth temporal and spatial changes in the current and electric potential.
For example, the motion and ascent of insulating, spheroidal particles at moderate particle
Reynolds number was re-simulated using the ’artificial compressibility’ solver and showed
very good agreement with the results presented in [245]. For some test cases, even less
computing time per time step could be achieved than with the Poisson solver at a similar
residual divergence of the current density.
To access the accuracy and the computational performance of the method, the simulation
of an insulating sphere in MHD duct flow is presented, corresponding basically to the case
IIc above, but for a fixed sphere. All parameters are kept unchanged to the simulations IIc
discussed above, except that the sphere is not moving. A spatial resolution of dp/∆x = 51.2
and and a time step corresponding to CFL = 0.5 are chosen.
The simulations were run in parallel which is a prerequisite in scientific computing. There-
fore also the ’artificial compressibility’ solver was parallelized based on domain decomposition
and MPI. The ’artificial compressibility’ solver is here denoted as Φ-Loop and was run with
β∆τ/∆t = 2· 10−2. The number of iterations in the pseudo-time loop is indicated with nτ .
For the solution of the Poisson equation, a BiCGStab solver (Biconjugate Gradients sta-
bilized Method) with a PFMG pre-conditioner (Parallel Semicoarsening Multigrid Solver)
was implemented from the hypre library [65] (additional solver parameters are a tolerance
of 5· 10−2 and a maximum number of iterations of 5).
The simulation is conducted for five flow through times of the very small domain starting
from an initialization of the flow field with u = (ub, 0, 0) and all electromagnetic quantities
being zero. During the course of the simulation towards a steady state solution, the RMS
value of the residual divergence of the electric current density is monitored over time. The
results are shown in Figure 2.7. Four different runs are considered: A solution obtained with
the Poisson solver, two simulations with the ’artificial compressibility’ solver for different
numbers of iterations, nτ , and a combination of Φ-Loops and Poisson solver. The compu-
tational costs are given as the average CPU -time per time step in the table of Figure 2.7.
All solvers reduce the divergence of the current density over several orders of magnitude
from the initial state towards the final solution. Interestingly, the Poisson solver leaves a
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larger divergence during the very initial period of time. Afterwards, the Poisson solver and
the Φ-Loop with nτ = 100 yield about the same negative slope in div(j)RMS(t), whereas
the Φ-Loop is substantially more computationally expensive. A lower number of nτ = 20,
resulting in similar computation time, gives a flatter slope during the initial transient at
higher div(j)RMS(t). The slope then becomes steeper at later stages when div(j)RMS(t) is
low. A combination of Φ-Loop and Poisson solver results in the lowest residual divergence
at all times with only a moderate increase in computation time. Less Poisson iterations are
necessary in the combined mode.

a)

case wall-clock time

Poisson solver 2.52 s
Φ-Loop, nτ = 20 2.26 s
Φ-Loop, nτ = 100 7.45 s
combined, nτ = 10 2.75 s

b)

Figure 2.7 Comparison of the performance of the Poisson solver and the ’artificial compressibility’
solver here denoted as Φ-Loop. a) Computational costs given as average wall-clock time per time
step. b) Temporal evolution of RMS residual divergence of the current density field.

Even though the first results for the ’artificial compressibility’ solver look quite promising
and the method has a few advantages, e.g. clear implementation (no additional libraries),
the approach in the present implementation shows inferior performance for turbulent MHD
channel flows (Section 2.4). The results do not converge against the reference solution at a
maintainable computational effort. This could probably be improved by investing more work
into the implementation. For instance, multi-grid approaches could be considered, leading to
a faster reduction of the error for long wave lengths and speeding up convergence. Currently,
the ’artificial compressibility’ is used as an optional pre-conditioner for the MHD-Poisson
solver applying only a few Φ-loops. Another important feature is that the pseudo-time loop
might be an attractive gain when working on an improved treatment of immersed MHD
boundary conditions. In such an MHD-IBM, iterative controller-like correction terms could
be introduced similar to the IBM for the velocity.
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2.4 Turbulent MHD channel flow

2.4.1 Introduction and problem definition

The objectives of this section are the validation of the solver for the magnetohydrodynamic
(MHD) equations and further the study of fundamental effects of a magnetic field on a wall-
bounded turbulent flow. These comprise Joule damping, turbulence anisotropy and MHD
specific boundary layers [139] and are of significant importance for many metallurgical ap-
plications [42], such as continuous casting of steel and aluminum or the stirring of melts.
Turbulent MHD channel flow between infinite, insulating walls is governed by two parame-
ters. The first is the bulk Reynolds number, Reb = ubH/ν, where H is half of the channel
height, Ly. The bulk or average velocity in streamwise direction is denoted by ub and ν
is the kinematic viscosity. The second parameter characterizes the relative strength of the
magnetic field and is either the Hartmann number, Ha = BH

√

σe/(ρfν) =
√
N Reb, or the

magnetic interaction parameter, N . Herein, B is the applied magnetic field, σe the electric
conductivity and ρf the fluid density.
MHD effects are studied within the quasi-static approximation [15, 143, 147], i.e. an applied,
stationary magnetic field is considered and the induced magnetic fields are negligible at low
magnetic Reynolds number. A validation against the full MHD equations is given in [152]
for turbulent MHD channel flow with streamwise, spanwise and wall-normal magnetic field,
respectively. In general, the quasi-static approximation is valid for basically all technological
and laboratory MHD flows. In contrast, high magnetic Reynolds numbers occur in astro-
physics, plasma research or geodynamo experiments.
Substantial effort has been put in the simulation of MHD turbulent channel flows, especially
by the fluid dynamics group from TU Ilmenau, Germany [15, 52, 147]. Depending on the
direction of the magnetic field different MHD effects are encountered.
A wall-normal field leads to the formation of Hartmann boundary layers and to possibly
quasi-two-dimensional turbulence for increasing field strengths [139]. The Hartmann flow is
an eminently interesting configuration concerning the concept of an electromagnetic brake,
as the bulk flow is directly affected by the Lorentz force. The stability of Hartmann layers
and the transition to turbulence was studied in [144]. A systematic, numerical study of the
turbulent Hartmann flow for Reb ∈ (4050, 21600) and Ha ∈ (10, 30) was conducted in [15]
by means of direct numerical simulation with a spectral method. The mean velocity profile
develops a characteristic three-layer structure at high Ha comprising a viscous near wall re-
gion, a logarithmic layer, and a plateau-like region in the center of the channel. Furthermore
with increasing Ha, the wall shear stress increases, the Hartmann layers become thinner, tur-
bulent structures of shrinking size are confined near the walls and the turbulent fluctuations
are reduced [15, 145]. The damping effect is more pronounced in the Hartmann configuration
than for other orientations of the homogeneous magnetic field [145, 152]. Results obtained
with the code PRIME for the Hartmann flow, not shown here, agree well with the results
from [15] at moderate Ha. The observations from these simulations back the conclusions by
Krasnov et al. [145]: The simulation of turbulent Hartmann flow is computationally very
challenging due to very thin Hartmann layers at the wall which require substantial local grid
refinement and highly accurate numerical methods. Otherwise, underprediction of especially
wall-normal fluctuations and earlier relaminarization are to be expected [239, 145, 140].
Growth and suppression of turbulence affected by a streamwise magnetic field was studied
in [52] with special emphasis on relaminarization.
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Ha = 0: Ha = 30:

�
�=

B

Figure 2.8 Instantaneous flow field u in a plane x = const without magnetic field (Ha = 0) and
with spanwise magnetic field (Ha = 30).

The present study focuses on turbulent channel flow with a homogeneous, spanwise magnetic
field. For the laminar flow, the parabolic velocity profile remains unchanged under the impact
of the spanwise magnetic field as no Lorentz force is generated by the mean flow. In the
turbulent case, the modification of the flow is therefore realized only via the influence of
the magnetic field on the velocity fluctuations. The transition to turbulence was studied
for channel flow with spanwise magnetic field in [143]. The turbulent flow was investigated
in detail for Reb = 6667 and 13333 with Ha ∈ (0, 40) in [147], where also the application
of LES methods was analyzed. Furthermore, the influence of the numerical approach on
the predictions in MHD channel flow was studied in [145] comparing the results obtained
with a highly accurate spectral method to two finite difference based methods. One case
from this study serves as a reference here to validate the present MHD implementation. The
turbulent channel flow with a bulk Reynolds number of Reb = 6667 is investigated. Results
for the purely hydrodynamic case, Ha = 0, are compared to those from a simulation with an
additional uniform spanwise magnetic field with Ha = 30. The snapshots of Figure 2.8 give
an impression of the flow by means of the instantaneous flow field u in a plane x = const.
The computational domain of extent L = (2π, 2, π)H is discretized with a resolution of
N = (256, 256, 256), where the grid is stretched in the wall-normal direction (y) according
to a tangens-hyperbolicus clustering as described in [145]. Equidistant grid spacing is used
in streamwise (x) and spanwise direction (z), respectively. Box size and discretization are
thus equivalent to those in [145]. The numerical time step is adapted to give CFL = 1.0.
Periodic boundary conditions are employed in streamwise and spanwise direction and no-slip,
non-conducting walls bound the flow in the y-direction. The flow is driven by a spatially
constant volume force fb,x which is adjusted in time to yield the prescribed bulk velocity.

2.4.2 Results for a spanwise magnetic field

The applied spanwise magnetic field leads to a suppression of turbulent fluctuations and
thus to reduced wall-normal momentum transfer. Consequently, a decrease in wall shear is
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observed. The velocity in the channel center increases to yield the specified bulk velocity. The
turbulence appears to be confined near the walls, and the velocity profile reassumes a laminar-
like shape while remaining in a fully turbulent state (Figure 2.8). Table 2.3 lists the friction
Reynolds number, Reτ , as an integral measure of wall shear and the average streamwise
velocity at y = H. An average will be indicated by angled brackets, 〈. 〉, throughout this
thesis. The present results are compared to respective reference data from Krasnov et al.
[143, 145], obtained with a spectral method and additionally for the spanwise case by a
finite difference method with upwind-biased high-order discretization of the non-linear terms.
Excellent agreement is found with and without magnetic field.

Ha = 0 Reτ 〈u(y = H)〉/ub
present 379.45 1.1527
spectral method [143] 381.34 1.1469
Ha = 30
present 305.34 1.2586
spectral method [145] 306.69 1.2542
finite difference - upw [145] 304.43 1.2630

Table 2.3 Comparison of simulation data for Ha = 0 and Ha = 30 at Reb = 6667 by friction
Reynolds number, Reτ , and average streamwise velocity on the channel center line, 〈u(y = H)〉/ub,
against data from Krasnov et al. [147, 145]. The reference data with spanwise field was obtained
by two different numerical approaches, i.e. a spectral method and upw indicating finite differences
with upwind-biased high-order discretization of the non-linear terms.

Figure 2.9 provides the mean velocity profile and statistics for selected turbulent fluctuations
in inner and outer scaling. The plots in outer scaling also present the reference data from
[145] for the case with spanwise magnetic field and excellent agreement is found for all
quantities. The semi-logarithmic plot of the mean streamwise velocity u+(y+) shows the
typical structure of a turbulent boundary layer for the hydrodynamic case, consisting of the
viscous sublayer, the buffer layer, the logarithmic layer and the wake region. The numerical
grid resolves the near wall region very well with y+1 ≈ 0.2. In the presence of the spanwise
field, the viscous sublayer and the lower buffer layer remain basically unaltered. Viscous
stresses dominate in this region over turbulent stresses and the spanwise field only modifies
the turbulent fluctuations. The velocity in the channel center is substantially higher than
in the hydrodynamic case. In between, there is a log-layer-like region which, however, does
not have a fully constant slope [147]. The effect of the magnetic field on the turbulent
fluctuations is best judged from the plots in outer scaling as ub is the same for both cases.
The spanwise magnetic field leads to substantial suppression of turbulent fluctuations over
the entire height of the channel, where the level of suppression is largest for the wall-normal
fluctuations. The general shape of the profiles remains unaltered under the influence of the
magnetic field. Maxima exist near the wall and the fluctuations decrease towards the channel
center. The location of the maxima does not change significantly when a magnetic field is
present. However, simple linear scaling does not yield a collapse of the profiles for Ha = 0
and Ha = 30. As for the hydrodynamic case, the streamwise fluctuations have the largest
magnitude followed by their spanwise counterpart, and the wall-normal fluctuations.
For the hydrodynamic case, the plots in inner scaling show a comparison at similar Reτ

to the spectral DNS of [185] and results obtained by a second-order finite volume code
[132, 1]. Very good agreement is found also for the purely hydrodynamic case. Instantaneous
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Figure 2.9 Mean velocity profile and turbulent fluctuations for turbulent MHD channel flow.
Comparison of the simulation with spanwise magnetic field to the purely hydrodynamic case, and
validation against numerical data of [185, 132, 1, 145]. The plots in the left column are in inner
scaling, whereas those in the right column are in outer scaling.
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contour plots of the normalized turbulent kinetic energy (TKE), 1/2 (u′iu
′
i) /u

2
b , are shown

in Figure 2.10 in the plane y = 0.05H, which represents approximately the location of the
maxima of the streamwise velocity fluctuations being the dominating contribution to the
TKE. Streamwise streaks are observed for both cases, with and without magnetic field.
These coherent structures grow substantially in size under the impact of the field and have
a lower magnitude. Further, the streaks are less perturbed in spanwise direction and the
spacing between them increases [147, 152].

Ha = 0: Ha = 30:

Figure 2.10 Instantaneous flow field by contour of turbulent kinetic energy, 1/2 (u′iu
′
i) /u

2
b , in

the plane y = 0.05H.

Energy spectra were obtained for the specified plane, y = 0.05, to further assess the influence
of the spanwise magnetic field. One- and two-dimensional spectra of the streamwise velocity
component, u, will be reported. The averaging procedure for these spectra was conducted
for 500 convective time units also utilizing the symmetric data at y = 1.95H.
Figure 2.11 provides one-dimensional spectra, Euu, as functions of wave number kx and
kz with and without magnetic field. The spectra span over at least four orders of magni-
tude and do not show any notable cut-off effects at the highest wave-numbers and smallest
scales, respectively. In streamwise direction, Euu decreases monotonously for all wavenum-
bers, whereas Euu increases slightly at small wavenumbers, kz . 10, in spanwise direction
and then decays. The maxima in Euu are very similar with and without magnetic field for
both directions. The spanwise magnetic field introduces an additional dissipation related
to the Lorentz force [29] yielding a steeper slope in the falling part of the spectrum. Con-
sequently, less energy is contained in the smallest scales when a magnetic field is present.
The spread in Euu between the hydrodynamic case and the one with magnetic field starts
at higher wavenumbers for kz compared to kx. The damping effect of a uniform magnetic
field is non-isotropic and therefore leads to anisotropy of turbulence [139]. When studying
anisotropy one has to distinguish between anisotropy of velocity components and anisotropy
of dimensionality, i.e. imparity of characteristic length scales with direction [147]. One- and
multi-dimensional spectra provide a useful tool to study anisotropy caused by Lorentz force
effects, for instance in homogeneous turbulence [29, 293]. Energy spectra from experiments
of MHD duct flow are provided in [57]
Here, anisotropy of dimensionality is addressed by two-dimensional spectra of the streamwise
velocity, E2D

uu = 〈qu (kx, kz, y) q∗u (kx, kz, y)〉. Herein, qu denotes the Fourier coefficient of u in
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Figure 2.11 One-dimensional spectra, Euu, as functions of wavenumber kx and kz with and
without magnetic field in the plane y = 0.05H.

Figure 2.12 Pre-multiplied two-dimensional spectra, kxkzE
2D
uu , normalized with respective max-

imum as functions of wave lengths λ+
x and λ+

z at y = 0.05H, with magnetic field (filled contours in
grayscale) and without magnetic field (red lines).



2.4 Turbulent MHD channel flow 33

a two-dimensional Fast Fourier Transformation and q∗u its conjugate complex. Pre-multiplied
two-dimensional spectra, kxkzE

2D
uu , are displayed in Figure 2.12 at y = 0.05H for the two

cases with and without magnetic field. The energy spectra are normalized with the respective
maximum and plotted as a function of the two wave lengths, λx = 2π/kx and λz = 2π/kz,
in inner scaling, i.e. normalized with the respective viscous length scale. The procedure of
obtaining and evaluating E2D

uu is also described in [47]. In this reference, anisotropic scales
are compared for purely hydrodynamic turbulent channel flow at Reτ = 180 and Reτ = 550.
The study was later extended up to Reτ = 2003 [48, 49, 115]. Mean shear in turbulent chan-
nel flow causes anisotropy and wall-normal non-uniformity. Here, we only address spectra
obtained near the wall at y = 0.05H. First, conclusions for purely hydrodynamic channel
flow are summarized. With increasing Reτ , smaller and more isotropic scales are found,
i.e. the iso-lines in the 2D-spectrum become rounder and the logarithmic slope of the u-
spectrum becomes steeper and shifts towards the line of two-dimensional isotropy with slope
one, λ+x ∼ (λ+z )

1
. Furthermore, the maximum in the two-dimensional plot shifts towards

smaller wave lengths. Or in other words, a reduction in Reτ yields larger, streaky structures,
stretched in x indicated by energy maxima at higher wave lengths and lower logarithmic
slope.
Two different effects have to be distinguished in the presence of a magnetic field in turbulent
channel flow. On the one hand, the spanwise magnetic field yields a decrease of the mean
shear which will affect anisotropy in a similar way as discussed above. On the other hand,
Joule damping due to the magnetic field acts with a preferential direction also leading to
anisotropy as in homogeneous turbulence, i.e. without mean shear. Near the wall, the effect
of mean shear dominates as derived in [147]. With a spanwise magnetic field, the reduction of
Reτ yields larger structures characterized by a shift of of the maximum towards larger wave
lengths in the two-dimensional u-spectrum of Figure 2.12. However, a steeper logarithmic
slope is found for most wave lengths compared to Ha = 0 indicating a relative stretching of
structures in z, i.e. a stretching along the direction of the magnetic field. An exception are
structures with large λ+x and small to moderate λ+z . In the purely hydrodynamic case, the
sole decrease of Reτ leads to a decrease in slope [47]. Note that the spectra are cut off at
large wave lengths, especially for λ+x . This means that very large structures cannot be fully
represented by the present size of the computational domain [47]. Here, the box size was
chosen according to the reference of [145] to obtain a one-to-one comparison with this data
as the primary objective of this study.

2.4.3 Summary for turbulent MHD channel flow

Magnetohydrodynamic turbulent channel flow was studied comparing the purely hydrody-
namic case to the flow with an additional uniform, spanwise magnetic field. Excellent agree-
ment was found for the mean flow and the turbulent fluctuations with the respective refer-
ence data for both cases. Turbulent statistics, visualizations of the flow, as well as one- and
two-dimensional spectra were utilized to illustrate the effects of the magnetic field. These
comprise a substantial reduction of turbulent fluctuations yielding reduced wall-normal mo-
mentum transfer and therefore reduced wall shear. The velocity in the center of the channel
rises compared to the hydrodynamic case. Coherent structures grow in size in both hori-
zontal directions predominantly due to the decrease in Reτ . The two-dimensional spectra
indicate a stretching of structures in the direction of the magnetic field at most wave lengths.
Future research should also put the focus on the wall-normal non-uniformity and large scale
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turbulence in the channel center affected the most by the Lorentz force. The size of the com-
putational domain of the present study is to small for this purpose. The search for analogies
between the effects of a magnetic field and other mechanisms that produce a similar impact
should be intensified as started in [147]. For instance, the suppression of turbulent fluctua-
tions in turbulent channel flow with stable density stratification has been studied at various
Reτ in very large computational domains with respect to relaminarization [80].
A further key aspect is the development and improvement of subgrid models for LES, as well
as RANS closures [147, 139, 291] taking into account the effects of MHD turbulence.

2.5 Concluding remarks for MHD

The field of magnetohydrodynamics is of growing interest in a large variety of applications
covering traditional industries as metallurgy and reaching to modern energy concepts like
nuclear fusion reactors. The PRIME code was extended by a very efficient and fully parallel
solver to obtain the electric potential and the current density in the low magnetic Reynolds
number approximation. A Lorentz force term is introduced into the Navier-Stokes equa-
tion representing the influence of the magnetic field on the flow. The implementation was
validated for laminar MHD channel and duct flows showing excellent agreement with the
analytical solutions. Also the simulation results for the turbulent MHD channel flow with
a spanwise magnetic field are in very good agreement with the reference data for both, the
mean profile and the turbulent statistics. One- and two-dimensional spectra were used to
illustrate the influence of the magnetic field on the flow structures compared to the purely
hydrodynamic case, accessing the magnetic damping and the introduction of additional
anisotropy.
An insulating disperse phase is represented based on a phase-indicator function and a respec-
tive phase-dependent electric conductivity. Sound validation was achieved by comparison
with the analytical solution for the electric current around an insulating sphere. For the
parallel, multiphase MHD implementation, the computational performance and the order
of convergence are retained compared to the purely hydrodynamic method. An alternative
solution of the coupled electrodynamic equations based on a pseudo compressibility concept
for the electric potential was briefly sketched showing good results for all laminar test cases,
but inferior accuracy for the turbulent MHD channel flow. The concept might be beneficial
in the future for an improved MHD-IBM, but for the moment it is only kept as an optional
pre-conditioner providing some surplus in performance for the solution of the MHD equa-
tions.
Summarizing, a proper basis was provided for the study of magnetohydrodynamic, single
phase flows, as well as MHD flows with an insulating disperse phase such as bubbles.



3 Evolution of the Immersed Bound-

ary Method

This chapter discusses the evolution of the IBM aiming for a wider range of applicability.
The necessary extension with respect to the representation of the immersed object, the
IBM forcing procedure and the parallel data structure are outlined in Section 3.1, followed
by applications of the modified method to the flow around a complex immersed body and
the flow over periodic hills. The method is further extended to account for the orientation
and motion of non-spherical particles and for very light particles in Section 3.2 and Section
3.3, respectively. The flow around spheroidal particles is examined in Section 3.4 and the
physical mechanisms are discussed that lead to path oscillations of these particles. At last
the influence of a magnetic field on the flow around the spheroidal, insulating objects is
studied.

3.1 Distribution of forcing points for more general ge-

ometries

3.1.1 Surface grid

The original IBM [136] requires an equidistant Eulerian grid of grid spacing, h, as well as an
equidistant distribution of Lagrangian markers on the surface of the sphere. Furthermore,
the number of Lagrangian forcing points, NL is pre-specified by the requirement that each
forcing point controls an associated volume, ∆VL, which is equivalent to a finite volume of
the Eulerian grid, ∆VE, and hence ∆VL ≈ ∆VE = h3 [282]. Already the even distribution
of points on the rather simple geometry of a sphere is a non-trivial task. The usage of
spherical coordinates leads to the agglomeration of points near the poles and a less dense
distribution near the equator. The EQ sphere partitioning toolbox [157] employs a recursive
algorithm to create zones of equal area on the unit sphere. With this tool, a database of
forcing point distributions for the sphere with various NL was built for the usage within the
IBM in PRIME.
For particles with a more complex shape, e.g. ellipsoids, and generic immersed bodies, a
procedure had to be established first which provides a suitable forcing point distribution. In
most cases, a triangular surface mesh is created employing the commercial grid generator
GAMBIT from the ANSYS FLUENT package. Either an advancing-front algorithm or
Delaunay triangulation with subsequent mesh adaptation towards an even distribution are
used [284]. Figure 3.1a) shows an example for a triangular surface mesh and the respective
forcing point distribution obtained for a prolate ellipsoid. The Lagrangian markers are
located at the corners of the triangles.
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a) b)

Figure 3.1 Forcing point distribution on the surface for particles of general shape. a) Surface
mesh and NL = 1109 forcing points on a prolate ellipsoid. b) Histogram of relative error in distance,
a, between forcing points with respect to an equidistant distribution approximated by the average
distance, aave.

The surface mesh is imported into PRIME utilizing the GAMBIT neutral file format. The
mesh file contains in the present case, i.a., the number of forcing points, NL, the number of
triangular surface elements, Ntri, as header information, and further a list of the unscaled
forcing point coordinates with respect to the particle center, xfp − xp, as well as a list of
the three forcing points, (fp1, fp2, fp3), forming each individual surface element, i.e. the
connectivity. A schematic mesh file is given in Table 3.1.

Table 3.1 Schematic surface mesh file for forcing point distribution.

Header
NL = . . . Ntri = . . .

l = 1 x
(l)
fp − xp y

(l)
fp − yp z

(l)
fp − zp

... . . .
NL . . .

n = 1 l
(n)
fp1 l

(n)
fp2 l

(n)
fp3

... . . .
Ntri . . .

Again, a large database of mesh files is created containing mostly oblate and prolate ellip-
soids of different aspect ratios for various NL. Here, xp corresponds to the center of mass and
is equal to zero in the mesh file, while the small semi-axis is oriented in the y-direction and
is chosen as unity. Other geometries comprise cubes and bricks, pipes or closed, finite-height
cylinders, conical nozzles, a car model etc.
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3.1.2 Forcing point volume

The distribution of forcing points on the surface is not equidistant. Figure 3.1b) gives an
estimate of the deviation from an even distribution for a prolate ellipsoid.
Consequently, the spreading of forces in the original IBM needs to be revised to account for
the uneven distribution of forcing points and to conserve momentum in the transfer between
Lagrangian and Eulerian grid. In the spreading step, the force f

(l)
fp , which is computed at

the Lagrangian point x
(l)
fp, is distributed to the underlying Eulerian grid locations, x (i,j,k),

yielding the volume force f (i,j,k). The regularized delta function, δh, which is given in Section
3.3.4, provides a smooth transfer and has a stencil width of three Eulerian grid points in
each direction [225]. For a single particle, the spreading reads

f (i,j,k) =

NL
∑

l=1

f
(l)
fp δh(x

(i,j,k) − x
(l)
fp)∆V

(l)
L . (3.1)

The revision is done by actually computing the associated volume, ∆V
(l)
L , for each Lagrangian

forcing point, l, from the given point distribution instead of using the identity ∆V
(l)
L = h3.

Equality of the total force (and analogously torque) is then again achieved in the Lagrangian
and Eulerian reference frame, i.e. for a single particle:

NL
∑

l=1

f
(l)
fp ∆V

(l)
L =

∑

i,j,k

f (i,j,k) h3 . (3.2)

The union of all Lagrangian volumes, ∆V
(l)
L , forms a thin shell of thickness h around the

particle surface [282]. A single forcing point volume shall thus be computed by

∆V
(l)
L = A

(l)
fp h, (3.3)

where A
(l)
fp denotes the area associated with forcing point l. The area of a single, planar

triangle n of the surface mesh is obtained by Heron’s formula,

A
(n)
tri =

√

s(s− a△)(s− b△)(s− c△), with s =
1

2
(a△ + b△ + c△) , (3.4)

where a△, b△, c△ are the side lengths of the triangle, △ABC, formed by the three forcing
points according to Figure 3.2a).

a) b)

Figure 3.2 a) Single surface triangle. b) Area associated with a forcing point.
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The median lines of a scalene triangle intersect each other in the center of mass S of the
triangle, as illustrated in Figure 3.2a). Each median line is divided by S in a ratio of 2 : 1,
whereas the longer part is is located towards the corner point of the triangle. It can then
be shown that S partitions the triangle in three equal areas, i.e. A2EAFS = A2FBDS =
A2DCES =

1
3
A△ABC .

The area associated with a single forcing point l is then obtained by gathering one third of
the area of each triangle sharing this corner point,

A
(l)
fp =

1

3

N
(l)
nt

∑

i=1

A
(i),(l)
tri , (3.5)

where N
(l)
nt is the number of neighbor triangles associated with this forcing point as depicted

in Figure 3.2b). Note that N
(l)
nt is not a constant for a non-equidistant surface mesh. In the

case of a perfectly even distribution, all triangles are equilateral and have interior angles of
sixty degrees, leading to N

(l)
nt = 6 = const. The routines are validated using spherical and

ellipsoidal particles and ensuring

NL
∑

l=1

A
(l)
fp =

Ntri
∑

n=1

A
(n)
tri and lim

Ntri→∞

Ntri
∑

l=1

A
(l)
tri = AS,analyt , (3.6)

where

AS,analyt. =























Asphere = 4πr2p

Aoblate = 2πa2 + π
b2

εe
ln

(

1 + εe
1− εe

)

, a = c > b

Aprolate = 2πb2 + 2π
ab

εe
arcsin(εe), a > b = c

(3.7)

with εe =
√
a2 − b2/a being the ellipticity [302]. The numerical surface area is always smaller

than the analytical solution since the curved surface is approximated by planar triangles.

With the present IBM that accounts for the actual forcing point volume, the prior restriction,
∆VL ≈ ∆VE = h3, is relaxed to ∆VL . ∆VE. Appendix B provides the formulae relating
the required minimum number of forcing points, NL, to the grid spacing, h, of the Eulerian
grid for ellipsoids and the sphere. Hence, multiple forcing points can share a single Eulerian
volume. A rigorous validation was performed for the motion of spheroids in quiescent fluid
under the action of gravity employing substantially different forcing point numbers NL. It
has been successfully checked that the obtained solutions indeed coincide independent of NL

(not shown). However, if ∆VL & ∆VE, equation (3.2) is still fulfilled, but the forcing point
distribution on the particle surface is insufficiently dense. The delta function, δh, involved
in the spreading of the volume force (3.1), has a limited range of three grid points in each
direction and hence fails to enforce the boundary condition on the entire surface in the latter
case. Therefore, a sufficiently close forcing point arrangement has to be ensured at all times.
For more complex geometries, an appropriate surface triangulation has to be created which
fulfills max (a△, b△, c△) . h.
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3.1.3 Implementation and parallelization

Implementation

The original implementation of the IBM in the PRIME code [136, 134] was intended for
the simulation of turbulent flows with many immersed heavy, spherical particles in cuboidal
domains. All extensions to the code are designed as add-ons and the original implementation
is recovered by undefining the respective pre-compiler flags. This is also true for all other
improvements implemented throughout this thesis. The strategy ensures reproducibility and
a certain safety in the code development, but also poses some limitations.
The schematic representation of the data structure for the immersed particles is given in
Figure 3.3b). The particle constitutes the highest level in the data hierarchy. It is charac-
terized by its center of mass xp, the translational velocity up, angular velocity ωp, material
properties as the particle density ρp, as well as geometry information like the particle radius
rp, etc. The particle surface is represented by the set of forcing points (index fp). Each
point holds information about its location xfp and velocity ufp in the laboratory system,
etc. Each surface marker now also carries its associated area, Afp, to compute the adequate
weights in the spreading step as discussed above, as well as further data when necessary.
With respect to more general geometries, the triangular surface element object is added as
an entity to each particle. It is included on the same level of the hierarchy as the forcing
point since it is not used when dealing with spherical particles and it then can be easily
switched off. The tri-elements carry as entities the connectivity (fp1, fp2, fp3), the surface
normal vector ntri, etc.

a) b)

particle % xp

(1 . . . N loc
p ) up

ωp

ρp
rp
...

% fp % xfp

(1 . . . NL) ufp

Afp

...
% tri % (fp1, fp2, fp3)

(1 . . . Ntri) ntri

...

Figure 3.3 a) Sketch of parallelization with domain decomposition for Eulerian grid and master-
slave strategy for particles. b) Schematic of used data structure. The %-symbol denotes entities..

If the particle shape is supposed to change in time, as e.g. for deformable bubbles, a stretch-
ing of the forcing point distribution is performed in each time-step and the Lagrangian
volumes, ∆V

(l)
L are re-calculated. To avoid costly search iterations on the unstructured sur-

face mesh, also an extended connectivity is stored, as displayed in Figure 3.2b), e.g. for

forcing point A in the form
(

N
(A)
nt , n(tri

(1)
A ), . . . , n(tri

(Nnt)
A )

)

. The Appendix C lists the for-
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mulae for the calculation of the surface normals and curvature based on the triangulation.
The surface normal vector is evidently important, e.g., for the collision modeling or the for-
mulation of wall functions, and the curvature is needed to compute the surface tension force
for deformable bubbles.

Parallelization

This paragraph and Figure 3.3a) illustrate very briefly the main concept of the paralleliza-
tion. Decomposition of the cuboidal domain is performed for the Eulerian grid. In the
example shown, the domain is split in four subdomains carried by the processes 0 to 4. One
ghost cell in each direction is used to complete the stencils of the discretization. In the figure,
the ghost cells of process 0 are highlighted. The MPI-communication of the ghost cell data
is mostly handled by the library PETSc [9].
With respect to the particle-parallelization, a master-slave strategy is employed [134, 281].
The process, which contains the particle center xp, is the master process for this particle. In
Figure 3.3a), process 0 is thus the master of the displayed ellipsoidal particle. The master
deals with all particle-specific problems, like the particle momentum equations yielding up

and ωp, for a total of N loc
p particles located in its domain. If a particle leaves the local

domain, a new master is assigned, the particle lists containing N loc
p are updated, and the

particle information is transferred by master-master communication using MPI. For the ex-
tended implementation, the concept remained unchanged, but additional communication of
e.g. the surface triangulation needed to be included.
If the particle surface extends to a neighbor subdomain, the neighbor process is employed as
a slave process. In Figure 3.3a), processes 1, 2 and 3 carry fractions of the particle and are
slaves to the master process 0. The master communicates only the necessary data with the
slaves, e.g. geometry information or the velocity of the forcing points, to enable the slaves to
perform certain operations in their subdomains. These operations comprise, e.g., the veloc-
ity interpolation or the spreading of the IBM forces. Further master-slave communication is
related to the collision modeling. For details on the actual technical implementation of the
master-slave strategy, it is referred to [134, 281]. With respect to the present extension, the
detection of the slave processes is modified and the amount of data, that is exchanged with
the slave processes, increases to account for the more complex geometry and the adapted
forcing procedure. However, the parallel performance is not significantly altered compared
to the implementation for the sphere and the high computational efficiency is retained.
With the current particle parallelization, the master can only employ its direct neighbor
processes as slaves, which can pose a certain limitation when dealing with very large par-
ticles or a very high resolution per particle. For the future, one might therefore consider
a parallelization based on a full decomposition of the particle surface mesh. In the case of
an anisotropic distribution of particles, one might also consider an equi-distribution of the
particles to the processes for an improved load-balance.

3.1.4 Flow around a complex immersed geometry

As a feasibility study, the flow around a car model was simulated employing the immersed
boundary method with the present extension to more generic shapes. Figure 3.4a) shows a
triangular surface mesh of the car where the grid displayed has Ntri = 41112 surface elements
which is somewhat coarser then the mesh used in the simulation. The entire car is modeled as
a single particle at rest. Note that it is straightforward to assemble multiple particles, where



3.1 Distribution of forcing points for more general geometries 41

each particle can, e.g., rotate or be of time-dependent shape. The computational domain of
extent L = (10, 5, 5) Hcar is discretized equidistantly with N = (256, 128, 128), where Hcar

denotes the height of the car. A uniform inflow boundary condition is set with u = ub = 1
and a convective outflow condition is used at the opposite boundary in x-direction. Periodic
conditions are used in y-direction and free-slip walls are imposed in z-direction. The car is
positioned with the front-bumper 3Hcar away from the inlet and with the wheels touching
the lower wall at z = 0. The particle is discretized with NL = 80115 forcing points and
Ntri = 160226 triangles. Three forcing loops are run through within the improved forcing
scheme of the IBM [136]. Adaptive time-stepping is employed with CFL ≈ 0.8. A weakly
unsteady flow is observed for a Reynolds number of ReH = ubHcar/ν = 250, where the flow is
rather poorly resolved with the present moderate resolution. An impression of the flow field
is given in Figure 3.4b) by a contour of the instantaneous streamwise velocity and pathlines
indicating the recirculation behind the windscreen and the car itself.

a) b)

c) d)

Figure 3.4 Flow around an immersed car model. a) Surface triangulation (Ntri = 41112). b)
Instantaneous streamwise velocity contour and pathlines. c) and d) Absolute value of surface
velocity corresponding to error in surface boundary condition enforced by the IBM.

The error in the surface boundary condition is evaluated at the individual forcing points
with ǫ(l) = ‖u(l)

fp−u
(l)
S ‖/ub where u

(l)
S = 0. The error thus corresponds to the surface velocity
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itself in the present setup. A distribution of the error over the surface of the car is shown
in Figure 3.4c) and d) where u

(l)
fp are attained by an additional interpolation step at the

end of the time-step. A slight footprint of the Cartesian grid is visible on the car surface
especially in regions of high velocity gradients. The maximum errors occur in stagnation
pressure regions in combination with large curvature of the surface, as for the top of the
windscreen and the headlights. A global maximum error of max(ǫ) = 5.3% was computed.
The quadratic average of the error, ǫRMS = 0.19%, is substantially lower. The results are in
good agreement with the errors of the IBM reported in [136] for the flow around a cylinder
with moderately increased maximum errors.
The simulations were run in parallel on 16 processes. Given the large number of forcing
points and the non-optimal load balance with respect to the particle, the performance is still
very decent. About 12% of the total computation time are spent in particle routines.
In conclusion, the boundary condition along the very complex surface is enforced within
acceptable tolerances. The extension of the IBM, hence, provides a sound foundation for
generic particle shapes.

3.1.5 The flow over periodic hills

Introduction and problem definition

The scope of this test case is to validate the current IBM implementation for a generic,
curved, outer geometry. The flow over periodic hills in a plane channel is well documented
and provides interesting features as flow separation from a curved surface with subsequent
reattachment both varying in space and time, a strong shear layer, recirculation, acceleration
and wall proximity [73, 24]. The configuration is depicted in Figure 3.5. The domain extents
are L = (9.0, 3.036, 4.5) h, with h being the height of the hill [266]. The exact geometry of
the hill may be found in the ERCOFTAC database (case 9.2 or case 81 depending on the
host server) and was originally studied experimentally in [4]. Periodic boundary conditions
are used in streamwise and spanwise direction, whereas no-slip walls bound the domain in
y-direction.
The flow over periodic hills has been studied extensively in [24] for a large range of Reynolds
numbers, 100 ≤ Reh ≤ 10595, where Reh = ubh/ν with ub being the bulk velocity at the
crest of the hill. In this reference, DNS and highly resolved LES were conducted with two
independent codes (MGLET and LESSOC) and experimental data was provided from PIV
measurements. The largest Reynolds number, Reh = 10595, was studied in [73] by LES with
the focus on subgrid scale modeling and turbulence mechanisms associated with the specific
features of this configuration.
In the present study, a DNS was performed for Reh = 2800 with an equidistant grid of
N = (512, 173, 256), NL = 63503 Lagrangian forcing points and adaptive time step size
yielding CFL = 0.8. The hill was placed centered at Lx/2 and the x-coordinate, designating
the position of the profiles in Figure 3.7, origins at the crest of the hill. The geometry is
sketched in Figure 3.5, where the forcing points representing the hill and their triangulation
are coarsened by a factor of four. Instantaneous contours of the velocity component u/ub are
shown in this figure as well, illustrating the irregular recirculation zone and the turbulent
character of the flow in streamwise and spanwise direction.
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Figure 3.5 Periodic hill, contours show instantaneous streamwise velocity u/ub for Reh = 2800.
Forcing points and triangulation on the hill are coarsened by a factor of 4.

Results for the flow over periodic hills

An instantaneous contour of the vorticity component ωz is displayed in Figure 3.6a illustrat-
ing the size of the turbulent scales. It also gives an impression of the separating boundary
layer and the shear layer feeding the production of turbulent kinetic energy. In order to
check the grid resolution apart from the wall, the WALE subgrid scale model was imple-
mented to determine the turbulent eddy viscosity νt (see appendix D). The simulation was
continued for a short period of about two flow through times and νt was calculated, but
not considered on the rhs of the Navier-Stokes equation, i.e. there was no feedback of the
subgrid scale model. The turbulent eddy viscosity νt is plotted relative to the kinematic
viscosity in Figure 3.6b. There are two distinct peaks of νt in each profile, one in the shear
layer and one near the top wall which are also apparent in [72]. The fraction of νt to the
kinematic viscosity does not exceed 7% and is quite low in the entire domain. Therefore the
grid resolution should be sufficient to resolve the very major part of the scales in the inner
flow. The wall resolution is estimated in an integral way as no local wall shear stress has
been determined on the hill. The global momentum balance yields 〈τw〉 ≈ 〈fx〉Vf/ (2Asurf )
with Vf being the total fluid volume (without the hill), Asurf the total surface area consisting
of the area of the hill, the lower channel wall apart from the hill and the upper wall. The
spatially constant volume force fx is adjusted in time by a PI-controller to yield the speci-
fied ub. The average non-dimensional wall distance of the first grid point is then computed
to be 〈y+〉 ≈

√

〈τw〉/ρf yst,1/ν = 2.2, which is only slightly above the recommendation for
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a) b)

Figure 3.6 a) Instantaneous contour of plane-normal vorticity ωz for Reh = 2800. b) Short time
average of turbulent eddy viscosity νt as a fraction of kinematic viscosity obtained by WALE-model
from post-processing, i.e. no feedback to simulation.

wall-resolved simulations of y+ . 1 [72].
Averaged profiles of the velocity component 〈u〉/ub are plotted in Figure 3.7 at different
streamwise locations and compared to the reference data from [24]. Very good agreement
is found at all locations. The first profile at x/h = 0.5 is located shortly after the flow
separates from the hill, note that there is an artificial flow within the hill driven by the IBM.
The second and third profile at x/h = 2.0 and x/h = 4.0 show the recirculation zone behind
the hill, whereas the flow has reattached at x/h = 6.0. The mean reattachment location is at
xR/h = 5.32, which is in excellent agreement with the value of 5.41 given in [24]. Statistics
were gathered for about 24 flow-through times. The mean velocity profiles were sufficiently
converged after this time. Turbulent statistics would need further averaging and they are
not reported here as this is beyond the scope of the present study.
The computation time associated with the IBM was less than 0.5% of the total computation
time for the present test case.

Concluding remarks for the hill test case

With the present results for the mean flow being in good agreement with the reference data
[24], it has been shown that the current IBM implementation is applicable for curved, outer
geometries. However, there are open questions that need to be addressed when pursuing to
higher Reynolds numbers. The equidistant grid is an issue in terms of near wall resolution.
Therefore the IBM needs to be adapted to a stretched grid or a local refinement with hang-
ing nodes has to be realized (Appendix I). The aspect of wall functions and subgrid scale
modeling needs to be elucidated in combination with the IBM.
The local shear stress at the embedded body could be determined from the wall normal
velocity gradient using an extra interpolation step within the IBM by

∂ut
∂n

∣

∣

∣

∣

w

≈ ∆ut
∆n

=
(uit(xfp +∆nnfp)− uit(xfp))

∆n
, (3.8)

with nfp being the unit normal vector at the forcing point, and u
i
t the interpolated, stream-

wise tangential velocity.
A sound basis for particle laden flows in curved, realistic geometries is available.
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a) b)

c) d)

Figure 3.7 Mean velocity 〈u〉/ub at different streamwise locations for Reh = 2800: a) x/h = 0.5,
b) x/h = 2.0, c) x/h = 4.0, d) x/h = 6.0.
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3.2 Non-spherical particles

3.2.1 Introduction to Euler’s theorem of rigid body rotation

The motion of a rigid body in three-dimensional space can be decomposed into a trans-
lation, e.g., of the body’s center of mass and a rotation around this origin. Accordingly,
different coordinate systems are introduced to describe the particle motion [212, 91, 148].
First, there is the global laboratory system as the native environment for the simulations.
The computational domain, the boundary conditions, the fluid flow, and the particle tra-
jectories are studied in this system. Second, there is the laboratory-parallel system. It is
particle-dependent and its origin is located in the center of mass of a specific particle with
its axes being parallel to the laboratory system. The particle undergoes a sole rotation in
this coordinate system. The description of the translation of non-spherical particles does not
differ from the previous notation and is thus not further discussed here. Finally, a body-fixed
coordinate system is introduced whose origin is identical to the one of the laboratory-parallel
system, but its axes are aligned with the principal axes of the particle at each instant in
time. The quantities expressed in such a body-fixed coordinate system are denoted with a
prime, e.g. x′.
Euler’s theorem of rigid body rotation states that any sequence of rotations can be equiva-
lently described by a single rotation of this body by an angle about one axis [91, 148, 259].
The rotation of a rigid object is a linear similarity transformation and for the respective
transformation matrix holds det (A) ≡ 1, i.e. there is no compression or stretching of the
body. The application of this transformation on a vector can be interpreted either as a
rotation of the vector itself creating a new vector in the same coordinate system, or on the
other hand as a rotation of the coordinate system in the opposite rotational sense [91]. The
inverse transform is indicated by A−1 and due to the orthogonality of the transformation
matrix the inverse matrix equals the transpose, A−1 = AT .
A three-dimensional rotation by an angle φ around a unit axis a through the origin is de-
scribed by

Aa,φ =





a2
x
(1− cosφ) + cosφ axay (1− cosφ)− az sinφ axaz (1− cosφ) + ay sinφ

ayax (1− cosφ) + az sinφ a2
y
(1− cosφ) + cosφ ayaz (1− cosφ)− ax sinφ

azax (1− cosφ)− ay sinφ azay (1− cosφ) + ax sinφ a2
z
(1− cosφ) + cosφ



 ,

(3.9)
which simplifies for a rotation axis aligned with one of the axes of the laboratory-parallel
system to one of the three-dimensional rotation matrices

Ax =





1 0 0
0 cosφx − sinφx
0 sinφx cosφx



 , Ay =





cosφy 0 sinφy
0 1 0

− sinφy 0 cosφy



 , Az =





cosφz − sinφz 0
sinφz cosφz 0
0 0 1



 .

(3.10)
An active transformation rotates a vector; it changes its components while the vector norm
remains unchanged. A passive rotation on the other hand describes a rotation of the coordi-
nate system and is achieved by rotating with a negative rotation angle in the above rotation
matrices which is equivalent to switching the sign of the sine entries. The same vector is
represented in different coordinate systems. The formalism of active and passive rotation is
the same [91].
The rotational orientation of a body in three-dimensional space can be parametrized in man-
ifold ways where all of those are based on Euler theorem of rigid body rotation stated above
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[259]. A helpful, comprehensive survey is given in [51]. Classically used are three Euler angles
which describe three successive rotations around pre-defined axes. In the zyx-convention of
Euler angles, the laboratory-parallel coordinate system is first rotated by an angle φ3 around
the z-axis, then by an angle φ2 around the intermediate y-axis, and subsequently by an angle
φ1 around the final x′-axis to obtain the body-fixed coordinate system. The order of the
subsequent finite rotations must not be interchanged as the associated transformations are
not commutative. The definition also implies that the laboratory-parallel system and the
body-fixed system coincide if all Euler angles are zero. There are various definitions of Euler
angles, the x-convention (or 3-1-3 or zxz) seems to be the most common one in physics [148].
Here, the zyx-convention is chosen as it is more intuitive to use and rather widespread in
engineering applications. Defined this way, the Euler angles can be interpreted as yaw, pitch
and roll of an aircraft for example, as explained in the ’Deutsche Luftfahrtnorm’ [75]. The
matrix of the full transformation in the zyx-convention is given by

A =





cosφ2 cosφ3 cosφ2 sinφ3 − sinφ2

sinφ1 sinφ2 cosφ3 − cosφ1 sinφ3 cosφ1 cosφ3 + sinφ1 sinφ2 sinφ3 sinφ1 cosφ2

cosφ1 sinφ2 cosφ3 + sinφ1 sinφ3 cosφ1 sinφ2 sinφ3 − sinφ1 cosφ3 cosφ1 cosφ2



 .

(3.11)
The transformation of the vector x in the laboratory-parallel system to its representation x′

in the body-fixed coordinate system is obtained via

x′ = A · x . (3.12)

The nomenclature for the Euler angles varies throughout the literature where the present
notation was adopted from [96] and φ3 = φ, φ2 = θ, φ1 = ψ provides the useful conversion to
the nomenclature of Goldstein et al. [91]1, a textbook on classical mechanics often referenced
in the present context. Accordingly, φp = (φ1, φ2, φ3)

T lists the angles describing the
particle orientation, where the particle index p is omitted when the respective components
are addressed. Note that φp is not a vector in a physical sense [91], but a list of the Euler
angles.
The angular velocity vector is denoted by ωp = (ωx, ωy, ωz)

T in the laboratory-parallel
system and its body-fixed counterpart is ω′p. The relation between the components of the

angular velocity and the temporal derivatives of the Euler angles, φ̇p, is given by [91, 96]

ωp =





cosφ2 cosφ3 sinφ3 0
cosφ2 sinφ3 cosφ3 0
− sinφ2 0 1



·





φ̇1

φ̇2

φ̇3



 , ω′p =





1 0 − sinφ2

0 cosφ1 sinφ1 cosφ2

0 − sinφ1 cosφ1 cosφ2



·





φ̇1

φ̇2

φ̇3



 . (3.13)

The above formulae can be substantially simplified for small angles, infinitesimal rotations or
the rotation around a single principal axis [91]. The numerical treatment of the most general
case is, however, problematic. A singular mapping is found for cosφ2 = 0 [259], often referred
to as Gimbal lock, and numerical errors in the evaluation of (3.13) become large if this state
is approached. In the present applications, there is mostly a single dominant rotation axis,
as e.g. for the zig-zag of a bubble or the interaction of an ellipsoid with an inclined wall.
A solution to the numerical issues is employing Euler parameters as introduced in Section
3.2.5 below.

1Note that there are two flaws in the transformation matrix in zyx-convention as given in the book, which
were reported to the publisher by the present author.
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3.2.2 Angular momentum equation of the particle

In contrast to a sphere, the moment of inertia is represented by a tensor for particles of
more complex shape. A torque, Mp, acting on the particle causes a temporal change of
its angular momentum. The angular equation of motion of a non-spherical particle in the
laboratory-parallel coordinate system reads

d (Ipωp)

dt
= ρf

∮

S

r× (τ · nS) dS = Mp , (3.14)

with the symmetric moment of inertia tensor

Ip =





Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



 =





∫

ρp (y
2 + z2) dVp −

∫

ρp x y dVp −
∫

ρp x z dVp
Iyx = Ixy

∫

ρp (x
2 + z2) dVp −

∫

ρp y z dVp
Izx = Ixz Izy = Iyz

∫

ρp (x
2 + y2) dVp



 ,

(3.15)
where x, y, z denote coordinates with respect to the center of mass, i.e. coordinates in the
laboratory-parallel system. Here, contributions to Mp originating from collisions are not
considered.
In the body-fixed reference frame, the moment of inertia is constant. Since the coordinate
axes are aligned with the body’s principal axes at each instant in time, the moment of inertia
tensor, I′p, holds only the principal moments of inertia and off-diagonal entries are zero,

I′p =





Ix′x′ 0 0
0 Iy′y′ 0
0 0 Iz′z′



 , (3.16)

with the respective transformation [91, 148] being given by

Ip = A · I′p ·AT . (3.17)

For an tri-axial ellipsoid, the principal moments of inertia are given by

Ix′x′ =
1

5
mp

(

b2 + c2
)

, Iy′y′ =
1

5
mp

(

a2 + c2
)

, Iz′z′ =
1

5
mp

(

a2 + b2
)

, (3.18)

with mp being the particle mass and a, b, c the semi-axes.
The angular equation of motion expressed in the body-fixed reference frame is addressed
in Section 3.2.5 (equation (3.30)). Next, the computation of the torque, which acts on the
particle and determines the right hand side of (3.14), is discussed in the context of the IBM.

3.2.3 Evaluation of the force and torque acting on the particle

The net force and torque acting from the fluid on the particle are determined by integrating
the hydrodynamic stresses including pressure over the particle surface. The evaluation of
this surface integral is, however, numerically challenging and can be avoided within the IBM
by transferring the surface integral to a volume integral of the underlying ’artificial’ fluid.
An in-detail discussion of the approach can be found in [136, 134]. Here, the approach is
recapitulated with some remarks towards non-spherical particles and their orientation. The
balance of the fluid’s angular momentum in a volume V with a surface S reads

d

dt

∫

V

ρfr× u dV = ρf

∮

S

r× (τ · nS) dS +

∫

V

ρfr× f dV . (3.19)
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If the balance is applied to a volume bounded by the particle surface, i.e. the particle volume
Vp, the right hand side of the particle angular momentum equation (3.14) can be re-written
as

d (Ipωp)

dt
=

d

dt

∫

Vp

ρfr× u dV −
∫

Vp

ρfr× f dV . (3.20)

The integral over the Eulerian forces can be replaced by a summation over the Lagrangian
forcing points as apparent from (3.2)

∫

Vp

ρfr× f dV =

NL
∑

l=1

ρf

(

x
(l)
fp − xp

)

× f
(l)
fp ∆V

(l)
L . (3.21)

This term is thus directly available from the IBM forcing procedure ensuring the boundary
condition at the particle surface. For the computation of the remaining term in (3.20), the
temporal derivative is processed within the particle time-integration scheme and the volume
integral is numerically evaluated via

∫

Vp

ρfr× u dV =
∑

i,j,k

ρf (xi,j,k − xp)× ui,j,k αi,j,kV
cell
i,j,k , (3.22)

where αi,j,k denotes the particle volume fraction, i.e. the portion of the finite Eulerian cell
occupied by the particle,

αi,j,k =
V p
i,j,k

V cell
i,j,k

. (3.23)

The particle volume fraction is efficiently computed from

αi,j,k =

∑8
m=1 |min (φm, 0)|
∑8

m=1 |φm|
, (3.24)

employing the signed-distance level-set function of the particle, φ, computed at the m =
1, . . . , 8 corner points of the cell [136]. The signed-distance level-set function is negative
inside the particle and positive outside, while the distance is measured normal to the surface.
The particle surface itself is indicated by the zero level-set. Figure 3.8a) provides a sketch
illustrating the concept. The approach is very efficient and showed second order convergence
[136]. The signed-distance level-set function for a rotated ellipsoid is given by

φellipsoid
i,j,k =

√

(

x′i,j,k
a

)2

+

(

y′i,j,k
b

)2

+

(

z′i,j,k
c

)2

− 1, (3.25)

with the coordinates of the Cartesian cell transformed to the body-fixed frame

x′i,j,k = A · (xi,j,k − xp) . (3.26)
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a)

φ > 0
φ = 0

φ < 0

α = 1

α = 0

φ φ

φ φ

b)

Figure 3.8 Evaluation of particle volume fraction, αi,j,k. a) Schematic sketch of signed-distance
approach. b) Axisymmetric shapes for evaluation summarized in Table 3.2.

The signed-distance level-set function can be obtained for particles of basically arbitrary
shape [253]. In Chapter 4, complex particle shapes are represented by spherical harmonic
functions. The evaluation of the signed, surface-normal distance is somewhat cumbersome
for these complex, analytical shapes. A comparison of the computation of the particle
volume fraction swapping the signed surface-normal distance by the signed radial distance
rm − rS in equation 3.24, showed negligible deviations for the spheroidal shapes tested.
The difference of these distance measures is illustrated in Figure 3.8a). The computational
effort decreases when using the signed radial distance. Table 3.2 lists the numerical, relative
error in the computation of the particle volume, Vp, determined from

∑

i,j,k αi,j,kV
cell
i,j,k for the

axisymmetric shapes shown in Figure 3.8b). The original level-set approach was used for
the spherical and ellipsoidal particle, while the radial distance was employed for the cap-
shaped particle and the deformed shape. The numerical error is unaltered and also second
order convergence is achieved. As a further validation (not shown), the moment of inertia
tensor was computed using a numerical evaluation of the volume integrals in 3.15 employing
the particle volume fraction and comparing it to the reference solution from (3.17) for an
ellipsoid tilted around all three axes.

deq
∆x

sphere p ellipsoid, X = 1.5 p cap p deformed shape p
10 -1.46E-02 -1.33E-02 -1.30E-02 -1.22E-02
20 -3.50E-03 2.1 -3.17E-03 2.1 -3.42E-03 1.9 -2.71E-03 2.2
40 -8.12E-04 2.1 -7.42E-04 2.1 -8.26E-04 2.1 -6.72E-04 2.0
80 -1.87E-04 2.1 -2.02E-04 1.9 -2.00E-04 2.0 -1.60E-04 2.1

Table 3.2 Numerical, relative error in volume, Vp, determined from
∑

αi,j,kV
cell
i,j,k and order of

convergence p with increasing the resolution of the Cartesian grid.

In summary, the torque acting on the non-spherical particle is obtained in a very efficient
way and the equation of motion for the rotation can be solved as discussed in the next
paragraphs. The determination of the net force acting on the non-spherical particle for the
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translational momentum equation works in an analogous way accounting for the staggered
grid [136, 134].

3.2.4 Solution in laboratory-parallel system

As in the original method for a sphere [134, 136], the angular momentum equation of the
particle is solved in the laboratory-parallel system. This seems intuitive and is straightfor-
ward based on the original implementation of the IBM. The rate of change of the angular
momentum in the k-th Runge-Kutta sub-step is obtained by the finite difference

(Ip · ωp)
k+1 = (Ip · ωp)

k + 2αk∆t Mk
p , (3.27)

with αk being coefficients of the present low-storage Runge-Kutta scheme. In order to solve
the problem, one has to deal with the change of the moment of inertia tensor, Ip, in time.
This is done by the following iterative procedure:

0) Compute once the right hand side of 3.27 including the current torque and moment of
inertia tensor in the laboratory-parallel system.

1) Formulate an initial guess for Ik+1
p . Since for a sphere Ip(t) = const. using Ikp seems

appropriate for spheroidal particles.

do j = 1, jmax

2) Solve the linear system of equation posed by (3.27) for ωk+1
p . A direct solution by

means of Gaussian elimination is conducted.

3) Compute the rate of the Euler angles, φ̇k+1
p , or Euler parameters from (3.13) or (3.31),

respectively.

4) Determine the new orientation of the particle at k + 1, e.g. using the trapezoidal rule
for the new Euler angles,

φk+1
p =

1

2

(

φ̇k
p + φ̇

k+1
p

)

2αk∆t .

5) Update the rotation matrix A and moment of inertia tensor Ik+1
p by (3.17).

6) Exit loop if specified residual criterion with respect to j-iteration is fulfilled

end do

Usually only a very few iterations are necessary for convergence. For spheroidal particles
with moderate aspect ratios and given the CFL-limit of the explicit time integration, the
temporal change of the inertial tensor is quite small. However, ‖ωp · dIp/dt‖ can become
important in the more general case, as reported in Table 3.11e) for an initially tumbling
elongated ellipsoid. A more elegant way of solving the angular momentum equation is
using the body-fixed coordinate system as discussed in the next Section employing Euler
parameters as a parametrization of the rotation matrix.
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3.2.5 Solution employing Euler parameters in body-fixed system

The body-fixed system is referred to as a coordinate system centered in xp with its axes
aligned with the principal axes of the particle. The rotation is described employing Euler
parameters. With this approach, a rotation is described by four parameters which can be
directly derived from Euler’s angle-axis theorem. The four parameters are grouped to a
quaternion with q = (q0, q1, q2, q3) = (q0, q) [302, 243, 259]. The first parameter is a scalar
and the other three build a vector in three dimensional space and thus a quaternion can
be interpreted as angle and axis. Euler parameters form a unit quaternion and hence the
subsidiary condition q20 + q21 + q22 + q23 = 1 = ‖q‖2 must hold. The multiplication of two
quaternions, q ◦ p, is defined as [302, 243, 259]

q ◦ p = (q0p0 − q · p, q0p+ p0q+ q× p) . (3.28)

The product is non-commutative. Sequences of rotations can be expressed by quaternion
multiplications in a compact way. Here, we stick to the rotation matrix formalism. The
transformation of a vector from the laboratory-parallel coordinate system to the body fixed
coordinate system is still given by x′ = A · x, where the orthogonal rotation matrix now
reads in terms of Euler parameters [51]

A =





q20 + q21 − q22 − q23 2 (q1q2 + q0q3) 2 (q1q3 − q0q2)
2 (q2q1 − q0q3) q20 − q21 + q22 − q23 2 (q2q3 + q0q1)
2 (q3q1 + q0q2) 2 (q3q2 − q0q1) q20 − q21 − q22 + q23



 . (3.29)

Applied to the torque vector acting on the particle, the transformation yields the torque in
the body-fixed coordinate system, M′

p = A · Mp. This can be used to solve Euler’s angular
momentum equation in the body-fixed reference frame [91, 148, 243],

Ix′x′ω̇x′ − (Iy′y′ − Iz′z′)ωy′ωz′ =Mx′ (3.30)

Iy′y′ω̇y′ − (Iz′z′ − Ix′x′)ωz′ωx′ =My′

Iz′z′ω̇z′ − (Ix′x′ − Iy′y′)ωx′ωy′ =Mz′

to obtain ω̇′p. Obviously, the moment of inertia tensor in the body-fixed frame is constant
in time and no iterative procedure is necessary. Integration in time with the present Runge-
Kutta scheme yields ω′p which is transformed to the laboratory-parallel system giving ωp to
be used in the IBM. The time-derivatives of the Euler parameters are then given by

q̇ =
1

2
q ◦ ω′p =

1

2
ωp ◦ q. (3.31)

with ω′p = (0, ωx′ , ωy′ , ωz′). Finally, the Euler parameters and the respective rotation matrix
are updated integrating q̇ in time employing the trapezoidal rule. The numerical integration
introduces errors leading to a violation of the unit constraint for the Euler parameters. These
are thus renormalized by coordinate projection, i.e. dividing by ‖q‖ [243].
The approach is very efficient and eludes the usage of sine or cosine functions. It represents
an always non-singular mapping avoiding the possibility of a Gimbal lock. The method
is used in classical physics, robotics, aerospace dynamics, computer graphics, but also for
simulations of particulate flows [315, 313]. Euler parameters should represent the preferential
description for future work, especially for systems with many non-spherical particles.
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3.2.6 Application to the rotation of an ellipsoid

Prescribed rotation

The method describing the particle rotation and orientation was applied to a variety of
generic test cases and problems of physical interest for validation purposes. First, simple
elementary rotations around the principal axes of the non-spherical particle were prescribed
and superpositioned with a given translational path, e.g. to mimic a zig-zag trajectory of a
particle and study the flow field (not shown). Here, a prescribed off-axis rotation is presented
where ωp = (π, 0, −2π)T−1 was assigned in the laboratory-parallel system for the period
T . It is rather difficult to find visualizations of time-sequences for intricate rotations. The
test case is therefore inspired by a jump from the slope-style discipline in free-skiing called
’cork5’. The body undergoes one full rotation around the z-axis (360◦) and a half rotation
(180◦) around the x-axis and it thus faces backwards after the cycle. A prolate ellipsoid with
semi-axes a > b = c and aspect ratio X = 2 is used. Figure 3.9 shows a three-dimensional
visualization of the rotation. For illustration purposes, the equi-spaced time-instants were
placed along a virtual parabola in a xz-plane. At time t = 0, the long axis 2a aligned with
the x-axis and is indicated by the forcing point xfp,a. This specific point is highlighted during
the laps of time in Figure 3.9a) and further a body-fixed direction (of view) is indicated by
an arrow at the start and the end. The temporal history of xfp,a − xp and its path are
provided in Figure 3.9b) and c).

a) b)

c)

Figure 3.9 Prescribed rotation of a prolate ellipsoid. a) Three-dimensional visualization along
virtual parabola in a xz-plane. b) Temporal history of xfp,a − xp describing the relative position
of a long semi-axis. c) Path of point xfp,a − xp.
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Ellipsoid in shear flow

The fluid-particle coupling is examined in this section studying the rotational behavior of an
ellipsoid in shear flow. A linear shear flow, given by the velocity profile u(y) = s(y−yp) with
the shear parameter s, is realized by two counter-moving walls bounding the computational
domain in the y-direction as sketched in Figure 3.10a). The non-dimensional numbers char-
acterizing the problem are the shear Reynolds number, Res = 4 s a2/ν, the confinement ratio
Ly/a = 8, the aspect ratio X = a/b = 2, and the density ratio πρ. Two of the parameters are
fixed in this study as indicated and a prolate ellipsoid is studied. A computational domain of
L = (6.4, 6.4, 6.4) deq was used and discretized equidistantly with N = (128, 128, 128). The
remaining boundary conditions are chosen as periodic. The time-step is adjusted to yield
CFL = 0.5, keeping in mind that the viscous terms are treated implicitly. These numerical
parameters were used in all simulations presented below.

Jeffery orbit
The rotation of a neutrally buoyant ellipsoid, πρ = 1, is considered under Stokes flow con-
ditions, Res ≪ 1. For these prerequisites, an analytical solution can be derived known as
Jeffery orbit [119]. A small principal axis of the ellipsoid and the vorticity axis of the flow
are aligned, the ellipsoid rotates around this axis and thus φ3 = φz. From the analytical
solution [119], the angular velocity of the particle can be expressed as a function of the
particle inclination,

ωz(φz) = −
s

2

(

1− X2 − 1

X2 + 1
cos (2φz)

)

, (3.32)

i.e. the particle rotates fastest when oriented vertical and its long axis is parallel to the y-axis,
and it rotates slowest when oriented horizontal and its long axis points in the x-direction.
Figure 3.10c) provides a comparison of the analytical solution with present simulation results
obtained with Res = 0.5. Very good agreement is found with a slight overprediction of the
angular velocity at small φz. Figure 3.10b) shows the temporal evolution of the absolute
value of the particle’s angular velocity with solution in body-fixed and laboratory-parallel
reference frame. Both solutions coincide with a small performance plus for the quaternion
approach in the body-fixed system. The period of the orientation angle is given by T (φz) =
2π/s (X +X−1) [315]. It was underestimated by 3.6% with the present simulations.

The effect of particle inertia
The influence of particle inertia, as well as the impact of the vicinity of a solid wall on the
motion of ellipsoidal particles was studied in [85, 86, 26]. A boundary-element method is
employed for the solution in the Stokes flow regime. The authors use an inertial parameter

based on the particle relaxation time, τ , and the shear parameter which reads τ s = 4
3
π ρpa2

µf
s.

Figure 3.10d) shows the angular velocity versus the particle orientation for various inertial
parameters τs and a comparison to data from Gavze & Shapiro [86]. For an inertial ellipsoid,
there are two values of ωz for each argument cos(2φz) corresponding to a left-right asym-
metry with respect to the vertical orientation. The slope of the graph agrees with the value
of the theoretical limit given by the Jeffery orbit for small inertial parameters (τ s = 10).
With increasing τ s, the average slope decreases (τ s = 100) and approaches zero for very
high inertia (τ s = 1000), while −ωz/s tends towards 0.5. The difference between the two
branches of ωz increases, runs through a global maximum and again decreases as the par-
ticle inertia is increased. The comparison to the reference data is conducted for an inertial
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a)

u(y) 
x 

y 

b)

c) d)

Figure 3.10 Rotation of an ellipsoid in shear flow. a) Configuration. b) and c) Jeffery orbit
of neutrally buoyant prolate ellipsoid, X = 2: b) Temporal evolution of the absolute value of the
particle’s angular velocity with solution in body-fixed and laboratory-parallel reference frame. c)
Angular velocity versus particle orientation and comparison to analytical solution. d) Inertial ellip-
soid, angular velocity versus particle orientation for various inertial parameters τs and comparison
to data from Gavze & Shapiro [86].



56 3 Evolution of the Immersed Boundary Method

parameter of τ s = 100, while the shear Reynolds number is kept at Res = 0.5 in the present
simulation. The simulation is run in the absence of gravity as in the reference [86]. Very
good agreement is found for the rotational behavior of an inertial ellipsoid as apparent from
Figure 3.10d). A minor overprediction of the angular velocity is present at small − cos(2φz)
and the graph is slightly shifted towards higher inertial parameters, corresponding e.g. to a
somewhat larger particle. This might by related to the IBM and the employed delta func-
tion to force the boundary condition at the interface. A similar effect is discussed in Section
3.3.4. In conclusion, the impact of the particle inertia is well captured for the case considered.

Rotational behavior for finite Reynolds numbers
The rotational behavior of ellipsoidal, neutrally buoyant particles in Couette flow was studied
for finite Reynolds numbers in [216] using a lattice Boltzmann method. Three regimes were
found for prolate ellipsoids, i.e. the major axis is the axis of revolution. For low to moderate
Reynolds numbers, the ellipsoid rotates around its minor axis, i.e. parallel to the vorticity
vector of the flow, as it was shown above for the Jeffery orbit. In the intermediate range of
Reynolds numbers, an additional stable precession was found where the mean angle between
the major axis and the vorticity vector increases with Reynolds number. Finally for high
Reynolds numbers, the prolate ellipsoid rotates around its major axis with a constant rate.
Further regimes and the effect of initial orientation were recently documented in [116].
Figure 3.11a)-d) shows instantaneous orientations of a prolate ellipsoid in shear flow in

a) b) c) d) e)

TJ s [216] 130
TJ s, present 124

〈 ‖ωp ·dIp/dt‖
‖d(Ip ·ωp)/dt‖

〉 0.163

Figure 3.11 Rotational states of ellipsoids in shear flow. a)-d) Prolate ellipsoid at low Res:
a) Early inclination, b) and c) intermediate states, d) final, stable rotation with small semi-axis
parallel to the vorticity vector.

the low Reynolds number regime from a present simulation. The simulation was conducted
for Res = 32 and the ellipsoid was initially oriented in terms of Euler angles with φp,0 =
(0, 0.25, 0.5) π. The long semi-axis is initially inclined with respect to the y-axis by 45◦ in the
yz-plane. Only a qualitative comparison to the observations reported in [216] is performed
here, because the full set of initial conditions could not be obtained from the reference and
thus a slightly different setup was chosen.
The present results on the rotational behavior are in agreement with the reference. The
ellipsoid performs a periodic rotation around the z-axis as well as an additional precession.
The inclination angle of the rotation axis with respect to the vorticity vector of the flow and
thus the precession are gradually reduced until the small semi-axis of the ellipsoid becomes
parallel to the z-axis and the stable orbit is reached. A time scale TJ is defined measuring
the time until the angle between the small semi-axis and the z-axis drops under 5◦ and a
Jeffery-like orbit is reached. Table 3.11e) lists this time scale normalized with the shear
parameter, s, and a comparison to the data approximated from [216]. The time scales are
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in good agreement. Further, the table reports time-average of the ratio of the vector norm
of ‖ωp ·dIp/dt‖ and ‖d(Ip ·ωp)/dt‖ obtained during the initial transient towards the stable
orbit in (0, 0.3TJ). The denominator ‖d(Ip·ωp)/dt‖ equals ‖Mp‖ which is always non-zero in
the present case. Experimental observations in laminar pipe flow support the observations
concerning the stable orbit in the low Res regime. It was found in [131] for suspended rods
that the long axis is oriented in planes passing through the axis of the tube.

3.2.7 Turbulent open channel flow with ellipsoidal roughness ele-

ments

Introduction and problem definition

One of the central questions concerning turbulent flows over rough walls is to quantify the
influence of the roughness on the turbulent structure [33, 241, 220]. Different roughness
types or shapes of the roughness elements alter wall-bounded turbulence in distinct ways
[123].
The goal of this section is to provide first steps and a feasibility study towards the application
of more general particle shapes in the representation of rough walls, sediment beds, or porous
media.
The majority of the work on phase-resolved simulations of multiphase flow concentrates on
spherical particles throughout. Heitkam et al. study the stability and therefore probability
of occurrence of spherical packing structures [101]. The turbulent flow over a rough bed
in an open channel is investigated in [295, 294, 297, 33] with respect to sediment erosion
processes. In [33] the focus lies on forces acting on individual elements of the fixed sediment
bed additionally to the influence of the roughness on the turbulence. Further, Vowinckel et
al. [295, 294, 297] study many mobile particles moving and colliding on top of the regular
sediment bed and which then form sediment structures like ripples and ridges.
In the present work, turbulent open channel flow over a rough bed is studied. The flow is
driven by a volume force fx which is adjusted in time by a PI-controller to give a constant
bulk Reynolds number of Reb = 2900 = ubH/ν, where H = 1 m is the free height over
the sediment bed and ub = 1 m/s is the bulk velocity. Periodic boundary conditions are
applied in x- and z-direction and a free slip condition is set at the upper boundary as
in [134, 33, 297, 312]. A no slip wall is situated at the lower boundary underneath the
roughness elements. The domain extends L = (6, 1.1, 3)H which is about the lower limit
to get decorrelated turbulent structures in streamwise and spanwise direction [134]. The
y-coordinate counts from the top of the regularly packed ellipsoids forming the sediment
bed, i.e. the lower boundary is situated at y = −2a.
The number of roughness elements forming the sediment bed is Np = 3600 of fixed, oblate
ellipsoids with an aspect ratio of X = 2, and a long semi-axis of a = 0.05H.
If the roughness elements do not extend over the viscous sublayer of the turbulent boundary
layer, the roughness is classified as smooth. When reaching into the buffer layer, where both
viscous and turbulent stresses are affected, the flow is denoted as transitionally rough. In
the fully rough regime, the mean flow and the turbulent statistics are altered significantly
by the roughness, which then extends well into the logarithmic layer. Thus according to
[194, 123], the flow is expected to be within the transitionally rough regime with relative
roughness heights of about twenty times the viscous length scale.
Different orientations of the ellipsoids are studied as shown in Figure 3.12:
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6
- x, ub

y

aligned transverse realistic

Figure 3.12 Orientation of ellipsoidal roughness elements in sediment bed with flow from left to
right.

- aligned orientation, small semi-axis pointing in spanwise direction

- transverse orientation, small semi-axis pointing in streamwise direction

- realistic orientation from sedimentation of ellipsoids

The two regular packings (aligned, transverse) consist of a single layer of ellipsoids in rect-
angular arrangement. The more realistic orientation is obtained from a precursor simulation
of freely, sedimenting ellipsoids. In this precursor simulation, three horizontal layers of el-
lipsoids are initially placed in aligned orientation around 〈yp〉 ≈ 0.7Ly and then settle with
density ratio πρ = 2.0 in a laminar channel with no-slip walls at the upper and lower bound-
ary. The reason for this changed setup is that higher shear rates yield larger rotation rates
and therefore larger diversity in orientation at low sedimenting heights. Only a subset of
the original size of the computational domain with Lx = Lz = 1.5 is considered with a cor-
responding fraction of ellipsoidal particles and the resulting distribution of ellipsoids is then
repeated periodically to obtain the sediment bed in the large computational domain. In this
pre-cursor simulation inter-particle and particle-wall collisions were accounted for employing
collision model CM-1 described in Section 7.4. To demonstrate the validity of the ellipsoid
collisions, the interaction of a single ellipsoid with an inclined wall was studied and the
results are presented in the subsequent paragraph. A collision model with only a weak re-
pelling potential is employed in the pre-cursor simulation of the sedimenting particles which
yields an overlap of ellipsoids in the final distribution (see Figure 3.12) mimicking spheroidal
roughness elements in comparison to fully accurate ellipsoids. This overlapping allows for an
average vertical particle position of 〈2yp〉/H ≈ 0 which is then used in the computation with
fixed ellipsoids in the large computational domain. The pre-cursor simulation was stopped
as this average vertical particle position was reached, i.e. before the particles came fully to
rest. The average roughness height is therefore comparable to the simulations with aligned
and transverse orientation in regular packings displayed in Figure 3.12. Nevertheless, the
sediment bed is characterized by a higher heterogeneity of porosity as there are several holes
in the sediment and in contrast some spots with two ellipsoids on top of each other. The
average porosity λpor of the packings is listed in the table of Figure 3.14 and is highest for
the realistic orientation. It is evaluated in the interval y/H ∈ (−0.1, 0) according to the
definition λpor = 〈1− V p

i,j,k/V
cell
i,j,k〉 and characterizes the fraction of fluid volume contained in

a cell at position (i, j, k) of the Cartesian grid. For the realistic packing, the orientation of
the ellipsoids is almost random with a small preference towards the transverse orientation.
Note that in contrast to the rather stochastic distribution of roughness elements used here,
sediment structures like ridges, ripples or dunes form on larger scales of real sediment beds
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with moving particles [297].

Rigid ellipsoid interacting with an inclined wall in viscous fluid

The intention of this section is to provide a qualitative impression of the interaction of a
rigid ellipsoid with an inclined wall in viscous fluid. With respect to the numerics, the test
case serves as an examination of the routines involved to calculate the particle-wall distance
and the contact point, as well as the collision forces and respective moments outlined in
paragraphs 7.2.2 and 7.4. The detailed study of inter-particle and particle-wall collisions
with non-spherical particles is beyond the scope of this work. However, a check for reason-
able and sensible results is undertaken here to ensure adequate results in the simulation runs
with multiple particles in bounded domains presented in this text.
A sketch of the configuration is given in Figure 3.13. It comprises a rigid ellipsoid first set-
tling in viscous fluid and then interacting repeatedly with a tilted flat plate. The inclination
of the wall is realized employing a gravity vector pointing downwards and tilted by 45◦ with
respect to the y-axis. The domain with extents L = (25.6, 6.4, 6.4) deq is bounded by no-
slip walls in y-direction and periodic boundary conditions are applied in x- and z-direction.
An equidistant grid with N = (512, 128, 128) is employed. The spatial resolution therefore
corresponds to deq/∆x = 20 and a constant time step of ∆t = 1· 10−3 is applied.
The oblate ellipsoid of aspect ratio X = 2 is heavier than the surrounding fluid with πρ = 8.
A Galilei number of G = 250 characterizes the ratio of buoyancy to viscous forces. Only wall-
normal collision modeling is used where the forces are obtained from a quadratic repelling
potential with kcol.n = 100 (CM-1 in Section 7.4). The particle-wall distance is computed
based on the ellipsoid contact function described in Section 7.2.2.
An initial particle position xp,0 = (0.8, 5.0, 3.2) is set and the ellipsoid is oriented with its
small semi-axis b parallel to gravity. Both, the ellipsoid and the fluid, are initially at rest.
During the simulation, the translation in z and the rotation around the x- and y-coordinate
axes are switched off to reduce the complexity of this generic test case. After settling on a
straight trajectory, the ellipsoid collides with the inclined wall. The collision moment leads
to a rotation of the ellipsoid following the slope of the wall and to an immediate second wall
contact (Figure 3.13a)) as expected from similar simulations in [310]. The Stokes numbers
characterizing the first, wall-normal collisions is obtained as St = πρdeq|uin

p,n|/(9ν) = 126.
Interpreted by physical means, the influence of viscous dissipation is rather small and a
corresponding spherical particle would retain about 70% of its kinetic energy calculated
from the normal approach velocity uinp,n [135, 126, 125, 92]. A very similar value is observed
here for the wall-normal rebound of the ellipsoidal particle with |uout

p,n| = 0.63|uin
p,n|. Wynn

[310] reports a value of |uout
p,n| ≈ 0.72|uin

p,n| for an ellipsoid of the same aspect ratio, X = 2,
and angle of incidence on the wall, 45◦, but with the simulations being conducted without
viscous effects and the results being averaged over all impact orientations of the ellipsoid.
For ellipsoidal particles, the normal rebound velocity may be even higher than the normal
impact velocity due to transfer of energy from the tangential direction [310] and a change in
orientation of the ellipsoid. For illustration, an ellipsoid in cross-flow with its small semi-axis
b parallel to the mean flow experiences a larger drag than the same ellipsoid having its long
semi-axis a pointing towards the incident flow as shown in Section 3.4.3 and [316].
After an intermediate transient, the further course of the numerical experiment is charac-
terized by the ellipsoid sliding along the wall and performing successive backward flips as
indicated in Figure 3.13b). The insets Figure 3.13c) and d) give an impression of the flow
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field by contours of the absolute value of velocity where c) shows an instant shortly after
impact and d) one during the lift-off for a backflip. As the leading edge of the ellipsoid is
raised with respect to the wall, more fluid squeezes in between the wall and the ellipsoid
hull. As a consequence the particle experiences a lift force which moves it away from the
wall and a backward rotation follows. A famous and very similar example from the world of
motor sport is the backflip-accident of a Mercedes GTR at the 24 Hours of Le Mans in 1999.

?

g

a)

b)

c) d)

Figure 3.13 Rigid ellipsoid interacting with an inclined wall. a) Ellipsoid trajectory around
impact. b) Trajectory during second passage of domain with ellipsoid performing backward flips.
c) - d) Impression of flow field by contour of absolute value of velocity with color scale in interval
(0, ug): c) shortly after first impact, d) during lift-off for backflip within second passage.

In conclusion, the goals of the test were fulfilled. A correct prediction of the contact point
was obtained for different orientations of the ellipsoid and also in case of wall penetration.
The particle-wall collisions appear physically sound and so does the particle trajectory. A
numerically stable run was realized. A reduced spring stiffness of the collision model by a
factor of ten to kcol.n = 10 (not shown) yielded higher values for the divergence of the ve-
locity field due to larger particle-wall penetration. The overall physics were not significantly
affected and a very similar first rebound and successive backflips in the second passage of
the domain were observed. With respect to collisions of non-spherical particles, substan-
tially more work needs to be invested into the improvement and validation of the collision
modeling, as well as the interpretation of the involved physics. Special attention should be
given to the transfer of translational kinetic energy to rotational kinetic energy during the
collision. Quantitative comparison to experiments or other simulations should be considered
in the future even though there is only scarce data for rigid ellipsoids.
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Results on rough wall, turbulent open channel flow

An overview of the different runs for the simulation of turbulent channel flow over differ-
ent roughness elements is given in Table 3.14. The computational domain was discretized
with an equidistant grid of N = (1024, 188, 512) yielding y+ = ∆y/lτ = 1.5 for the largest
Reτ obtained with the realistic sediment bed. The time-step size was variable and adjusted
according to CFL = 1.0. Table 3.14 also lists the relative roughness height H+

rough corre-
sponding to the average height of the roughness elements (twice the long semi-axis for the
ellipsoids and the diameter for the spheres) normalized with the viscous length scale lτ of the
turbulent channel flow. The equivalent sand-grain roughness usually used for rough walls is
not defined consistently for the studied cases, since a general description of three-dimensional
roughness is rather difficult [23, 241, 298, 70]. The results obtained with ellipsoidal rough-
ness elements are compared to the smooth channel solution and to a simulation presented
in [134] with spherical roughness elements in hexagonal packing.

run Reτ y+ H+
rough λpor

transverse 205 1.2 20.5 0.476
aligned 202 1.2 20.2 0.476
realistic 259 1.5 25.9 0.584
spheres [134] 202 1.2 23.3 0.395
smooth 184 1.0 0 1

Figure 3.14 Overview of runs listing friction Reynolds number, Reτ , average y-plus, H
+
rough,

relative roughness height, H+
rough, and average porosity of the bed, λpor. Instantaneous view on

sedimenting ellipsoids in laminar channel to obtain a realistic bed with contours of streamwise
velocity u.

All rough wall configurations studied here lead to an increase in drag compared to the
smooth wall reference. The regular packings with aligned and transverse orientation of the
ellipsoidal roughness elements do not differ significantly and give an increase of Reτ = uτH/ν
of about 11% in relation to smooth wall turbulent channel flow at Reτ = 184. This increase
obtained with ellipsoids of aspect ratio X = 2 also agrees well with the outcome for spherical
roughness elements obtained in [134]. The effect of particle shape is therefore negligible for
the parameters studied here in regular packing. The realistic sediment bed with almost
randomly oriented and irregularly distributed ellipsoids yields an increase of 41% in Reτ
compared to the smooth configuration and and increase of 27% compared to the sediment
bed consisting of regularly packed ellipsoids (see table in Figure 3.14). The average wall shear
stress which defines the friction velocity uτ =

√

〈τw〉/ρf was determined from the global
momentum balance 〈τw〉 ≈ 〈fx〉H therefore including the pressure loss due to interstitial
flow and due to the no-slip wall below the ellipsoids. A more detailed discussion on the
friction velocity and the positioning of a virtual wall for the flow over roughness elements is
given in [33].
Figure 3.15 shows instantaneous velocity fields u for the three cases and gives an impression
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of the respective sediment beds. The horizontal contour in these plots is placed at y/H =
0.05 corresponding approximately to the maximum in the streamwise velocity fluctuations
shown in the graphs of Figure 3.17. The two regular packings of ellipsoids show the typical
high speed and low speed streaks extending almost along the entire streamwise size of the
computational domain. Qualitatively, the streamwise size of the structures decreases for the
realistic bed as Reτ increases. Figure 3.16 shows complementary data and an iso-contour
of u/ub = 0.2. Here, a significant difference is visible between the aligned and transverse
orientation of ellipsoids. In the aligned case, the iso-surface has a wavy character strongly
correlated to the low speed streaks whereas in the transverse case, streamwise bands situated
in the spanwise gaps between the ellipsoids stretch straight along the full length of the
domain. The realistic bed yields a more heterogeneous and uneven iso-surface with also
some smooth regions.
The mean velocity profiles and the Reynolds stresses are given in Figure 3.17. The average
streamwise velocity 〈u〉/ub becomes close to zero at the top of the single sediment layer
for all regular packings. However, the realistic bed has a non-zero contribution down to
y ≈ −a, i.e. due to the increased porosity more interstitial flow is observable. The average
velocity profiles and all Reynolds stress profiles collapse for the regular packings of spherical
and ellipsoidal roughness elements with slightly larger fluctuations compared to the smooth
wall case. For the realistic case, a significant increase in the velocity fluctuations of all
components is observed. Especially the wall-normal contribution to the turbulent kinetic
energy approximately doubles compared to the smooth wall case. With increasing Reτ the
maxima in the Reynolds stresses are located closer to the wall.

Conclusions and outlook for rough wall, turbulent open channel flow

Phase-resolving simulations of turbulent, open channel flow over rough walls were performed
in the transitionally rough regime. Ellipsoidal roughness elements were employed in contrast
to sediment beds consisting of spheres often used in the literature. An increase of turbulent
fluctuations and Reτ is found for all roughness configurations compared to the smooth wall
case. A negligible impact of the shape and orientation of the roughness elements on the
turbulence statistics is observed for regularly packed ellipsoids of aspect ratio X = 2 and
spheres with a similar roughness height. In contrast, an irregular distribution of ellipsoidal
roughness elements, modeling a more realistic sediment bed, yields a significant increase of
Reτ at a comparable absolute roughness height. The shape of the roughness elements is
expected to have a marked influence when turning towards less spheroidal shapes within the
transitionally rough regime. Sharp shapes in aligned orientation with a transverse spacing,
as for instance found on the skin of fast sharks, are called riblets and can even yield a drag
reduction [79, 78, 11, 10].
A simple local, geometric argument in the alignment of spheres promotes a bias in the struc-
ture of large scale clustering [101]. It is also shown that the type of collision modeling and
the treatment of particle contact have a significant impact on large scale particle structures
forming on top of the sediment bed [294, 297, 134]. Hence, similar small scale effects concern-
ing the particle shape can be expected to have large effects on sediment motion, incipient
sediment erosion etc. The given implementation enables the study of basically arbitrary
particle shapes within the proposed immersed boundary method.
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a)

b)

c)

Figure 3.15 Instantaneous velocity field u for a) aligned, b) transverse and c) realistic orientation.
Horizontal contour situated at y/H = 0.05.
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a)

b)

c)

Figure 3.16 Instantaneous velocity field u and iso-contour u/ub = 0.2 for a) aligned, b) transverse
and c) realistic orientation.
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Figure 3.17 Mean velocity profile and Reynolds stresses for the three cases aligned, transverse
and realistic in comparison to a smooth channel and data for spherical roughness elements from
[134].
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3.3 Virtual mass concept for very light particles

3.3.1 Introduction

One of the main objectives of the present work is the simulation of bubble dynamics em-
ploying a variant of the IBM developed in [134, 136]. For particles with a density markedly
larger than that of the surrounding liquid, the particle dynamics are mainly governed by the
inertia of the immersed body itself. For bubbles on the other hand, the immersed object
has a vanishing density and hence the crucial inertia is determined by the attached fluid
mass which is accelerated with the bubble. This effect is generally addressed as added mass.
The dynamics of a heavy, settling sphere [181] served as a test case for the validation of
the present IBM in [134, 136]. It is, however, pointed out in [130, 129] that rising, light,
solid spheres do not obey the laws for free settling and their average drag deviates from the
standard drag curve obtained for a fixed sphere [37]. Light spheres behave more like gas
bubbles in contaminated systems [128]. The regimes of freely rising and falling spheres and
respective wake visualizations are discussed in [286, 287, 288]. A very extensive experimental
study and a review on the dynamics and wakes for the motion of a sphere in quiescent fluid is
provided in [113]. The study reveals that heavy falling spheres always settle on a dominantly
rectilinear trajectory, possibly oblique with low amplitude oscillations. Below a density ratio
of πρ . 0.4, spheres follow a zig-zag trajectory for Ret ∈ (260, 1550), whereas the critical
density ratio is somewhat higher, πρ . 0.6, at larger Reynolds numbers, Ret > 1550.
Numerical simulations of light spherical particles are rather rare. A fictitious domain method
applicable to a wide range of density ratios in particulate flows was presented in [7]. Jenny et
al. [122] performed a systematic study of a freely moving sphere over a wide range of density
ratios. At the low end of the density ratio, the authors report that their numerical results for
rigid spheres are in close agreement to literature data for spherical bubbles [309]. Although
the experiments [113] and the numerical predictions [122] contain certain discrepancies [63],
there is an agreement that above a critical Reynolds number only light spheres undergo
substantial path oscillations, including a regime of periodic zig-zag motion. Further, there is
consensus that the dynamics of the particle motion are significantly different for heavy and
light spheres.
Low density ratios (πρ . 0.4) are inaccessible by the original IBM [134, 136]. In the following
Section 3.3.2, a method is developed to overcome this limitation and to access the bubble-
like regime. The corresponding extension of the IBM, suggested in Section 3.3.3 obeys the
following properties:

- Applicability to arbitrary density ratios, especially πρ ≪ 1.

- Multiple particles in bounded domains can be handled.

- Accuracy, efficiency and robustness of the present IBM [136] are retained keeping the
explicit time integration and coupling scheme.

The improvement is based on a modified time integration scheme for the particle momentum
equation. It is termed ’virtual mass approach’. The corresponding virtual mass is of purely
numerical nature and shall not be confused with the physical added mass. The modified time
integration scheme is first applied to an analytical model problem. The extended IBM is
then validated against DNS data for the initial acceleration of a sphere towards its terminal
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velocity in quiescent liquid for various density ratios. The current section is part of the
manuscript [249].

3.3.2 Development of the numerical method

Discussion of the problem with low particle densities

In a Lagrangian, phase-resolving simulation, the translational and rotational motion of a
single spherical particle can be described by its linear and angular momentum equation
formulated in the laboratory system

mp
dup

dt
= ρf

∫

S

τ · n dS + (ρp − ρf )Vp g , (3.33a)

Ip
dωp

dt
= ρf

∫

S

r× (τ · n) dS , (3.33b)

as recalled from the introductory Section 1.2.2.
The Basset-Boussinesq-Oseen (BBO) equation describes the particle motion,

mp
dup

dt
=

∑

i

Fi = FD + FM + FL + FB + FAM + FP + FBH + ... , (3.34)

where FD denotes the drag force, FM the Magnus force, FL the lift force, FB buoyancy, FAM

the added mass force, FP the pressure gradient force and FBH the Basset history force. For
point particles, i.e. no resolution of the fluid-particle-interface is attained, the BBO-equation
provides the numerical framework. All forces are evaluated using appropriate correlations
also employing information from the underlying fluid. For a discussion of those correlations
see, e.g., Clift et al. [37].
In the present context, the added mass force is of specific interest which is the force necessary
to accelerate the fluid surrounding the particle,

FAM = mAM

(

Du

D t
− dup

d t

)

= CAM ρf Vp
durel

d t
, (3.35)

with CAM being the added mass coefficient and urel being the relative velocity between
the particle and the fluid. The added mass coefficient depends primarily on the geometry
of the individual particle and on the vicinity of other particles or bounding walls [257].
It does not depend on the particle density, the acceleration, the Reynolds number or the
boundary condition at the particle surface (no-slip or free-slip) [186]. For a single sphere in
an unbounded domain and irrotational flow, one can derive CAM = 0.5 [37, 114]. This value
for CAM seems also valid under relaxed conditions and is frequently used [299, 170, 155].
As a result of the inertia of the surrounding fluid, the acceleration of a very light particle
remains finite.
In a phase-resolving DNS, the surface integrals in equation (3.33) are evaluated directly from
the flow field yielding all forces and torques acting on the particle in an integral manner. For
example, the added mass force is inherently included in the surface integrals in (3.33). It is
then basically possible to access, e.g., the individual forces stemming from different physical
mechanisms which enter equation (3.34).
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The solution of (3.33) becomes problematic when πρ → 0 and thus mp → 0 as the left hand
side (lhs) of equation (3.33) becomes singular. It has been pointed out that the IBM of
Uhlmann [282] with explicit coupling becomes unstable for spherical particles with πρ . 1.2,
i.e. already for spheres heavier than the surrounding fluid. The stability range was extended
by Kempe et al. to enable the simulation of moderately light particles down to πρ ≈ 0.4
[134, 136]. Interestingly, this density ratio corresponds closely to the threshold for substantial
path oscillations obtained in the experiments [113] discussed in the introduction. With
the original formulation of the IBM, a lower density ratio presents with immediate strong
oscillations in up and ωp which lead to the divergence of the solution within the first few
time steps of the run. The scenario is basically insensitive to refinement of the spatial and
temporal resolution. For the ascent of a sphere in quiescent liquid, it was derived in [120, 122]
that explicit time integration must be expected to become unstable for πρ < 0.5. For light
spheres, these authors use implicit time integration of the particle momentum equation and
implicit coupling to the fluid phase [121, 120, 122]. More details are provided in Section
3.3.4 below.
The problems occurring at low density ratio ,πρ, can further be avoided by dealing with the
true added mass or the added mass tensor in the more general case of non-spherical particles.
A large body of work on the motion of particles freely rising or falling in fluids is based on the
solution of the generalized Kirchhoff equations [63, 186]. In this framework, the momentum
conservation of the combined fluid-particle system is considered with applicability to general
shapes. The dynamics and paths of an oblate ellipsoid were studied in [187] and the motion
of finite height cylinders was studied in [62, 67]. As a prerequisite, the added mass tensor
of the particle needs to be obtained from theoretical considerations or once from the short-
term response of the particle-fluid system to a given body acceleration [168, 186]. There are
certain limitations to this approach. The studies are conducted in an unbounded domain
corresponding to, e.g., the condition that the fluid is at rest at infinity. Only single, non-
deformable particles are considered since for a temporally varying bubble shape or for an
approaching second particle, the added mass changes in time.
In the simulation of point bubbles in complex, turbulent flows based on equation (3.34), the
added mass force, FAM , can simply be shifted to the lhs enabling stable time integration.
The added mass coefficient is assumed constant or obtained from a correlation, and the
relative velocity, urel, is computed using the fluid velocity, u, of the cell which comprises the
particle. For phase-resolving simulations in turbulent, bounded flows, a plausible idea could
hence be the evaluation of the actual added mass force, splitting it from the integral force
acting on the particle and also shifting it to the lhs of equation (3.33a). However, urel is not
easily obtained in a general flow field since it is conceptually hard to define the fluid velocity
at the position of the particle. Furthermore, the coefficient CAM is difficult to assess in the
general case of multiple particles of complex, possibly time-dependent shape in bounded
domains. Such an approach can hardly be formulated in a consistent way compatible with
the requirements of a DNS. Therefore, a simple, but effective alternative is developed in the
next section.

Basic idea

In the following, the concept is discussed for the translational momentum equation of a
spherical particle in quiescent fluid. It will be apparent subsequently that the idea is also
applicable to the equation governing the rotational motion, to more general particle shapes
and to complex flows in bounded geometries.
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First, a virtual force Fv is added to both sides of (3.33a),

mp
dup

d t
+ Fv = ρf

∫

S

τ · n dS + (ρp − ρf )Vp g+ Fv , (3.36)

where the virtual force is expressed similarly to the added mass force as

Fv = Cv ρf Vp
dup

d t
. (3.37)

Note that the particle velocity, up, is used in this definition and not the relative velocity.
The ambiguous evaluation of the latter is not necessary. This yields

(ρp + Cv ρf )Vp
dup

d t
= ρf

∫

S

τ · n dS + (ρp − ρf )Vp g+ Fv . (3.38)

This formally removes the singularity on the lhs when ρp → 0 for Cv > 0. The second step
is a suitable discretization in time of Fv = Cv ρf Vp dup/dt on the right hand side (rhs). It
has then to be shown that consistency and stability are achieved for arbitrary πρ with the
resulting full temporal discretization.
Note that Fv does not need to have physical meaning, but is a purely mathematical term
designed to stabilize the temporal integration. In the literature, the added mass effect is
sometimes also addressed as ”virtual mass effect”. Here, the term ”virtual mass force”
is employed to denote the numerical stabilization mechanism described above, since the
definition (3.37) shows some similarity to the actual added mass force. It should however
not be confused with the true physical added mass force, FAM , in (3.35). The latter is
resolved directly by the IBM, but cannot be separated easily from the other forces in a
complex flow.
In the following, the numerical solution of the original problem (3.33a) and the modified
problem (3.38) are addressed. A general time integration scheme evolves the solution for
up from time level tn to time level tn+1 = tn + ∆t by un+1

p = un
p + ∆tψ∗p employing the

increment function ψ∗p, which depends on the chosen scheme. One main goal is to retain the
order of the time integration scheme when the virtual mass concept is applied. The order of
convergence q remains unchanged when substituting the increment function ψ∗p by another
increment function,

ψp = ψ
∗
p +O (∆tq) , (3.39)

in the discrete evolution of up [50] yielding

un+1
p = un

p +∆tψp . (3.40)

Further goals to be met are stability, accuracy and ease of implementation. Several time
schemes have been developed on this basis and will be presented in the next sections.

Description of the generic test case

To assess the virtual mass concept, a simple test case is introduced for which an analytical
solution exists. It features a sphere sedimenting or rising in quiescent, unbounded fluid.
Stokes flow conditions are assumed to prevail (Re ≪ 1). Dropping the index p for the
particle velocity, the translational particle momentum equation reads

mpu̇(t) = FD,Stokes + FB , (3.41)
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with the Stokesian drag force and the buoyancy force,

FD,Stokes = −6πrpµf u , (3.42)

FB =
4

3
πr3pg (ρp − ρf ) . (3.43)

In (3.41) and below, the temporal derivative is denoted by a dot. This setting, together
with the initial condition u(t = 0) = 0, will be addressed as ’Stokes sphere problem’ in the
following. Equation (3.41) sets a suitable scene to develop and assess different time schemes.
Adding Fv = Cvmvu̇ on both sides of (3.41) yields the modified problem including the virtual
mass,

(mp +mv) u̇(t) = FD,Stokes + FB + Fv . (3.44)

This can be rewritten as

u̇(t) = f(u(t), u̇(t)) = cuu+ cgg + cau̇(t) , (3.45)

where

cu = −
9µf

2r2p (ρp + Cvρf )
, cg =

ρp − ρf
(ρp + Cvρf )

, ca =
Cvρf

(ρp + Cvρf )
. (3.46)

In the following, the abbreviation

fv(t) = ca u̇(t) (3.47)

is used. The original initial value problem with the initial condition for the particle velocity,

u̇(t) = f(u(t)) with u0 = u(t = 0) , (3.48)

is now replaced by the following modified initial value problem using the virtual mass ap-
proach,

u̇(t) = f(u(t), u̇(t)) with u0 = u(t = 0), u̇0 = u̇(t = 0), (3.49)

requiring an initial condition for the velocity and the acceleration.
The analytical solution of the problem (3.41) for u0 = 0 is given by

uref (t) = u∞ (1− exp(−λ t)) , (3.50a)

u̇ref (t) = λu∞ exp(−λ t) , (3.50b)

where

u∞ =
2 (ρp − ρf ) r

2
pg

9µf

, λ =
9µf

2r2pρp
. (3.51)

The analytical solution of this problem will be used as a reference below. It is plotted in
Figure 3.18 for density ratios πρ = ρp/ρf = 0.1, 0.5 and 2.0 using the physical properties
µf = 0.001, ρf = 1000, g = 9.81 and rp = 0.0007. These properties are used throughout for
the Stokes sphere test case. As this section primarily deals with purely numerical issues, the
units are omitted.
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Figure 3.18 Exact solution of Stokes sphere problem (3.41). Vertical particle velocity over time
for different density ratios πρ.

Parameters of the numerical experiments

To illustrate the following discussion and to motivate certain algorithmic developments,
the original problem (3.41) and the modified problem (3.45) are solved with different time
integration schemes. The physical properties were chosen as stated above with a density
ratio of πρ = 0.5. The temporal discretization was conducted with ∆t = tend/N∆t and
tend = 0.5 for the number of time steps, N∆t, provided in Table 3.3.
A virtual mass coefficient of Cv = 0.5 was used in all schemes denoted with the label vm.
The order of convergence of the different schemes to follow is addressed by the maximum
error compared to the reference solution given by (3.50),

ǫmax = max{|u(t)− uref (t)|}, (3.52)

The order q of the schemes is then numerically calculated from

q =
1

ln 2
ln
ǫmax (2∆t)

ǫmax (∆t)
, (3.53)

using the two runs with the finest time step, N∆t = 1600 and N∆t = 3200.
The numerical results for the Stokes sphere problem obtained with the different time schemes
defined below are assembles in Table 3.3.
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Table 3.3 Stokes sphere problem. Maximum error ǫmax in u(t) for different time schemes with
labels as defined in the text. Parameters πρ = 0.5, Cv = 0.5, tend = 0.5.

Scheme N∆t = 400 800 1600 3200 Order q
AB2 3.99E-05 1.04E-05 2.65E-06 6.68E-07 1.99
AB2-vm 1.14E-04 2.94E-05 7.44E-06 1.87E-06 1.99
AM3-vm 1.51E-07 1.90E-08 2.38E-09 2.99E-10 3.00
CN-vm 1.61E-05 4.10E-06 1.01E-06 2.43E-07 2.06
LF-vm 6.50E-05 1.68E-05 4.25E-06 1.07E-06 1.99
RK3 1.01E-07 1.25E-08 1.56E-09 1.94E-10 3.00
RK3-a-vm 1.43E-07 1.84E-08 2.34E-09 2.94E-10 3.00
RK3-1-vm 2.13E-03 1.10E-03 5.56E-04 2.80E-04 0.99
RK3-1-AM3-vm 5.79E-04 3.00E-04 1.53E-04 7.72E-05 0.99
LF-RK3-vm 3.95E-05 1.02E-05 2.58E-06 6.50E-07 1.99
AB2-RK3-vm 4.59E-05 1.18E-05 3.00E-06 7.55E-07 1.99
Lag-RK3c-vm 4.10E-06 1.11E-06 2.87E-07 7.31E-08 1.97
Lag-RK3tp-vm 9.45E-05 2.42E-05 6.13E-06 1.54E-06 1.99

Multistep methods

Multistep methods construct a higher order approximation by using additional data points
which have already been computed [68, 50]. For comparison, the original problem is solved
here using a second-order accurate Adams-Bashforth scheme. The abbreviation AB2 denotes
the explicit two-step Adams-Bashforth scheme for constant time step size

fn = cuu
n + cgg , (3.54)

un+1 = un +
∆t

2

(

3fn − fn−1
)

. (3.55)

For the Stokes sphere test case (3.41), second order accuracy is obtained as illustrated by
the result in Table 3.3.
For the modified problem, employing a second order backward finite difference formulation
[68] for the acceleration u̇n from (3.45), yields the following explicit Adams-Bashforth scheme,
AB2-vm:

fn
v = ca

3un − 4un−1 + un−2

2∆t
, (3.56)

fn = cuu
n + cgg + fn

v , (3.57)

un+1 = un +
∆t

2

(

3fn − fn−1
)

. (3.58)

With this two-step scheme with constant time step size, again second order accuracy is ob-
tained for the Stokes sphere problem. Only a slightly larger maximum error is apparent from
Table 3.3 compared to the original scheme AB2.
If the data point tn+1 is incorporated into the computation, an implicit formulation is ob-
tained. The implicit three-step Adams-Moulton method, abbreviated as AM3-vm, reads

fn
v = ca

11un − 18un−1 + 9un−2 − 2un−3

6∆t
, (3.59)

fn = cuu
n + cgg + fn

v , (3.60)
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un+1 = un +
∆t

12

(

5fn+1 + 8fn − fn−1
)

, (3.61)

with constant time step size. For this scheme, an iterative procedure is required as the rhs
contains values at tn+1. A third order backward finite difference formulation [68] for the
acceleration u̇n is used and overall 3rd order accuracy is attained for the analytical test case.
With the third order scheme, the absolute maximum error is substantially smaller compared
to the two-step methods (Table 3.3). Additional multistep methods including the virtual
mass contribution, such as the Crank-Nicolson scheme (CN-vm) and the Leap-Frog scheme
(LF-vm) are listed in the Appendix F .
With the virtual mass approach, the original order of the method is retained using backward
finite differences of the same order for u̇n on the rhs in the test case considered. Multistep
methods are easy to implement and are quite efficient in CPU time per time step. The
downside is the difficult startup, as values for t < 0 are not available within the first time
steps. For the chosen test case, the analytical solution was used for the first four time
steps, throughout. Further disadvantages are a rather large demand on memory resources
for saving the values at the old time levels and an increased complexity when using variable
time step size.

Runge-Kutta methods

Runge-Kutta methods use specific sub-step values in the time interval [tn, tn+1] to construct a
higher order approximation [50]. In contrast to the multistep methods, no additional values
from older time steps are necessary. Therefore, the startup at t = 0 is straightforward.
Furthermore, a variable time step size is easily accounted for. An s-stage, explicit Runge-
Kutta method reads as

un+1 = un +∆t
s

∑

i=1

biki , (3.62)

where for i = 1, . . . , s,

ki = f tn + ci∆t, u
n +∆t

i−1
∑

j=1

aijkj

)

. (3.63)

Higher order accuracy is achieved by proper weighting of the increments ki with the weights
bi in (3.62). The increments are obtained at sub-step time levels t

n+ ci∆t employing nested
information from the previous sub-steps weighted with aij where aij = 0 for j ≥ i. Figure
3.19 lists the coefficients of the present three-stage Runge-Kutta method in form of the
Butcher scheme [50]. In Appendix G, the conditions on the set of coefficients are re-derived
for which the scheme is consistent and the higher order error terms vanish so that the three-
stage scheme is third order accurate.
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Figure 3.19 Butcher scheme of the coefficients for a three-stage explicit Runge-Kutta method.
The right graph contains the values used in the present work [308, 134].

)
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In the original method implemented in our code PRIME, a three-stage Runge-Kutta method
is employed with implicit treatment of the viscous terms by a Crank-Nicolson method [136,
134]. Overall second order accuracy in time is achieved [219, 282, 134]. More specifically,
a low storage Runge-Kutta scheme is used [136] leading to a different nomenclature for the
coefficients [308, 137, 305]. In simple words, the final weighted summation of the increments
in (3.62) is re-written to allow a successive evaluation without storing intermediate values.
For simplicity, the Butcher notation is kept here representing a general Runge-Kutta scheme.
It is hence desirable to develop a virtual mass variant of this scheme which is at least of
second-order accuracy.
With respect to the implementation of the virtual mass concept into the PRIME code, it is
hence desirable to develop a virtual mass variant of this scheme which is at least of second-
order accuracy.
For comparison, a standard three-step Runge-Kutta scheme (RK3 ) is employed. It reads for
the original unmodified problem (3.41)

k1 = cuu
n + cgg , (3.64)

k2 = cu (u
n + a21∆t k1) + cgg , (3.65)

k3 = cu (u
n + a31∆t k1 + a32∆t k2) + cgg . (3.66)

With the coefficients from Figure 3.19, third order convergence is achieved for the Stokes
sphere test case (Table 3.3).
Now the virtual mass contribution shall be included to enable lower particle density ratios.
Proceeding as for the multistep methods by calculating u̇n with a third-order backward finite
difference formula at tn and using this for fn

v in all Runge-Kutta sub-steps yields the scheme

fn
v = ca

11un − 18un−1 + 9un−2 − 2un−3

6∆t
, (3.67)

k1 = cuu
n + cgg + fn

v , (3.68)

k2 = cu (u
n + a21∆tk1) + cgg + fn

v , (3.69)

k3 = cu (u
n + a31∆tk1 + a32∆tk2) + cgg + fn

v , (3.70)

un+1 = un +∆t (b1k1 + b2k2 + b3k3) , (3.71)

named RK3-1-vm here. It turns out that only first order convergence is obtained for the
Stokes sphere test case (Table 3.3).
Just using the temporal derivative u̇n hence is insufficient for a higher order scheme. A more
accurate prediction of u̇ is therefore needed at the sub-step levels ci∆t. The derivation of the
original Runge-Kutta coefficients is only valid for the unmodified problem u̇ = f(u(t)) [50]. If
the additional argument u̇ is introduced into the rhs, the coefficients ki have to be changed to
achieve optimal order. A Runge-Kutta scheme can basically be seen as a predictor corrector
scheme on the time interval (tn, tn+1) [68]. For instance, a two-stage Runge-Kutta scheme

uses an explicit Euler predictor to calculate u
n+1/2
pred = un + 1

2
∆t f (tn, un). This prediction is

then corrected using the midpoint rule for un+1 = un+ 1
2
∆t f

(

tn+1/2, u
n+1/2
pred

)

. The predictor

is only first-order accurate and therefore cannot be used to accurately calculate u̇n+1/2 at
the sub-step time level.
In the following, we illustrate that in principle the order of the Runge-Kutta scheme can be
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retained with the virtual mass approach. This is done by using the analytical solution of the
problem (3.50) to determine fv,ref (t

n + ci∆t) in the second and third sub-step yielding

fn
v = ca

11un − 18un−1 + 9un−2 − 2un−3

6∆t
, (3.72)

k1 = cuu
n + cgg + fn

v , (3.73)

k2 = cu (u
n + a21∆tk1) + cgg + fv,ref (t

n + c2∆t) , (3.74)

k3 = cu (u
n + a31∆tk1 + a32∆tk2) + cgg + fv,ref (t

n + c3∆t) , (3.75)

termed RK3-a-vm here. Indeed, third order convergence and maximum errors comparable
to the original scheme RK3 are achieved for the test problem (Table 3.3), which highlights
the need for an accurate prediction of u̇(t) at the sub-step time levels. This, however, is
difficult since the sub-steps themselves are only of lower order, i.e. an accurate prediction of
u is not directly available for a higher order interpolation of u̇(t).
As a solution to this problem, an additional higher order predictor step over the whole time
step is suggested here to enable an accurate approximation of u̇(t) on the entire interval
(tn, tn+1) as detailed in the next paragraph.

Predictor-corrector schemes

It is again emphasized, the goal is to achieve a scheme for the virtual mass approach with
second order convergence as previously with the unmodified method. It is desired that the
three-stage Runge-Kutta scheme currently implemented in the code PRIME can be kept.
Supplemental steps in the time integration scheme are a common procedure to add specific
features like lower absolute errors and automatic error control or increased stability [68].
One possibility is to combine an Adams-Bashforth-predictor and the trapezoidal rule for the
virtual force which is then applied in the Runge-Kutta sub-steps:

fn
v = ca

3un − 4un−1 + un−2

2∆t
, (3.76)

fn = cuu
n + cgg + fn

v , (3.77)

un+1
pred = un +

∆t

2

(

3fn − fn−1
)

, (3.78)

fn+1
v,pred = ca

3un+1
pred − 4un + un−1

2∆t
, (3.79)

f̃
n+ 1

2
v =

1

2

(

fn
v + fn+1

v,pred

)

, (3.80)

k1 = cuu
n + cgg + f̃

n+ 1
2

v , (3.81)

k2 = cu (u
n + a21∆tk1) + cgg + f̃

n+ 1
2

v , (3.82)

k3 = cu (u
n + a31∆tk1 + a32∆tk2) + cgg + f̃

n+ 1
2

v , (3.83)

un+1 = un +∆t (b1k1 + b2k2 + b3k3) . (3.84)
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The scheme is named AB2-RK3-vm here and yields second order convergence as illustrated
in Table 3.3. The predictor is evaluated at time level tn and is used subsequently in all
Runge-Kutta sub-steps. In a similar fashion, other multistep methods may be employed
as a predictor, illustrated for example by the scheme LF-RK3-vm in Appendix F. On the
contrary, the scheme RK3-1-AM3-vm, also specified in Appendix F, demonstrates that using
a higher order corrector after the Runge-Kutta scheme still only yields first-order, because
the predicted un+1

pred is only first order accurate and so is fv,pred. All these methods are fully
explicit, and no inner iterations are necessary. A reduction of the absolute error was achieved
compared to the sole application of the predictor schemes for the Stokes sphere test case
considered (Table 3.3).
The realization remains complicated for variable time step size. This can be circumvented
by modifying the predictor step. The usage of a Lagrange polynomial, PN , of order N
is proposed to predict fv. With u given at arbitrary, but different instants in time, tj,
j = 0, . . . , N , the interpolation reads

u(t) ≈ PN(t) =
N
∑

j=0

Lj(t) u(tj) where Lj(t) =
N
∏

i=0, i 6=j

t− ti
tj − ti

, (3.85)

and the first derivative is obtained by

u̇(t) ≈ P ′N(t) =
N
∑

j=0

L′j(t) u(tj) where L′j(t) =

∑N
i=0, i 6=j

∏N
k=0, k 6=i (t− tk)

∏N
i=0, i 6=j (tj − ti)

. (3.86)

A second order polynomial, interpolating three adjacent points (tn, un), (tn−1, un−1) and
(tn−2, un−2), is then given by

u(t) ≈ P2(t; u
n, un−1, un−2) =

(t− tn−1)(t− tn−2)

(tn − tn−1)(tn − tn−2)
un (3.87)

+
(t− tn)(t− tn−2)

(tn−1 − tn)(tn−1 − tn−2)
un−1

+
(t− tn)(t− tn−1)

(tn−2 − tn)(tn−2 − tn−1)
un−2 ,

and its first derivative reads

u̇(t) ≈ P ′2(t; u
n, un−1, un−2) =

2t− tn−1 − tn−2

(tn − tn−1)(tn − tn−2)
un (3.88)

+
2t− tn − tn−2

(tn−1 − tn)(tn−1 − tn−2)
un−1

+
2t− tn − tn−1

(tn−2 − tn)(tn−2 − tn−1)
un−2 ,

where the additional arguments after the semicolon are introduced to indicate which values
are being interpolated. Employing a second order Lagrange extrapolation for fv,pred (t

n+1)

and making use of the trapezoidal rule for the virtual force f̃
n+ 1

2
v in the Runge-Kutta sub-

steps yields the following scheme, labeled Lag-RK3tp-vm,

fv,pred
(

tn+1
)

= caP
′
2

(

tn; un, un−1, un−2
)

, (3.89)
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f̃
n+ 1

2
v =

1

2

(

fn
v + fn+1

v,pred

)

, (3.90)

k1 = cuu
n + cgg + f̃

n+ 1
2

v , (3.91)

k2 = cu (u
n + a21∆t k1) + cgg + f̃

n+ 1
2

v , (3.92)

k3 = cu (u
n + a31∆t k1 + a32∆t k2) + cgg + f̃

n+ 1
2

v , (3.93)

un+1 = un +∆t (b1k1 + b2k2 + b3k3) . (3.94)

The implementation is fairly easy and ∆t = tn+1−tn is allowed to change in time. The desired
second order convergence is obtained with slightly larger maximum errors compared to the
scheme AB2-RK3 (Table 3.3). A reduction of the error can be achieved by using the second
order Lagrange approximation at the sub-step time levels fv (t

n + ci∆t) = caP
′
2 (t

n + ci∆t)
leading to scheme Lag-RK3c-vm described in Appendix F.

Conclusions for the generic test case

Table 3.3 lists the maximum error obtained with the different time integration schemes and
the convergence order deduced from these data. The results illustrate that the virtual mass,
introduced into the Newtonian equation of motion of a particle to remove the singularity
for mp → 0, is operational. The virtual mass concept is applicable in a straightforward
manner to all multistep methods studied here (AB2-vm, AM3-vm, CN-vm, LF-vm) yielding
the same order of accuracy as without virtual force. In the present tests, a moderately in-
creased absolute error was observed, as apparent, e.g., by comparing the results of AB2 and
AB2-vm. For the Runge-Kutta schemes, an accurate prediction of u̇ is necessary at substep
time levels to conserve the order of the scheme which is evident, e.g., from the results of the
schemes RK3-a-vm and RK3-1-vm. This prediction of u̇ for the Runge-Kutta method can
be achieved using a multistep scheme as a predictor and the trapezoidal rule for fv, which is
then used in the Runge-Kutta scheme as shown for schemes LF-RK3-vm and AB2-RK3-vm.
Stability issues might arise from the predictor scheme. The estimate of u̇ for the Runge-
Kutta method can also be obtained by extrapolation with a Lagrange polynomial which
gives the desired second order convergence of schemes Lag-RK3tp-vm and Lag-RK3c-vm.
Furthermore, the additional data gathered in Appendix H show that second-order conver-
gence is also obtained when using the L1-error instead of the maximum error. The order
of convergence remains unchanged if a virtual mass coefficient of Cv = 1.0 is used yielding
slightly larger absolute errors compared to the reference solution for the Stokes sphere test
case. The same observations hold for a density ratio of πρ = 0.1 with somewhat higher errors
obtained for the same temporal discretization due to the larger acceleration in this case as
apparent from Figure 3.18. The choice of an appropriate initial condition will be addressed
below in Section 3.3.3. The more general application of the concept to the phase-resolving
simulation of particle motion for an arbitrary density ratio is discussed in the next section.

3.3.3 Phase-resolving simulation of particle motion for an arbi-

trary density ratio

Implementation in PRIME

In order to allow for very low particle-to-fluid density ratios, the scheme Lag-RK3tp-vm
was implemented in the multiphase code PRIME [134, 136]. Note that the used Runge-
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Kutta method is a low storage scheme. The corresponding coefficients αk are taken from
[308, 137, 282]. With respect to the original implementation, only minor modifications are
necessary. The virtual mass approach alters the linear momentum equation of the particle
(3.95) and the angular momentum equation (3.98), enabling the simulation of very light
particles.
The translational motion of the particle center is obtained for Runge-Kutta step k with
k = 1, 2, 3, in the time interval [tn, tn+1] from

uk
p − uk−1

p

∆t
=

ρf
Vp (ρp + Cvρf )





∫

S

τ · n ds





k

+2αk ρp − ρf
ρp + Cvρf

g+
2αk

Vp (ρp + Cvρf )
F̃

n+ 1
2

v , (3.95)

where

F̃
n+ 1

2
v =

1

2

(

F n
v + F n+1

v,pred

)

. (3.96)

The force vector F n+1
v,pred has the components

F n+1
v,pred · eβ = Cv ρf Vp u̇

n+1
p · eβ = Cv ρf Vp P

′
2(t

n+1; unp,β, u
n−1
p,β , u

n−2
p,β ) , (3.97)

with the index β = 1, 2, 3 designating the Cartesian components of a vector and eβ the unit
vector in the corresponding Cartesian direction, respectively. Each velocity component is
hence extrapolated individually and its temporal derivative is computed at tn+1.
In an analogous way as for the linear momentum, the virtual mass concept is also applied
for the angular momentum. The rotational motion of a spherical particle is thus computed
by solving

ωk
p − ωk−1

p

∆t
=

ρf
Ip + Iv





∫

S

r× (τ · n) ds





k

+
2αk

Ip + Iv
M̃

n+ 1
2

v . (3.98)

The virtual moment of inertia in this case is taken to be Iv = 2/5Cv,ωρfVpr
2
p, and the rhs of

(3.98) determined according to

M̃
n+ 1

2
v =

1

2

(

Mn
v +M

n+1
v,pred

)

, (3.99)

with
Mn+1

v,pred · eβ = Iv ω̇
n+1
p · eβ = Iv P

′
2(t

n+1, ωn
p,β; ω

n−1
p,β , ω

n−2
p,β ) . (3.100)

The coefficient Cv,ω is chosen to be Cv,ω ≈ Cv here, i.e. the same as for the linear momentum.
The surface integrals in squared brackets on the rhs of (3.95) and (3.98) yield the force and
torque the fluid exerts on the particle. Their evaluation is discussed in [136] and Section
3.2.3.
Concerning the validation of the virtual mass approach for the angular momentum, simula-
tions were conducted for a sphere in a plane shear flow with and without virtual mass (not
shown here). Excellent agreement was found and the outcome is analogous to the one in the
next sections for the linear momentum, i.e. the order of convergence is unchanged by the
virtual mass approach while enabling low density ratios. Further validation was performed
for spheroidal particles accounting for a virtual mass tensor.
With respect to the parallelization, only the master-master communication needs to be al-
tered. Once a particle leaves the local domain of a process, its short history of up and
ωp, i.e. (u

n
p,β, u

n−1
p,β , u

n−2
p,β ) and (ωn

p,β, ω
n−1
p,β , ω

n−2
p,β ), is transferred to the new master-process

by MPI-communication. The parallel performance and the high efficiency of the method
remain basically unchanged no matter whether heavy or light particles are considered.
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Specification of the test problem

The test problem consists of a sphere moving under the action of gravity at finite Reynolds
number. A single sphere ascending or sedimenting in quiescent fluid is characterized by the
Galilei number, G, and the density ratio, πρ, with

G =

√

|πρ − 1| g d3p
ν

, πρ =
ρp
ρf
. (3.101)

The Galilei number is chosen to G = 170 where dp = 1 and g = (−10, 0, 0) are used here.
The fluid density is set to ρf = 1 here. First, a density ratio of πρ = 0.5 is chosen to
enable a comparison of the original method with the modified virtual mass scheme. Lower
density ratios lead to instabilities with the original scheme of [136]. Second, the modified
scheme with virtual mass is demonstrated to be applicable for a density ratio close to zero,
πρ = 0.001. The convergence behavior is studied as well for this case.
The purpose here is validation rather than analysis of the physical phenomena, so that only
the initial phase of the trajectory is simulated. This can be accomplished using a cubic
domain with L = (6.4, 6.4, 6.4) dp. It is discretized equidistantly with N = (Nx, Ny, Nz)
cells with the number of points being varied later on to assess convergence. The spacing of
the equidistant grid is ∆x = ∆y = ∆z = h. Periodic boundary conditions are applied in all
three directions. With the fluid and the sphere initially at rest, the simulation is run until
te = 0.2, i.e. only the beginning of the acceleration phase is considered. For the virtual mass
approach (vm), Cv = 0.5 is used, whereas the original method, i.e. no virtual mass (nov),
refers to the original scheme of [136].

Initialization

Similar to the considered multistep method, the scheme Lag-RK3tp-vm based on the La-
grange polynomial requires special concern at startup. The virtual mass approach needs
initial values for (unp,β, u

n−1
p,β , u

n−2
p,β ) and (ω

n
p,β, ω

n−1
p,β , ω

n−2
p,β ) at t = 0, i.e. for n = 0.

While unp,β = 0 and ωn
p,β = 0 are given by the formulation of the test case where the particle is

initially at rest in quiescent fluid, the additional values defining the translational and angular
acceleration are not that clear. For the present problem, the sphere initially experiences no
torque from the fluid and all components of the angular acceleration can be set to zero. In
the present setup, rotational motion in general is negligible [2]. Wake transition and the
connected path instability can lead to rotation in the later stages, though, which are beyond
the scope of this study.
Concerning the translational acceleration, two different choices for the initial values in the
determination of the virtual force are discussed. First, F̃v(t = 0) = 0 is used on the rhs of
(3.95), i.e. un−1p,β = un−2p,β = 0. This corresponds physically to an initially increased inertia
of the particle. Second, the analytical solution for the physical added mass force is used to
determine the initial acceleration, u̇p,0, under the action of gravity neglecting other forces.
The added mass is defined as mAM = CAM ρfVp with CAM = 0.5 for a sphere, so that

(mp +mAM) u̇p,0 = FB, (3.102)

u̇p,0 =
(ρf − ρp)

(ρp + CAMρf )
g . (3.103)
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The influence of the initialization is studied by comparison to the reference solution without
virtual mass modeling (nov), where no additional initial condition for the acceleration is
necessary. The relative error is thus defined as ǫref (t) = ‖up − up,nov‖/‖up,nov‖. Table 3.4
lists the maximum error max{ǫrel}, the time average 〈ǫrel〉, and the error at the end of the
time interval ǫrel (te) with t ∈ [∆t, te] and te = 0.2.

Table 3.4 Influence of the initialization on the relative error in up(t) for πρ = 0.5, where the
reference is the solution without virtual mass (nov).

Initialization dp/∆x ∆t max{ǫrel} 〈ǫrel〉 ǫrel (te)

F̃v(t = 0) = 0 on rhs of (3.95) 40 1.0E-03 3.96E-01 3.05E-02 5.64E-03
Analyt. added mass (3.103) 40 1.0E-03 9.30E-02 2.56E-03 4.59E-04

The maximum error occurs for the initial time step and the error introduced by the chosen
initialization vanishes with time. The initialization with the analytical solution for the added
mass force yields lower errors for the present setup and is thus retained throughout this study.
The issue of the initial condition is studied here for completeness to set the scene for the
subsequent tests. In the simulation of an experiment where light particles or bubbles are
introduced into a flow, strong physical modeling is required for the startup in any case totally
overwhelming the issue of choosing F̃v(t = 0) = 0 [247].

Discretization error

To determine the overall order of accuracy of the modified method, the temporal and spa-
tial discretization are studied together, i.e. the time step and the grid spacing are refined
maintaining ∆t/∆x = const. to avoid dominance of the spatial error in case of small time
steps. The number of forcing points on the surface of the sphere is increased as well with
NL ∼ 1/∆x2. For the refinement study, a time step of ∆t = 5 ·10−4 was chosen together with
N3

x = 1283. The convergence is studied for the original method (nov) and the modification
with virtual mass (vm) individually. For both, a reference solution was determined with
N3

x = 5123. This corresponds to a spatial resolution of dp/∆x = 80, i.e. eighty gridpoints
over the diameter of the sphere.
The relative error compared to the respective reference is defined by ǫ = ‖up−up,ref‖/‖up,ref‖
and is calculated at te = 0.2. The results of the refinement study are listed in Table 3.5 and
illustrated in Figure 3.20. The convergence order q is determined by a formula analogous to
(3.53).
The results show that the solution with the new time scheme is virtually the same as

the one obtained with the unmodified method. Practicly the same relative errors and al-
most identical values for the particle velocity are computed for all numerical resolutions, e.g.
up(te) = 6.1683 · 10−1 (vm) and up(te) = 6.1625 · 10−1 (nov) for dp/∆x = 20.
The order of convergence is the same in both cases. Using the two finest grids, a convergence
order of 1.9 is obtained.

The major benefit of the virtual mass approach is that it allows simulations with very low
particle densities. As in the previous section, a rising sphere with G = 170 is considered
(where dp = 1, ‖g‖ = 10), but now with a substantially reduced particle-to-fluid density
ratio of πρ = 0.001. This case is no more accessible with the original method. All other
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Table 3.5 Convergence order q of the method with virtual mass (vm) compared to the original
method (nov) for G = 170 and πρ = 0.5. Relative error ǫ in up(t) at te = 0.2.

nov vm
Nx dp/∆x N∆t NL ǫ(te) q ǫ(te) q
64 10 200 315 2.9205E-01 2.9140E-01
96 15 300 708 1.8060E-01 1.2 1.7928E-01 1.2
128 20 400 1258 1.2100E-01 1.4 1.2017E-01 1.4
192 30 600 2828 6.3604E-02 1.6 6.3307E-02 1.6
256 40 800 5028 3.6751E-02 1.9 3.6751E-02 1.9
512 80 1600 20107 Reference Reference

Figure 3.20 Convergence of the original method and the new method with virtual mass for the
physical parameters G = 170 and πρ = 0.5. Furthermore, convergence of the virtual mass approach
for the case of a very light particle, G = 170 and πρ = 0.001, which is inaccessible by the original
method.

numerical parameters remain as described above. The change in the particle dynamics with
πρ during the acceleration towards the terminal velocity is, e.g., apparent in Figure 3.21.
Here, again the first stage of this transient until te = 0.2 is of interest and the reduction of
the discretization error is studied with simultaneous refinement in space and time. Figure
3.20 shows the relative error in the particle velocity at time te over the grid resolution for
πρ = 0.001 and πρ = 0.5, where the reference solutions are obtained with dp/∆x = 80.
The errors cannot be compared between the cases due to the faster acceleration of the light
particle. From the simulations, close to second order convergence is also obtained for very
low particle densities. The convergence properties of the original IBM are hence retained for
very light spheres.

Comments on stability

The simulations concerning the discretization error were performed for small time step size
with the intention to accurately determine the order of the new scheme. From the practical
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experience of many simulations with various setups, it appears that the stability properties
of the original IBM are retained with the virtual mass approach for very light particles. The
requirement on the time step size remains unchanged and time steps up to CFL ≈ 1.0 can
be used. A more rigorous stability analysis for the motion of a sphere governed by equations
(3.33) or (3.34) would be desirable for the future. The virtual mass concept has been applied
for the simulation of single bubble motion at high Reynolds numbers [244, 246] employing
deformable bubble shapes. Simulations with multiple particles have been performed as well,
with no stability problems stemming from the virtual mass approach. In these configurations,
high accelerations, also of alternating sign, are present related, for instance, to particle-wake
interaction, or particle-wall and inter-particle collisions. Forces and moments resulting from
collisions need to be modeled and enter as additional terms on the rhs of (3.95) and (3.98)
[135].
The modified method enabled, e.g., the study of a bubble chain [247] or studies on the
clustering of spherical bubbles and the formation of wet metal foam [102, 101]. In contrast
to the present study in quiescent liquid, many spherical and ellipsoidal light particles in
turbulent channel flow were examined with the virtual mass approach in [236, 238, 237]
using an adaptive time step size to yield CFL ≈ 1.0.

3.3.4 Validation with implicit, highly resolved spectral simula-

tions

A quantitative validation of the predictions with the present method is provided for the
motion of a sphere under the action of gravity in viscous fluid with G = 170 and density
ratios πρ = 0.001, 0.5 and 2.0 (where again dp = 1, g = ‖g‖ = 10, and ρf = 1 are used here).
With respect to the specification of the test problem in Section 3.3.3, the computational
domain is enlarged in the direction of particle motion to L = (12.8, 6.4, 6.4) dp in order to
assess the terminal velocity of the particle. It is discretized with an equidistant grid of N =
(512, 256, 256) cells, corresponding to dp/∆x = 40, and a time step of ∆t = 1 · 10−3 is used.
The sphere is initially at rest in quiescent fluid and positioned at xp,0 = (0.6, 3.2, 3.2) dp. The
validation data was received from private communication with Mathieu Jenny, the author
of [121, 120, 122]. In these studies, the motion of the sphere is simulated in a reference
frame moving with the sphere, and a body fitted grid is employed. A spectral discretization
in space of high accuracy is used and implicit time integration of the particle momentum
equations is applied. With πρ → 0, the solution becomes independent of the particle density
as only the inertia of the surrounding fluid determines the dynamics. The data obtained
for πρ = 0.001 with the present approach can hence be compared to the validation data
with πρ = 0. For the comparison, the gravitational velocity and time scale are utilized as
reference values

ug =
√

|πρ − 1| g dp , tg =

√

dp
|πρ − 1| g . (3.104)

The corresponding reference length is the particle diameter dp. Figure 3.21 shows the tem-
poral evolution of the particle velocity for the three density ratios considered and the com-
parison to the validation data. In these tests, very good agreement is achieved concerning
the initial velocity and acceleration for all values of πρ considered, including the very light
sphere. The results agree well with those of the validation data indicating that the dynamics
of the motion of the sphere are predicted correctly by the present method.
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Figure 3.21 Temporal evolution of the particle velocity for G = 170 and density ratios πρ =
0.001, 0.5 and 2.0 obtained with the present method (broken lines) with comparison to data from
author of [121, 120, 122] (continuous lines).

At later stages, however, a slight underprediction of the terminal velocity is observed, in-
dependent of πρ. The relative error in time with respect to the validation data from Jenny
(index J) is defined by ǫJ(t) = (up/ug − uJ/ug,J) /(uJ/ug,J). Here, only the dominant ve-
locity component is considered with the transverse components being basically zero in the
present case. The time when the particle has covered a distance of Lx−dp is denoted by tmax

and it marks the end point of the graphs in Figure 3.21. The relative error in the particle
velocity with respect to the validation data at tmax is approximately −2% for all density
ratios considered and is given in Table 3.6. A cross-comparison concerning the terminal ve-
locity of the experimental data of Mordant and Pinton [181], Veldhuis et al. [286, 287, 288]
and Horowitz [113] with the present numerical and validation data, as well as from Uhlmann
[282] and Kempe [134], and the standard drag curve of Clift [37] is very difficult because of
the path instabilities that have a significant impact on the sphere velocity after the initial
transient. The errors between the different experiments are thus larger than the present
deviation and a 2% error is indeed an excellent result. Nevertheless, it appears that the IBM
of [282, 136] systematically overpredicts the drag of the sphere and consequently predicts a
somewhat lower terminal velocity.

Table 3.6 Relative error in the particle velocity with respect to the validation data at tmax for
πρ = 0.001, 0.5 and 2.0.

Density ratio πρ 2.0 0.5 0.001
Relative error ǫJ(tmax) -2.2 % -2.0 % -2.1 %

Discussion of the error in the terminal velocity

Factors like domain size, temporal resolution, spatial resolution, and further numerical pa-
rameters like the number of additional forcing loops in the IBM according to [136] were
considered as sources of the deviation in the terminal velocity and investigated in additional
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simulations not reported in detail here. None of the issues mentioned altered the terminal
velocity in these simulations to a substantial extent.
On the other hand, the regularized delta function used for spreading the IBM forces from
the Lagrange markers located at the particle surface to the Eulerian grid has an influence
on the result. This coincides with the observations in [110, 25]. The function of Roma
[225] employed in the IBM has a width of three grid cells which results in a diffuse particle
interface as seen by the fluid. As a consequence, the effective particle diameter is marginally
increased, so that the IBM tends to overestimate the drag force. It was therefore suggested
in [110, 25] to shift the forcing points by a fraction of the grid spacing towards the particle
interior. First, the influence of the regularized delta function on the dynamics of a single
ascending sphere is shown using two different regularized delta functions. Afterwards, results
with adjusted surface marker position are given.

Influence of the regularized delta function

The effect of regularized delta function is quantified by changing the width of the function.
The three-dimensional function used in the present IBM [136] is constructed from a one-
dimensional function, δ1Dh , according to

δh(x− xS) = δ1Dh (x− xS) δ
1D
h (y − yS) δ

1D
h (z − zS), (3.105)

where xS denotes a point on the particle surface. The one-dimensional regularized delta
function reads

δ1Dh (x− xS) =
1

h
φ(r) , (3.106)

with the spacing of the equidistant grid h, and r = (x− xS)/h. The continuous function φ
is given by either one of the following two options:

a) Roma [225]

φRoma(r) =











1
3

(

1 +
√
−3r2 + 1

)

, |r| ≤ 0.5
1
6

(

5− 3|r| −
√

−3(1− |r|)2 + 1
)

, 0.5 ≤ |r| ≤ 1.5

0, otherwise,

(3.107)

b) Peskin [208, 209, 174]

φPeskin(r) =

{

1
4

(

1 + cos
(

πr
2

))

, |r| ≤ 2
0, otherwise.

(3.108)

The function of Roma has a width of three points; the one of Peskin spreads over four points.
The properties of the discrete version of these delta functions are discussed in [225] and [208],
respectively. Figure 3.22a) shows a plot of (3.107) and (3.108).



3.3 Virtual mass concept for very light particles 85

a)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

r

0

0.2

0.4

0.6

0.8

1

φ

Roma

Peskin

b)

0 1 2 3 4 5
t

0

50

100

150

200

250

R
e

Roma,  d
p
 / ∆x = 10

Roma,  d
p
 / ∆x = 20

Peskin, d
p
 / ∆x = 10

Peskin, d
p
 / ∆x = 20

Re(te = 3.0)
dp/∆x φRoma φPeskin

10 209.74 204.11
20 213.01 211.35

Figure 3.22 a) Regularized delta functions of Roma [225] and Peskin [208]. b) Influence of the
width of the regularized delta function on the particle Reynolds number over time for G = 170 and
πρ = 0.5 using two different spatio-temporal resolutions.

To study the influence of the regularized delta function on the results, additional simula-
tions of the single sphere ascent with G = 170 and πρ = 0.5 were conducted successively
coarsening the numerical resolution with ∆t/∆x = const. and ∆t = 10−3 for dp/∆x = 20.
All other parameters are as given in Section 3.3.4 above. Instead of the particle velocity,
the instantaneous Reynolds number, Re = up dp/ν, is plotted over time in Figure 3.22b) to
better illustrate the present regime. The results, given in the respective table, show that a
wider regularized delta function yields a slower ascending particle, i.e. an overprediction of
the particle drag. The effect is stronger for a coarser grid. The choice of an appropriate reg-
ularized delta function for the spreading of the IBM volume forces is a compromise between
the smoothing properties and the diffusion of the interface, i.e. a virtually larger particle.

Adjustment of surface marker position

To limit the latter effect, a practical approach is to shift the Lagrangian marker points to-
wards the particle center by a fraction of the grid spacing as proposed in [110, 25]. The
impact of the adjustment of the forcing point position on the results for the ascent of a
sphere with G = 170 is examined for the density ratios πρ = 0.5 and πρ = 0.001. The reg-
ularized delta function of Roma was used throughout. A shift of the forcing points towards
the interior of the sphere is performed with a radial adjustment distance of ∆rp = −0.3∆x.
This results in a smaller effective hydrodynamic diameter generated by the fluid-solid cou-
pling with the IBM. The nominal diameter, dp, is still used in the momentum equation of
the particle.
Simulations were conducted in the same setting as described above. Two grid resolutions
were considered for πρ = 0.5.
The influence of the forcing point adjustment on the particle Reynolds number is shown in
Figure 3.23 for the two density ratios considered. With forcing point adjustment, the un-
derprediction in the terminal velocity with respect to the reference data of Jenny [121, 122]
vanishes for πρ = 0.5 and πρ = 0.001. The present data and the validation data basically
collapse even for the coarser grid resolution.
Table 3.7 provides quantitative results concerning the particle Reynolds number and the
relative error with respect to the reference data at three instances in time for both density
ratios, πρ = 0.5 and πρ = 0.001. The adjustment of the forcing point position does reduce
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Figure 3.23 Influence of forcing point adjustment on the computed ascent of a single light particle
in terms of the particle Reynolds number. a) πρ = 0.5 and b) πρ = 0.001. (noa - no adjustment,
adj - adjustment with ∆rp = −0.3∆x) The symbol skip with respect to the time step is 1000.
Reference data was provided by the author of [121, 122].

the instantaneous errors for both grid resolutions and density ratios. Very good agreement
with the reference data is achieved with relative errors below 1%.

Table 3.7 Influence of forcing point adjustment on the instantaneous Reynolds number and
comparison to reference data by Jenny [121] expressed by the relative error ǫJ . Results for G = 170,
as well as πρ = 0.5 and πρ = 0.001.

πρ = 0.5 πρ = 0.001
dp/h 20 40 Ref. 40 Ref.
fp adjustment no yes no yes no yes
Re(t = 0.2) 46.68 51.97 51.64 54.03 54.54 99.77 106.96 108.42
ǫJ (t = 0.2) -0.144 -0.047 -0.053 -0.009 -0.080 -0.013
Re(t = 3.0) 213.01 221.41 213.59 218.23 218.63 220.85 224.46 226.04
ǫJ (t = 3.0) -0.026 0.013 -0.023 -0.002 -0.022 -0.002

Even though the adjustment of the forcing point position does improve the agreement with
the reference data, it is in general not considered for the simulations with the present IBM.
The main reason is the resulting inconsistency of the nominal location of the interface and the
position of the forcing points where the boundary condition is enforced. This discrepancy is
for instance dubious for the simulation and modeling of particle collisions. A slightly different
adjustment would be the correction of the effective diameter in the particle momentum
equation in terms of a grid-dependent force correction.
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3.3.5 Conclusions and outlook for very light particles

The IBM of [136] faces numerical problems if very light particles are considered. A simple
modification of the time scheme of this method is proposed to overcome this limitation,
which is named virtual mass approach. For the generic test case of a sphere moving under
Stokes flow conditions, it is shown for several time integration schemes that the order of
convergence can be retained with the virtual mass approach.
The method was then extended to the three-dimensional situation for phase-resolving sim-
ulations and a fully parallel implementation of the method into the code PRIME was con-
ducted. The tests presented demonstrate that the virtual mass approach together with the
IBM are capable of predicting the ascent of very light spheres accurately. The approach is
straightforward applicable to other particle shapes as well. For heavy and moderately light
spheres (πρ = 0.5) the computed solutions is shown to be the same as obtained with the
original IBM. Furthermore, a rigorous validation is performed down to a density ratio of
πρ = 0.001 by comparison with high-precision data from the literature. A slight deviation in
the terminal velocity compared to the validation data is addressed by additional studies on
the influence of the delta function for the spreading of the forcing and on the retraction of
the forcing point position. The explicit coupling of the original IBM is maintained, so that
there is basically no additional computational effort for the extension to very light particles.
In this way, the advantages of the IBM, in particular its simplicity and high efficiency are
fully retained. The implicit coupling of [121] could be revisited in the future in context of
collision modeling or deformable bubbles where stability is an issue. Until the date of this
work, taking into account the presentations at the ICMF 2013, the DLES 2013, and the
EUROMECH Colloquium 549 on Immersed Boundary Methods, there does not seem to be
any other application of an IBM of the present kind to very light particles or bubbles. With
respect to the latter, the present approach poses a very efficient alternative to the one-fluid
formulation of the Navier-Stokes equation accounting for gas and liquid material proper-
ties and jump condition at the interface [215]. Recently, the proposed method was used in
several studies of bubbles being modeled as light particles with very satisfactory behavior
[102, 236, 237] and is being applied to other problems of this type. Applications to the
motion of light particles, as well as individual bubbles and bubble chains will be presented
in the next chapters.
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3.4 The flow around partially mobile spheroids

3.4.1 Introduction

The scope of this section is to illustrate the progression from a fixed sphere or ellipsoid in
uniform cross-flow to a particle moving on a zig-zag trajectory as often encountered in bubbly
flows. The flow past a sphere or bluff bodies is a standard problem in fluid mechanics with
special emphasis on the forces acting on the embedded body and the wake forming behind it
[36]. The motion of non-spherical particles at high Reynolds number was reviewed in [172]
and wake-induced paths of free rise or fall were surveyed in [63]. Here, the gap in-between
these two cases - fixed or freely moving - is brought in focus by successively releasing specific
degrees of freedom with respect to particle shape and motion. At last, the influence of an
aligned magnetic field on fixed and oscillating particles in uniform flow is studied.

3.4.2 Fixed sphere

The flow past a fixed sphere is a well known problem and an intensively studied three-
dimensional configuration in fluid mechanics. The problem already served as a benchmark
within the validation of our code [134] and is briefly revisited here with increased resolution
to access the accuracy of the method and to provide a reference with respect to immersed
bodies of more complex shape. A single parameter, the Reynolds number Re = u∞dp/ν,
describes the problem. Among many other studies, Johnson and Patel [124] provided a de-
tailed description of the flow up to Re = 300. Tomboulides and Orszag [273] extended the
investigation up to Re = 1000.
In contrast to the previous studies, where large computational domains, body fitted grids
and highly accurate methods were employed, this study is conducted in rather small compu-
tational domains and with the present immersed boundary method. The range of Reynolds
numbers is Re ∈ [0.5, 1000], i.e. spanning from the Stokes regime to a weakly turbulent
wake. For the lowest Reynolds number, a cubical domain of edge length 6.4dp was dis-
cretized equidistantly with a resolution of dp/∆x = 20. The analytical solution for the
Stokes flow around a sphere [38] was imposed as a boundary condition on all boundaries.
For all other simulations, the domain extends are L = (25.6, 12.8, 12.8) dp. A uniform inflow
profile with u∞ and a convective outflow condition are applied in the x-direction. The other
boundaries are periodic. This set of boundary conditions is used for all subsequent studied
presented in this section. A numerical grid is employed that is equidistant in a patch around
the sphere also including the near wake and stretched away from it. Further information on
the application of the IBM on such a patch is available from Appendix I. The local resolution
is dp/∆x = 32 for Re = 20, 50 and dp/∆x = 60 for Re ≥ 100, and an adaptive time step
size to yield CFL = 0.8 is used as for all subsequent simulations presented in this section.
The sphere is positioned at xp = (5, 6.4, 6.4) dp. The drag coefficients obtained from the
simulations are provided in Figure 3.24 and are compared to the correlation of Clift et al.
[37] and the Schiller-Naumann correlation, both listed in Table 3.8. In general, good agree-
ment is found. At low Reynolds numbers, the error due to blockage caused by the small
lateral extend of the computational domain is dominant, while at high Reynolds numbers
the numerical resolution becomes a critical aspect. Further sources of error are discussed in
Section 3.3.4.
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Re CD CD [37] ǫrel
0.5 50.8 51.5 -1.3%
20 2.93 2.71 8.1%
50 1.67 1.57 6.4%
100 1.13 1.09 3.7%
200 0.809 0.776 4.3%
300 0.685 0.653 4.9%
400 0.632 0.593 6.6%
500 0.573 0.555 3.2%
700 0.526 0.508 3.5%
1000 0.492 0.471 4.5%

Figure 3.24 Fixed sphere in cross-flow. Drag coefficient CD versus Reynolds number Re for
present simulations and comparison against standard drag curve by Clift et al. [37] and Schiller-
Naumann correlation.

Table 3.8 Recommended standard drag curve by Clift et al. [37] where wRe = log10Re and
Schiller-Naumann correlation for CSN

D .

0.01 < Re ≤ 20 log10 [CD Re/24− 1] = −0.081 + 0.82 wRe − 0.05w2
Re

20 < Re ≤ 260 log10 [CD Re/24− 1] = −0.7133 + 0.6305wRe

260 < Re ≤ 1500 log10CD = 1.6435− 1.1242wRe + 0.1558w2
Re

0.01 < Re ≤ 1000 CSN
D = 24/Re

(

1 + 0.15Re0.687
)

The sphere wake is steady, closed and axisymmetric for Re < 212. It is characterized
by two steady standing vortices making the wake non-axisymmetric in the interval 212 <
Re < 274 [19], before the wake becomes unsteady due to vortex shedding while preserving
the reflectional symmetry. The vortices are shed with a single characteristic frequency at
Re = 300, and a transition to irregular states without reflectional symmetry occurs up to
Re ≈ 500 [273] via quasi-periodic pre-chaotic states [36].
For the present simulations, the Strouhal number, Sr, is in excellent agreement with the
reference data from the literature. The non-dimensional frequency associated with the vortex
shedding is extracted as Sr = 0.137 at Re = 300 from the oscillation in the drag coefficient
(0.137 [124], 0.136 [273]). It increases monotonously to Sr = 0.198 at Re = 1000 (0.195
[273]), where the power spectrum of the vertical velocity in a point 5 dp behind the sphere
and 0.4dp off the axis was used to access the frequency. A further dominant frequency is
present in this spectrum at Sr2 = 0.342 associated with the shear layer instability (0.35
[273]). The results also agree very well with the ones reported in the review of experimental
investigations given in [231].
For Re = 100, 300, 1000, further simulation were conducted with a reduced size of the
computational domain, L = (12.8, 6.4, 6.4) dp, and the results are within 1.5% of the ones
reported above.
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In summary, good quantitative agreement with available literature data is found, for the drag
coefficient and the Strouhal number studied here, over a wide range of Reynolds numbers.

3.4.3 Fixed ellipsoid

In this section, the flow past a fixed, oblate ellipsoid is studied. In comparison to the flow
around a sphere, the aspect ratio of the oblate ellipsoid, X, and its orientation in the flow,
φz, enter as additional parameters. Here, we only consider a rotation of the ellipsoid around
one of its major axes which is oriented parallel to the z-axis. The Reynolds number, Reeq,
is computed based on the sphere volume-equivalent diameter deq. This length scale is also
used in the definition of the drag coefficient, CD = FD/

(ρf
2
u2∞

π
4
d2eq

)

to avoid scaling issues
[111]. Usually the projected area enters the definition of the drag. Hence, the configuration
is already substantially more complex and reference data is rare. The data from [316] for
a very similar configuration was obtained with a rather coarse resolution, deq/∆x = 12.
The present simulations are conducted with the setup described above for the sphere. An
ellipsoid with X = 1.25 is initially placed in its streamlined orientation, φz = 0◦, for 100
time-units t uref/deq with uref = u∞. Then the ellipsoid is tilted consecutively in steps of 10

◦

remaining in a static orientation for 50 time-units. The configuration is sketched in Figure
3.25a). Three different Reynolds numbers are considered, Reeq = 100, 300, 1000.

a)

φ��

b)

Figure 3.25 Ellipsoid in cross-flow. a) Configuration. b) Qualitative pressure field for Reeq = 100,
X = 1.25 and φz = 50◦ (close-up).

The temporal evolution of the drag force and the lift force in y-direction are shown in
Figure 3.26 for the three Reynolds numbers. The results are normalized with the drag
force for the sphere at the same Reeq and obtained with present method. For Reeq = 100,
temporally constant values for drag and lift are obtained for each inclination, while drag
and lift oscillate for the higher Reeq. A zero lift force acts on the particle for the symmetric
orientations φz = 0◦ and φz = 90◦ for Reeq = 100. For the intermediate angles a lift force
in the downward direction is obtained where the dependency with respect to φz is basically
symmetric around φz = 45◦. The maximum absolute lift force in this study was obtained at
φz = 30◦ and φz = 50◦ with FL,y/FD,sphere ≈ 0.11. For Reeq = 300, a positive mean lift is
present for the symmetric orientations associated with the RSP mode of the wake discussed
later. For the intermediate angles, the positive wake induced lift is superimposed with the
negative lift stemming from the inclination yielding a negative net lift at e.g. φz = 50◦. The
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symmetry with respect to φz = 45◦ is lost. The amplitude of the regular oscillation in the
lift force increases with φz. For Reeq = 1000, the oscillations in the lift force are irregular,
the symmetry with respect to φz = 45◦ is roughly regained and again approximately zero
mean lift is obtained for the symmetric orientations. The maximum absolute lift force was
obtained at φz = 40◦ with FL,y/FD,sphere ≈ 0.16.

a) b)

Figure 3.26 Fixed ellipsoid in cross-flow. Influence of static orientation φz. a) Temporal evolution
of normalized drag force. b) Lift component in y-direction.

The time-averaged drag force is shown in Figure 3.27 as a function of the static orientation
φz. The time-average was computed neglecting the first 15 time units of each inclination
time interval. In retrospective, longer averaging-intervals would have been beneficial for the
two higher Reeq. Compared to the sphere, a lower drag is measured for φz < 30◦ for all
Reynolds numbers. A steeper inclination yields an increase in drag. The dependency nicely
follows a sin2 φz function based on the two extreme orientations which is indicated by the
line plots in the Figure. The spread between the lowest drag at φz = 0◦ and the highest
value at φz = 90◦ increases with Reeq. For the highest Reynolds number the spread slightly
exceeds a value of 0.4FD,sphere.
Three different semi-empirical correlations are studied for their capability of predicting the
drag coefficient for the present configuration. The comparison of simulation data with the
predictions from these correlations are gathered in Figure 3.27b).
The ellipsoid used in this study has a sphericity of Ψ = 0.991, where the sphericity denotes
the ratio between the surface area of the volume-equivalent sphere and the surface area of the
present particle. Being geometrically so close to a sphere and considering that at high Reeq
the pressure or form drag dominates over the viscous contribution, one might construct a
correlation from the well-known correlation for the sphere and a term considering the actual
projected area. The first correlation (3.109) thus reads,

CD = CSN
D,sphereΨ

−1
n , (3.109)

where CSN
D,sphere is the drag coefficient of an volume equivalent sphere obtained with the

Schiller-Naumann correlation from Table 3.8. The crosswise sphericity, Ψn, is the ratio of
the cross-sectional area of the volume equivalent sphere and the projected cross-sectional area
of the ellipsoid [111]. In the present configuration, the projected shape is an ellipse [290], and

one can derive Ψn = a−1/3b−2/3
√

(a2 − b2) sin2 φz + b2 for an oblate ellipsoid rotated along
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a) b)

Figure 3.27 Normalized drag force as a function of static orientation φz for Reeq = 100, 300, 1000.
a) Time-averaged simulation data (symbols) and FD,0◦ + (FD,90◦ − FD,0◦) sin

2 φz (lines). b) Com-
parison of simulation data CD,Sim(φz, Reeq) and predictions from correlations CD,Corr(φz, Reeq)
(3.109) (filled symbols), (3.110) (empty symbols), (3.111) (light symbols).

one of its major axes. Good agreement is found with the simulation data specifically for
Reeq = 100, 300. The correlation also predicts the general dependency of the drag force with
the inclination correctly, and it reestablishes the drag of a sphere at the specific Reynolds
number at φz ≈ 30◦. However, the correlation lacks the Reynolds dependency of the spread
in Figure 3.27a) leading to larger deviations at high Reeq.
The second correlation is given by

CD = Ccorr
D,0◦ +

(

Ccorr
D,90◦ − Ccorr

D,0◦

)

sin2 φz , (3.110)

where Ccorr
D,0◦ = 7.57/Re0.421eq and Ccorr

D,90◦ = 5.61/Re0.321eq are the drag coefficients for the ex-

treme orientations and need to be correlated additionally from the data [316]. The sin2 φz

dependency seems to be a sound fit independent of the Reynolds number. The data in [316]
for two different ellipsoids, a fiber and a disc also yield a value for the exponent close to 2.
More data points would be necessary to correlate Ccorr

D,0◦ and C
corr
D,90◦ with better accuracy.

The third correlation is taken from [111] and is intended as a ’simple’ correlation for a broad
spectrum of particle shapes. It was obtained from more than 2000 data points for various
shapes and reads

CD =
8

Reeq

1√
Ψn

+
16

Reeq

1√
Ψ
+

3
√

Reeq

1

Ψ3/4
+ 0.42· 100.4(−logΨ)0.2 1

Ψn

. (3.111)

In the present comparison, this correlation yields the largest deviations, especially at high
Reynolds numbers. The average deviations are 8.4% for correlation (3.109), 4.9% for (3.110)
and 16.8% for (3.111).
Further correlations for the lift force and as well as the torque acting on the non-spherical
particle could be obtained from the present data [316, 172]. This is for now beyond the scope
of this study. One should also keep in mind the differences between the static configuration
used here and a dynamically changing orientation, which will be considered in the next
sections.
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3.4.4 Rotary oscillation

In contrast to a fixed, static inclination, the orientation of the ellipsoid in the flow, φz, is
determined by the interaction of the particle with the flow now. The other degrees of freedom
concerning rotation and translation are blocked. On top of the Reynolds number, Reeq, and
the aspect ratio of the oblate ellipsoid, X, the particle-to-fluid density ratio, πρ, enters as an
additional parameter to describe the problem.
Two studies were conducted. The first addresses the rotational response of the ellipsoid in
cross-flow to a given initial inclination as a function of πρ. The second study examines the
wake-induced rotary oscillation.

Initial phase

The equilibrium orientation of an oblate ellipsoid in a uniform cross-flow is φz = 90◦. Figure
3.25b) shows a qualitative pressure field. The surface normal in the center of pressure is not
aligned with the center of mass of the particle and the resulting pressure force thus creates
a moment on the particle. This moment is always directed towards an orientation with
φz = 90◦, i.e. the small semi-axis is parallel to the mean flow. The also symmetric position
φz = 0◦ does not yield a moment on the particle. However, already small disturbances will
create a rotation towards the equilibrium orientation.
An oblate ellipsoid of aspect ratio X = 1.25 was initially inclined by φz = 50◦. The Reynolds
number is chosen as Reeq = 100, i.e. the wake is steady. Simulations were performed with a
domain size of L = (12.8, 10, 10) deq and a fixed particle position of xp = (5, 5, 5) deq. The
local spatial resolution is dp/∆x = 60 obtained from a grid with N = (512, 256, 256) cells.
The simulation is initialized with the developed flow field from one of the previous studies.
Figure 3.28 shows the temporal evolution of the orientation φz towards the equilibrium
orientation for various density ratios. The density ratio is varied as πρ = 0.001, 1, 2, 4, 8,
i.e. covering the range from an air filled particle to an iron particle in water. For the lowest
πρ, the inertia of the attached fluid dominates, whereas for high πρ the particle’s inertia
itself is significant. With increasing πρ, the damping in the amplitude of the oscillation and
the frequency decrease. The evolution φz(t) shows some similarity to a damped harmonic

Figure 3.28 Initial phase of temporal evolution of orientation φz for various density ratios, πρ,
and Reeq = 100, X = 1.25, φz,0 = 50◦.

oscillation as for a spring-mass-damper system. The analogy was studied in the student thesis
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of Köhler [141] and revealed rather moderate agreement. Especially the damping cannot be
easily described, e.g., proportional to the angular velocity with a constant coefficient. The
test case, however, gives some insight into the response time of the system which becomes
important when studying wake induced oscillations.

Wake-induced rotary oscillation

The wake behind axisymmetric bodies, as spheroids and finite height cylinders, was studied
in much detail in [64, 36] employing accurate numerical methods and body fitted grids, as
well as large computational domains. Figure 3.29a) is adapted from [36] and displays the
wake regimes of oblate spheroids as a function of Reynolds number and aspect ratio, with
1/X = 1 corresponding to a sphere and 1/X = 0 to an infinitely thin disk. The names
of the wake modes are adopted from [64]. Visualizations of some modes are provided in
Figure 3.29b)-g) from present simulations. At the low end of the Reynolds range, the wake
is steady, closed and axisymmetric. The SS mode is a steady state and characterized by two
counter-rotating standing vortices. The visualization in Figure 3.29b) shows the rotational
sense of these vortices. They induce a velocity, vind, as indicated, which results in a constant
lift force and a rotational moment, Mz,ind.
For higher Reynolds numbers, the wakes becomes unsteady as vortex shedding sets in. The
critical Reynolds number decreases with 1/X as the surface curvature increases and so does
the production of vorticity. The RSB mode stands for reflectional symmetry braking mode
and is characterized by a non-zero mean lift. It was not encountered in the present study,
but can be found specifically for a flat disk as visualized in [64, 36]. The RSP mode denotes
the reflectional symmetry preserving mode, where also a non-zero mean lift is obtained. In
contrast, the SW mode, short for standing wave mode, has a zero mean lift. It is very similar
to the RSP mode, but on top of the reflectional symmetry in the xz-plane there is an average
symmetry in the xy-plane [64]. The RW mode stands for rotating wave mode and the wake
performs an additional helical motion [36], while a rotating, oscillating lateral force acts on
the particle. Irregular modes are found at the high end of the Reynolds range consisting
of a superposition of the previous modes with additional shedding frequencies, helical wake
advection and transition to chaotic wakes.
Especially the rotational regimes seem very sensitive, e.g. there are substantial differences
in the regime map when considering finite height cylinders compared to spheroids [36] at the
same aspect ratios.
The wake-induced, rotary oscillation of an ellipsoid in cross-flow was studied for density

neutral particles, πρ = 1, and various Reeq. Two aspect ratios are considered, X = 1.25 and
X = 2.5, respectively.
The numerical parameters of the simulations are L = (12.8, 6.4, 6.4) deq, xp = (5, 3.2, 3.2) deq,
N = (512, 256, 256) and dp/∆x = 60. According to Biot-Savarts law, the velocity induced
by a vortex declines away from the generating vortex element and hence the far wake has
little, direct effect on the particle. Nevertheless, potential follow-up studies should consider
substantially larger computational domains.
The temporal evolution of the particle orientation φz is shown in Figure 3.30. For X = 1.25
and Reeq = 300, the ellipsoid oscillates almost regularly around its equilibrium orientation
with amplitudes mildly varying around 4.5◦. The associated wake pattern is an SW mode
with a slight RW mode contribution resulting in the variation in the oscillation. The sim-
ulation for Reeq = 350 was started from a result file at the lower Reeq as indicated in the
graph. With increasing Reeq the wake structures become irregular and the contribution of
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a)

b) SS mode c) RSP mode

d) SW mode e) SW-RW mode

f) irregular g) irregular

Figure 3.29 Wake forms of an oblate ellipsoid. a) Wake states for fixed spheroids as function
of 1/X and Re2a = u∞2a/ν = X1/3Reeq, adapted from [36]. b)-f) Wake visualization behind
rotationally oscillating ellipsoid by instantaneous iso-contours of streamwise vorticity, ωxdeq/u∞ =
±0.5 b) SS mode for X = 1.25, Reeq = 200. c) RSP mode for X = 1.25, Reeq = 250. d) SW mode
for X = 2.5, Reeq = 150. e) SW-RW mode for X = 1.25, Reeq = 300. f) irregular for X = 1.25,
Reeq = 350. g) irregular visualized by λ2-iso-contour for X = 1.0, Reeq = 1000.
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a)

b)

Figure 3.30 Temporal evolution of orientation φz for various Reynolds numbers, Reeq, and πρ = 1.
a) Aspect ratio X = 1.25. b) Aspect ratio X = 2.5.
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the helical, long-wave component increases. Consequently, the oscillation in φz(t) also be-
comes more non-uniform with strong variations in amplitude. Low amplitudes are associated
with vortex pairs contained in a plane parallel to the xy-plane. The run for Reeq = 250 was
also started from a Reeq = 300 result. In this case, the symmetry plane of the wake rotates
to a plane perpendicular to the previous state and parallel to the xy-plane. An RSP-mode
with non-zero mean lift in the z-direction is obtained and thus no non-zero mean inclination
is measured in φz. For Reeq = 200 on the other hand, an SS mode develops and the two
steady, counter-rotating vortices, oriented approximately parallel to the xz-plane, lead to a
constant inclination of the ellipsoid with (90 + 1.4)◦.
The results for X = 2.5 reveal a perfectly harmonic oscillation for Reeq = 150 associated
with a clean SW wake mode and again increasing irregularity as the Reynolds number is in-
creased to Reeq = 200 and Reeq = 250 associated with the wake transition. The amplitudes
in the oscillation of φz(t) are lower than for X = 1.25. The simulation with Reeq = 100 was
started from an early result of the Reeq = 150 run explaining the initial damped oscillation.
Then a steady, axisymmetric wake develops and the ellipsoid is constantly oriented in its
equilibrium position. Increasing the Reynolds number to Reeq = 125 yields first an SS mode
with vortex pairs in the xy-plane which becomes very weakly unsteady towards the end.
The time-averaged drag coefficients and the Strouhal numbers are summarized in Table 3.9.
The drag is slightly lower than for the fully fixed case for X = 1.25, Reeq = 300 and φz = 90◦.
Note that the wake-induced characteristic frequency is very close to the frequency obtained
from the initial response studied above for X = 1.25, Reeq = 100 at the same density ratio,
πρ = 1.

Table 3.9 Mean drag 〈CD(deq)〉 and Strouhal number Sr(φz) for ellipsoid in cross-flow with free
rotation in φz.

X = 1.25, πρ = 1 Reeq = 200 250 300 350

Sr(φz) — 0.103 0.107 0.119
〈CD〉 0.812 0.815 0.770 0.736

X = 2.5, πρ = 1 Reeq = 100 125 150 200 250

Sr(φz) — — 0.104 0.105 0.112
〈CD〉 1.083 1.021 0.996 0.959 0.924

The configuration was also studied in the diploma thesis of Beetz [12]. The aspect of the
numerical resolution was scrutinized and the grid resolution was further refined for the
present study. With inclinations less than 5◦, the problem would also be well suited for body
fitted grids with deforming meshes. A comparison of the loads acting on the rotationally
oscillating ellipsoid by means of the generalized Kelvin-Kirchhoff equations [186] and the
static correlations of [316] revealed that the latter correlations are rather inaccurate for
the predictions of dynamic systems. In summary of the present study, the wake regime
and the ellipsoid’s oscillation in φz(t) are closely correlated. With respect to the wake
regimes of the fixed counterpart [36], a rotational degree of freedom seems to slightly shift
the critical Reynolds numbers for regime transitions towards higher values and the wake
rotation around an axis parallel to the x-axis seems to be suppressed to some extent. Further
studies with larger computational domains and higher numerical accuracy are necessary to
provide evidence for this tendency.
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3.4.5 Oscillating ellipsoid

Now, additionally a free translation in yp is allowed, while xp and zp remain fixed. As pre-
viously, the rotation in φz is free, while rotations in φx and φy are still blocked.
Preliminary experiments of similar configurations were conducted in the diploma thesis
of Roßbach [226]. PIV measurements were conducted for the flow around a sphere with
Re ∈ [3260, 26500]. The sphere was either fixed, mounted with a steel flat bar allowing an
oscillation in one plane, or the sphere was attached to a cord allowing rather free oscillations
with πρ = 1.3.
The present study addresses two aspect ratios, X = 1.25 and X = 2.5, with fixed Reynolds
numbers of Reeq = 300 and Reeq = 250, respectively. Density neutral particles, πρ = 1, as
well as very light particles, πρ = 0.001, are considered.
The numerical parameters of the simulations are L = (12.8, 6.4, 6.4) deq, xp = (5, 3.2, 3.2) deq
as for the purely rotary oscillation, but employing an equidistant grid withN = (512, 256, 256),
and thus dp/∆x = 40.
The temporal evolution of the orientation φz and the particle position yp is given in Figure
3.31 for X = 1.25 and Reeq = 300. For both density ratios, the particle undergoes a pe-
riodic zig-zag motion characterized by regular oscillations in φz and yp. The amplitudes in
the oscillation are significantly larger for πρ = 0.001 compared to πρ = 1 and the leading
frequency is somewhat higher. For the density neutral particle, a regular modulation with
a lower frequency can be observed. Table 3.10 summarizes the major figures related to the
particle dynamics. The dynamics of the very light ellipsoid with aspect ratio X = 1.25 are
indeed comparable to the motion of a single bubble studied in Chapter 5. In comparison to
the sole rotational degree of freedom, the amplitude in the oscillation in φz is approximately
tripled at about the same frequency.
For X = 2.5 and Reeq = 250, the ellipsoid constantly glides sideways with about four percent
of the bulk velocity and is inclined about 4◦ from the equilibrium position in average. Aside
from the ’oblique’ trajectory in yp(t) the particle vibrates rather regularly. The frequency
of the vibration and the amplitude are again larger for πρ = 0.001 compared to the density
neutral particle.

a) b)

Figure 3.31 Temporal evolution of orientation φz (a) and of particle position yp (b) for πρ = 1
and πρ = 0.001, with Reeq = 300, X = 1.25

The drag or normalized force in x-direction is significantly higher for the transversely os-
cillating particle than for the mild sole rotation and the completely fixed spheroid. The
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Table 3.10 Particle dynamics of ellipsoid in cross-flow with free rotation in φz and free translation
in yp. The other motional degrees of freedom are blocked.

X = 1.25, Reeq = 300 Sr(φz) 〈φz〉 |φz|max − 〈φz〉 trajectory ∆yp 〈CD〉
πρ = 1 0.097 90◦ 17◦ zig-zag 0.43deq 0.805
πρ = 0.001 0.119 90◦ 34◦ zig-zag 1.0deq 1.035

X = 2.5, Reeq = 250 Sr(φz) 〈φz〉 |φz|max − 〈φz〉 trajectory 〈vp〉/u∞ 〈CD〉
πρ = 1 0.114 86◦ 16◦ ’oblique’, vibrating −0.041 1.062
πρ = 0.001 0.130 95◦ 22◦ ’oblique’, vibrating 0.042 1.142

more pronounced the lateral dynamics are, the higher is the increase in drag. This is also
apparent from the experimental work in [113, 128] and should be considered for the proper
use of correlations.
The mechanism of the drag increase for the oscillating spheroids is presumably similar to
the one for an oscillating cylinder [232, 321]. As a thought experiment, a rapidly oscillating
cylinder in uniform cross-flow traces out a larger projected area than the fixed one [232], the
fluid experiences a virtually larger obstacle and the drag increases. A formulation was de-
rived by von Kármán [292] for the drag of a cylinder expressed as a function of the streamwise
and transverse vortex spacing, lvs and hvs, in a staggered vortex street of potential vortices
with circulation Γ:

CD,cyl =
2Γ

u2∞dp

[

hvs
lvs

(u∞ − 2uvs) +
Γ

2πlvs

]

,

(3.112)
where the propagation speed of the vortex
street, uvs, is obtained from

uvs =
Γ

2lvs
tanh

(

πhvs
lvs

)

.

Figure 3.32 compares wake structures for X = 1.25, Reeq = 300 with only rotatory os-
cillation and an additional wake-induced oscillation in yp. With the oscillation in yp, the
streamwise vortex spacing, lvs, decreases and the transverse vortex spacing, hvs, increases.
So assuming the circulation associated with a single shed vortex remains constant, equation
(3.112) qualitatively yields an increase in drag as observed in the numerical simulation.

3.4.6 Impact of an aligned magnetic field

Fixed spheroids

The influence of an aligned magnetic field on the flow past a fixed spheroid is studied. A
few results from [245] are revisited here to illustrate and explain the major effects. In [245],
also the flow past a cylinder, for Re = 100, was considered and a validation against data
from the literature, e.g. [251], was conducted showing very good agreement. Furthermore,
a suppression of the von Kármán vortex street by the aligned magnetic field was found
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a) b)

Figure 3.32 Wake structures visualized by iso-contours of streamwise vorticity ωxdeq/u∞ = ±0.5
for X = 1.25, Reeq = 300, πρ = 0.001. a) Only rotatory oscillation in φz. b) Additional oscillation
in yp. Top: xy-view. Bottom: xz-view.

accompanied by an elimination of the fluctuations in lift and a slight decrease in drag for
for N . 0.5. A further increase of the magnetic interaction led to a monotonous increase in
drag.
The flow past a fixed sphere and a fixed ellipsoid with X = 2, φz = 90◦ are recapitulated
here. Simulations were conducted in a domain of extent L = (20, 10, 10) deq with an equi-
spaced grid of N = (400, 200, 200) cells with the spheroid placed at xp = (5, 5, 5) deq.
A Reynolds number of Reeq = 200 was chosen, i.e. an axisymmetric wake without vortex
shedding is found for the sphere in the case without magnetic field. Introducing a longitudinal
magnetic field, the drag on the sphere increases monotonously and scales with

√
N for N > 1

(Figure 3.33a)), which is in agreement with findings for higher Re and N in [173]. The drag
increases basically linearly with N for N < 1 (Figure 3.33b)). The above scaling laws are
quite insensitive to the numerical resolution and are found on a coarser grid as well with
differing absolute values for CD, though.

Figure 3.33 illustrates the mechanism leading to a drag increase with stronger magnetic inter-
action. The Lorentz force is proportional to the lateral velocities v and w for a longitudinal
magnetic field Bx, so that increasing magnetic interaction leads to a damping of the lateral
velocity components. A substantial reduction of the velocity component v is apparent from
Figure 3.33 as the magnetic interaction is increased from N = 0.2 to N = 4.0, also leading to
a straightening of the stream lines around the sphere. The recirculation area becomes more
conical and the rear pressure is reduced. A larger region of stagnant fluid develops in front
of the sphere, which is characterized by an increased front pressure. The modified pressure
distribution is the main reason for an increase in drag with increasing magnetic interaction
parameter.

For the oblate ellipsoid, an SW mode is observed for the wake and CD and CL oscillate with
CD(deq) = 1.36 and 〈CL〉 ≈ 0 in the case without magnetic field. With increasing N , the
streamwise vorticity is reduced, as discussed in detail in Chapter 5 for a single rising bubble.
A wake transition towards an RSP mode for N = 0.2, an SS mode for N = 0.5 and a steady
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a) b)

Figure 3.33 Influence of an aligned magnetic field on the drag for Reeq = 200 for a fixed sphere
and an oblate ellipsoid withX = 2, φz = 90◦. a) Relative change in drag versus magnetic interaction
parameter N . b) Close-up for for N ∈ [0, 1].

a) N = 0.2, B -

b) N = 4.0, B -

Figure 3.34 Influence of an aligned magnetic field on the flow past a fixed sphere for Re = 200.
The arrow indicates the direction of the field. a) N = 0.2, b) N = 4.0. From left to right: Contour
through sphere center of transverse velocity v, streamwise velocity u with streamlines and pressure
p.
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axisymmetric wake for N = 1.0 are observed. The relative increase in drag at low N is
moderate compared to the sphere, since vortex shedding is suppressed for N < 1. Similar
scaling of the drag augmentation with N is observed as for the sphere, which was also stated
in [314] for an ellipsoid at high Reynolds numbers and interaction parameters.

Moving spheroids

The impact of an aligned magnetic field on the dynamics of moving spheroids is studied.
In [245], both oscillating spheroids and freely moving particles were considered. Here, an
oscillating ellipsoid under the influence of a homogeneous magnetic field parallel to u∞ is
briefly recapitulated where the setup is otherwise analogous to the one in Section 3.4.5. A
more in-depth analysis of the effect of such a magnetic field on the dynamics of a rising bubble
in liquid metal is provided in Chapter 5. The ellipsoid has an aspect ratio of X = 1.25, a
density ratio of πρ = 0.001 and is studied at a Reynolds number of Reeq = 300. In the purely
hydrodynamic case, the particle undergoes a distinct zig-zag motion and the wake describes
a standing wave. The magnetic interaction parameter, N , is now increased progressively
taking values of N = 0, 0.05, 0.1, 0.2, 0.5, i.e. the focus of this study is on rather weak to
moderate field strengths. Statistics were collected for 128 time-units tu∞/deq for each value
of N . With increasing N , the oscillation in φz and vp remains regular, but the amplitudes
reduces and also the characteristic frequency decreases. Figure 3.35 provides quantitative
access to this data. As the lateral dynamics are damped, the drag on the particle decreases
slightly. This is an adverse effect to the monotonous increase in drag with N for the fixed
spheroids. An additional simulation was conducted for N = 4 and then an overall increase
of the average drag coefficient was measured compared to case without magnetic field.

a) b) c)

N 〈CD〉
0 1.035

0.05 1.021
0.1 1.014
0.2 0.998
0.5 0.932
4.0 1.378

Figure 3.35 Influence of an aligned magnetic field on the dynamics of an oscillating ellipsoid
X = 1.25, Reeq = 300, πρ = 0.001. a) Strouhal number, Sr, versus magnetic interaction parameter,
N . b) Amplitude in oscillation of φz and yp versus N . c) Mean drag coefficient versus N .

3.5 Concluding remarks

The immersed boundary method was extended towards particles of more general shape and
very light particles. Immersed spheroids were then studied in uniform cross-flow starting
with a fixed sphere and gradually increasing the complexity by adding geometrical degrees
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of freedom, a freely evolving rotational motion and finally the option for the particle to
translate in one direction. It has been shown that the particle dynamics are strongly coupled
to the wake modes and the vortex shedding. For very low particle densities, a bubble like
behavior was found characterized by a zig-zag trajectory. Further, it was discussed how a
transverse oscillation can lead to an increase in drag. At last, the influence of an aligned
magnetic field was addressed. For fixed spheroids, a monotonous increase in drag was found
as the magnetic interaction parameter is increased. On the other hand, for freely oscillating
particles the magnetic field damps the transverse motion, which is accompanied by a mild
decrease in drag. For higher interaction parameters, the drag again increases compared
to the case without magnetic field. The present configuration provides a suitable setup to
study specific effects of particle-fluid-interaction at moderate computational costs. With
the immersed boundary method, selected degrees of freedom can be blocked or activated.
Further research should address helical motion, consider deformable particles and screen the
parameter space (Re, πρ, X) in more detail.





4 Representation of Bubble Shapes

4.1 Bubble shape regimes

An ascending bubble is deformed by the loads exerted by the liquid while surface tension
drives it towards a spherical shape. Gas bubbles rising in liquids therefore adopt shapes
which vary from spherical, ellipsoidal, cap-like to largely distorted forms [165, 37]. The well-
known regime map of Clift et al. [37] categorizes these bubble shapes and is shown in Figure
4.1. The figure also features bubble shapes that were obtained from present simulations
addressed later on.
The shape of an individual bubble rising in quiescent fluid in an unbounded domain is
characterized by the terminal Reynolds number and the Eötvös number,

Ret =
〈vp〉deq
ν

, Eo =
∆ρ g d2eq

σ
, (4.1)

where 〈vp〉 is the average rise velocity, deq the sphere volume-equivalent diameter, ∆ρ =
ρp−ρf the density difference between the gas and the fluid, g gravity, ν the liquid’s kinematic
viscosity and σ is the surface tension. While the Reynolds number is the ratio of inertial
to viscous forces, the Eötvös number measures the magnitude of buoyancy forces compared
to surface tension forces. In a similar fashion, one could use the Galilei number, G =
√

|πρ − 1| g d3eq/ν, and the Weber number, We = ρfu
2
refdeq/σ, to span a bubble shape regime

map (where πρ = ρp/ρf ).
In the shape diagram of Figure 4.1, spherical bubbles are found if surface tension is dominant,
i.e. at low Eo and also independent of Ret. As the influence of surface tension decreases,
the bubble shapes become ellipsoidal, and largely distorted bubble shapes are observed for
high Eo. These comprise cap-shaped bubbles which also can be dimpled or skirted. When
moving towards higher Ret, the bubble shape becomes time-dependent. Vortex shedding
leads to path instability and non-rectilinear bubble trajectories including zig-zag, spiraling
or rocking bubble motion. Hence, the hydrodynamic forces acting on the bubble also vary
in time and so does the bubble shape. This is indicated as wobbling in the shape diagram,
where this originally chosen term might be a bit misleading. At the indicated position in
the regime map of [37], the pairing of Ret and Eo corresponds to an ellipsoidal bubble with
rather regularly oscillating aspect ratio [84, 81, 167, 244]. Actual wobbling, which might be
understood as irregular shape oscillations, is present at higher Eo.
To illustrate the parameter range considered in the present work dealing with liquid metal
and MHD systems, Table 4.1 lists material properties of the eutectic alloy GaInSn and
compares them to those of water. The liquid metal GaInSn has been selected here as the
simulations reported in Section 5.2.1 are conducted for a configuration with argon bubbles
in GaInSn. This specific alloy is liquid at room temperature which is an attractive property
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Figure 4.1 Shape regimes from [37] for single bubbles and drops in quiescent fluid and present
results from Section 4.4. Shapes as function of terminal Reynolds number, Ret, and Eötvös number,
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(
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, characterizing one specific

gas-liquid system, e.g. air-water M ≈ 3· 10−11).
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for its use in experiments. Its density and surface tension are markedly higher than those of
water, while the kinematic viscosity is smaller. As a consequence, the Galilei number, which
relates buoyancy forces to viscous forces, is higher for an argon bubble in GaInSn than for
an air bubble of equal size in water, hence resulting in a higher bubble Reynolds number.
The high density ratio and high surface tension are difficult to deal with in many multiphase
methods, e.g. the volume of fluid method where spurious currents may occur as numerical
artifacts and low time step sizes become necessary. Liquid metals are characterized by a very
low Prandtl number due to the very high thermal conductivity making them very attractive
for modern energy concepts. The most significant contrast with water is the difference in
electrical conductivity by about eight orders of magnitude enabling electromagnetic flow
control. An approximate value for tab water is listed for comparison. The Eötvös number is
almost the same so that in GaInSn similar bubble shapes can be expected as in water, but
at a higher Reynolds number. The MHD parameter region is also sketched in Figure 4.1.

Table 4.1 Material properties of GaInSn and water at a temperature of 20◦C and ambient pressure
of 1 bar. The non-dimensional numbers are calculated for an argon bubble in GaInSn and an air
bubble in water, both with an equivalent diameter of deq = 4.6 mm.

GaInSn Water
Density ρf [kg m

−3] 6361 998
Surface tension σ [N m−1] 0.533 0.073
Kinematic viscosity ν [m2 s−1] 3.46· 10−7 9.82· 10−7
Electrical conductivity σe [S m

−1] 3.27· 106 ≈ 5.0· 10−2
Galilei number G 2825 995
Eötvös number Eo 2.5 2.8
Prandtl number Pr O(10−2) 7.0

4.1.1 Numerical description of bubble shapes

The most common quantitative measures describing the shape of a bubble or drop are el-
lipsoidal aspect ratios in both experiments, e.g. [309, 167, 303], and numerical studies, e.g.
[187, 169, 81]. Approaches of higher order to evaluate the results for the bubble shape quan-
titatively are rather rare, e.g. spherical harmonics are used the experiments of [22, 289] and
simulations of [133, 98].
In accordance with the occurrence of bubble shapes apparent from the shape diagram, differ-
ent numerical descriptions of bubble shapes were successively implemented in PRIME. Three
major bubble shape representations can be distinguished: Sphere, Ellipsoid, and Spherical
Harmonics (SH).
Figure 4.2 displays a spherical bubble (a) with an equidistant forcing point distribution
[157], an ellipsoidal bubble (b) with additional surface triangulation and a slice through a
cap-shaped bubble represented by spherical harmonics (c) with an additional spherical co-
ordinate surface grid. Depending on the prerequisites of the simulation to be undertaken,
a certain representation is chosen. This choice can be interpreted as a regularization in
terms of bubble shape and reaches from a priori determined, constant, simple bubble shapes
to temporally changing, flow-determined, irregular shapes. If for instance a large number
of small bubbles shall be considered in a turbulent channel flow [236] or the formation of
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regular packings in bubble foams is of interest [102, 101], the choice of a representation by
spherical bubbles eases the physical interpretation of the results, increases reproducibility
and simplifies the numerical modeling.

a) b)

c)

Figure 4.2 Particle shape representations in PRIME. a) Sphere [157], b) Ellipsoid, c) Spherical
Harmonics, slice through cap-shaped bubble.

A temporal variation in bubble shape or a shape adaptation can be incorporated by:

1) a prescribed shape evolution,

2) a change in shape based on a correlation, e.g. from experimental data,

3) coupling to the hydrodynamic forces acting on the bubble.

The Lagrangian surface mesh is adapted to the instantaneous, analytically described shape
in each time step.
Variant 1) constitutes a user-prescribed temporal evolution of the bubble shape. One ex-
ample for this case is a physically sound description of the merge of two touching bubbles
forming one larger bubble which is dealt with in detail in Section 7.5.2.
In variant 2), the bubble shape and its temporal change are obtained from a correlation to a
solution variable. For the parameters of an argon bubble rising in the liquid metal GaInSn
[244] (Section 5.2.1), the bubble shape is expected to be ’ellipsoidally wobbling’ [37]. Hence,
the shape parameter X of the ellipsoidal particle has to be varied in time in a physically
meaningful way. As suggested in [165], an empirical correlation between the instantaneous
bubble Weber number We(t) = ρf‖up(t)‖2deq/σ and the instantaneous aspect ratio X(t) is
employed. Loth [165] presented experimental and theoretical data for the correlation X(We)
and provided a fit for moderate to high bubble Reynolds numbers, Re > 100. The correlation
was obtained using data for the mean rise velocity and mean aspect ratio. It is then shown in
[165] that the correlation is also a good fit for instantaneous data X(We(t)) by comparison
to the time-resolved experiments in [274]. The validity of the approach was also scrutinized
by numerical simulations in [2] comparing the instantaneous bubble shape to predictions
from a phase-field model and good agreement was found. The functional relation from [165]
reads

X−1(t) = 1− 0.75 tanh(0.165We(t)) . (4.2)

Figure 4.6 shows this curve together with the data given in the review of Loth [165] and
present results. With the material properties being constant, a bubble moving with a high
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velocity ‖up(t)‖ will adopt a flat shape while the bubble shape remains spherical at low
velocities. The correlation is valid for single bubbles, rising in quiescent fluid in an unbounded
domain with Re > 100.
Variant 3) provides a more general approach in which the bubble shape is coupled to the
loads imposed by the surrounding fluid at the phase interface. Imagine two bubbles rising in
quiescent fluid where one bubble is trailing the other. The latter will be ascending faster as
the leading one once it is entrained in the wake. However, in contrast to the correlation above,
it will be more spherical. For bubbles rising in chains or swarms, or in the vicinity of walls,
or for bubbles immersed in a turbulent flow, the bubble shape cannot be easily correlated.
Instead the deformation of the bubble by hydrodynamic forces needs to be directly resolved.

4.2 Deformable bubbles

4.2.1 Physical and numerical model

The representation of deformable bubbles is described in this section and was partially
published in [246]. The potential displacement energy W is given by

W =

∫

S

[(pin − po)− σ κ] δn dA, (4.3)

where po is the outer pressure, ∆p(xS) = pin − po(xS) is the local pressure difference over
the interface, and xS a point on the surface. Viscous stresses are neglected here, as justified
in [46, 61]. The bubble volume is imposed to be constant in time and the pressure inside
the bubble, pin, is assumed to be constant over the bubble at each instant and obtained as
a surface average pin = 〈σκ + po〉S which gives pin = 2σ/req for a small bubble at rest in
quiescent fluid. The pressure on the outside is po(xS) = pdyn+pstat, where pdyn is interpolated
from the pressure field on the Cartesian grid, and pstat is the hydrostatic pressure component.
The hydrostatic component was eliminated in the continuous pressure field p, e.g. to better
cope with periodic boundary conditions, and it therefore occurs as an additional term. The
displacement of the interface normal to the surface is given by δn. Twice the local mean
curvature of the bubble surface is denoted by κ(xS).
Equation (4.3) considers the work that is performed due to the displacement of the interface
by pressure forces and the work that is performed due to deformation of the surface by
surface tension. The potential displacement energy vanishes in equilibrium, W = 0, i.e. the
bubble shape adapts so as to satisfy the local force balance. The local residuum is

ε(xS) = (pin − po)− σ κ . (4.4)

In case the bubble shape is restricted by some parametrization, (4.4) leads to the requirement
W ⇒ min! instead of W = 0 which holds for a completely unrestricted shape. To find the
optimum shape the test function for the deformation is chosen to be δn(xS) = ε(xS) [61],
which yields the quadratic form to be minimized

W =

∫

S

(ε(xS))
2 dA⇒ min! , (4.5)

with the constraint of constant bubble volume Vp = const and a constant center of mass.
The mass of the dispersed phase hence is conserved exactly, in contrast to other methods



110 4 Representation of Bubble Shapes

without prior shape assumptions such as volume of fluid methods (V OF ).
The present approach constitutes an equilibrium model. In case of non-equilibrium condi-
tions, e.g. the initial conditions for the coalescence process described in Section 7.5.1 and in
[250], or for very intense or fast changes in bubble shape, the integral equation (4.3) can be
re-written as a local force balance. An additional term is included which is proportional to a
specified fluid mass attached to the interface times its acceleration and which thus attenuates
the dynamics towards equilibrium also stabilizing the numerics within the explicit coupling
scheme. The force balance then reads mf dush/dt = F∆p + Fσ with F∆p and Fσ being the
local pressure and surface tension forces, and ush the velocity of a point on the bubble sur-
face related to a change in shape with an associated mass of mf (e.g. mf ≃ ρfVE chosen
here). It is solved again with the constraints Vp = const and a constant center of mass.
The non-equilibrium extension is used in the detailed study of a single bubble coalescence
event in Section 7.5.1 and good quantitative agreement is found for the temporal evolution
of the bubble shape. The equilibrium model is employed for the studies presented below, the
examination of single bubble ascent (Section 5.6), as well as for the simulations considering
bubble chains (Chapter 6 and Section 7.6).

To sum up, the outer pressure field po(xS) on the bubble surface and twice the local mean cur-
vature κ(xS) need to be determined to solve (4.5) for an optimum shape. Two parametriza-
tion of the deformable bubble shape are considered: An oblate ellipsoidal shape (Section
4.3) and bubbles represented by spherical harmonics (Section 4.4).

4.2.2 Pressure interpolation

The pressure field of the continuous fluid phase needs to be interpolated from the Cartesian
grid to the bubble surface. Two different interpolation strategies were considered. First, the
regularized δ-function of Roma [225], which is used in the IBM for the interpolation of the
velocity field (Section 3.3.4), is adopted also for the interpolation of the pressure. Second, the
more general framework of the Moving Least Squares interpolation (MLS) is employed which
allows for a larger variety of basis functions, as well as additional constraints [151, 158, 285].
A brief outline is given in the Appendix K. The accuracy and convergence properties of the
latter approach were studied in detail within the diploma thesis of Beetz [12] for the pressure
interpolation to the Lagrangian forcing point distribution of an ellipsoid. The implementa-
tion was then amended to a general set of points, e.g. the structured SH mesh which enables
more efficient calculations on the surface.
An example pressure field is provided in the contour of Figure 4.6 for an oblate ellipsoid
in cross flow. It features the stagnation pressure region at the bubble front, low pressure
regions on each side where the flow is accelerated, and again moderately increased pressure
at the rear of the bubble where the flow recirculates. The figure also allows for a view on
the pressure field inside the bubble where an artificial, weak flow is driven by the IBM. The
pressure inside the bubble is very close to the reference pressure corresponding to the zero
level here. This results in a marked pressure difference over the interface for instance at
the front stagnation point. However, the pressure field is substantially smoother then in,
e.g., VOF or front-tracking methods where a substantial pressure jump, proportional to the
density difference between the phases, needs to be resolved [275]. This usually degrades
the performance of the pressure solver and can lead to time step restrictions and numerical
difficulties.



4.2 Deformable bubbles 111

The regularized δ-function uses a symmetric stencil with three points in each direction. In
order to reduce the influence of points inside the bubble on the interpolation result, the loca-
tion of the interpolation is slightly shifted towards the outside by 1.5∆x in radial direction.
A more rigorous approach consisting of an extrapolation towards the bubble surface using
only outside points should be considered in the future, e.g., in the MLS framework. The
parallel implementation comprises simultaneous interpolation on all processes containing a
fraction of the bubble surface and gathering of the results on the master process by MPI
communication.

Figure 4.3 Surface pressure distribution for the flow around a rigid sphere for Re = 100. Pressure

coefficient Cp = (p− pref ) /
(

ρ u2ref/2
)

over angular coordinate measured from front stagnation

point. Comparison of present data to simulation data of [159] and [170].

Figure 4.3 shows the pressure profile on a sphere in cross-flow for Re = 100. For this
Reynolds number, the flow is axisymmetric with respect to the direction of the incoming
flow and a steady recirculation zone forms behind the sphere. The simulation was conducted
with a spatial resolution of dp/∆x = 40 in a sufficiently large domain. Comparing the results
obtained with the regularized δ-function and the MLS approach with quadratic basis func-
tions, very similar accuracy is observed. The δ-function provides slightly better smoothing
properties, especially on coarse grids (not shown here), which is why it is used in the simu-
lations presented in this work. The graph also contains reference data from [159] and [170]
obtained with finite-volume methods employing body fitted grids. Very good agreement is
found whereas a minor underprediction of the stagnation pressure is observed in the present
case due to the reasons mentioned above. In terms of bubble shape, this would result in
slightly more spherical bubbles.

4.2.3 Interface velocity due to shape oscillations

For a deformable particle and a no-slip condition at the interface, the velocity at the bubble
surface S consists of three parts uS(r, t) = up +ωp × r+ ush , where up is the translational
velocity of the particle center, the second term denotes the part due to rotation and ush is
the velocity induced due to changes in shape. This latter velocity needs to be determined
from the computed temporal change in bubble shape.
Figure 4.4 schematically sketches an ellipsoidal shape oscillation and the absolute value of
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the fluid velocity that is created in the vicinity of the bubble. In this thought experiment, the
bubble is fixed with respect to translation and does not rotate. Hence, only ush contributes
to the interface velocity. An oblate ellipsoid of temporally constant volume and regularly
oscillating aspect ratio X(t) was considered. The scenario is similar to the late stage of
shape oscillations subsequent to a coalescence event studied in detail in Section 7.5.1. Note,
that in this case the velocity along the axis of rotation ḃ(t) = 2/3X(t)−1/3 Ẋ(t) req takes on
larger peak values than its counterpart ȧ(t) = 1/3X(t)−2/3 Ẋ(t) req directed orthogonally to
ḃ.

a(t)

b(
t)

Figure 4.4 Schematic sketch of interface velocity due to shape oscillations. Contour of the

absolute value of the induced fluid velocity.

Two variants are implemented for the determination of ush depending on the chosen shape
representation. The first variant is based on the discrete representation and employs the
Lagrangian forcing points xfp. The total temporal change in the location of a forcing point
is governed by

dxfp

dt
= uS,fp = up + ωp × rfp + ush,fp (4.6)

in the laboratory coordinate system. The two contributions due to translation and rotation
with respect to the particle center are known from the solution of the respective particle
momentum equations. The position of the interface, xfp(t), is obtained from the shape
adaptation. One thus can solve for ush,fp, e.g. employing backward finite differences (out-
lined in Section 3.3) for dxfp/dt. The latter requires to save old forcing point positions and
additional communication in parallel runs.

The second variant is valid for bubbles represented by spherical harmonics discussed in
Section 4.4 below. In this case, ush can be computed from the recent history of the SH shape
coefficients. The temporal evolution of the interface due to a change in the axisymmetric
bubble shape can be expressed in the local spherical coordinate system by

dr(θ, t)

dt
=

NSH
∑

n=0

d qn(t)

dt
Pn(θ), (4.7)

again employing backward finite differences for dqn/dt. A transformation to Cartesian co-
ordinates yields uLoc

sh =
(

uloc
sh , v

loc
sh , w

loc
sh

)

. Finally, a transformation from the local coordinate
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system of the spherical harmonics to the global, laboratory system using the rotation matrix
A introduced in Section 3.2 yields

ush = ulab
sh = AT · uloc

sh , (4.8)

which can then be incorporated into the IBM and evaluated at discrete locations to obtain
ush,fp. The shape history qn(t), n = 0, . . . , NSH needs to be saved for a number of recent
time levels to enable the evaluation of the backward finite differences and it has to be
communicated in parallel simulations. A rigorous validation was conducted by a prescribed
shape oscillation of an ellipsoid, X(t), and comparison of the computed interface velocity to
the analytical solution (not shown here). Further validation is apparent from Section 7.5.1
where the computed interface velocity is compared to experimental data for two bubbles
undergoing coalescence.

4.3 Ellipsoidal bubbles

4.3.1 Algorithm for shape adaptation

A general ellipsoid is defined by its semi-axes a, b and c. The surface xS = (xS, yS, zS) is
parametrized as

xS = a cos η sin ξ, yS = b sin η sin ξ, zS = c cos ξ (4.9)

with η ∈ [0; 2π) and ξ ∈ [0; π]. Note, the surface parameters η and ξ are not angles of a
spherical coordinate system.
The local mean curvature κ(xS) of this ellipsoid can be determined analytically:

κ = 2
abc[3(a2 + b2) + 2c2 + (a2 + b2 − 2c2) cos(2ξ)− 2(a2 − b2) cos(2η) sin2 ξ]

8[a2b2 cos2 ξ + c2(b2 cos2 η + a2 sin2 η) sin2 ξ]3/2
. (4.10)

Physical observations suggest to model the bubble shape by an oblate ellipsoid with semi-axes
a = c > b, valid in a wide range of the regime map of [37, 165]. The present implementation
is similar to the approach outlined in [60, 61].
For the ellipsoidal bubble representation, the Lagrangian forcing points (index fp) serve as
the basis for the algorithm. The following steps are undertaken for the evaluation of the
potential displacement energy:

- Interpolation of the fluid pressure onto the Lagrangian forcing points, calculation of
local pressure difference ∆p

(l)
fp and transformation of the pressure field to a coordinate

system aligned with the major axes of the ellipsoid

- Calculation of the parametrization (η, ξ)
(l)
fp of the forcing point x

(l)
fp from (4.9).

- Evaluation of curvature κ
(l)
fp and local residuum ε

(l)
fp from (4.10) and (4.4).

- Integration over forcing points (or a specific subset [60]) and calculation of the total

potential W , equation (4.5) becomes W =
∑NL

l=1

(

ε
(l)
fp

)2

A
(l)
fp ⇒ min!
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A single parameter has to be determined by the minimization problem (4.5), the ellipsoid
aspect ratio X = a/b. The following optimization strategy is pursued:
Starting from the initial value Xj=1 = Xn = X(tn) a Newton algorithm (iteration index j)
is used to compute the optimum aspect ratio Xopt at time tn. This optimum has to fulfill

W ′ =
dW

dX
= 0, W ′′ =

d2(W )

dX2
> 0. (4.11)

In order to determine these derivatives, W is calculated for Xj and two neighbor statesW
(−)

and W (+) with a ’frozen’ pressure field pno (xS) under the constraint Vp = const.

W (−) = W (Xj −∆X)

Wj = W (Xj)

W (+) = W (Xj +∆X)

The derivatives are calculated by second order divided differences with

W ′(Xj) =
W (+) −W (−)

2∆X
, W ′′(Xj) =

W (+) − 2Wj +W (−)

(∆X)2
. (4.12)

The next step in the Newton algorithm is obtained by

Xj+1 = Xj −
W ′ (Xj)

W ′′ (Xj)
. (4.13)

The solution of the minimum search is called Xopt.
Under-relaxation of the change in aspect ratio is necessary for stability due to the CFL
constraint and the ’frozen’ pressure field. The new aspect ratio is thus computed from
Xnew = Xn + w (Xopt −Xn) with the under-relaxation factor w < 1. See for instance [18]
for a discussion of weak versus strong (explicit versus implicit) coupling in fluid-structure
interaction problems. The new value Xnew is applied at tn + ∆tsh (where ∆tsh ≈ 10∆t is
chosen here) and the intermediate shapes are determined by linear interpolation between Xn

and Xnew. After the time interval ∆tsh the shape optimization is repeated with an updated
pressure field. In future developments of the algorithm, information from within the time-
interval between two adaptation steps should be used to improve the shape coupling. The
algorithm is shown schematically in Figure 4.5a) for the adaptation towards a terminal shape
Xt.
For parallel runs, the solution of the minimization problem is conducted on the master

process only. The current ellipsoid aspect ratio is communicated to the slave processes to
enable the distribution of forcing points. For moving particles, additionally Xn and Xnew

need to be exchanged if a particle leaves its local domain.

4.3.2 Results and comparison

The approach was validated by computing the quasi-stationary shape of a fixed ellipsoidal
bubble in cross flow. A box of extent L = (14, 7, 7)deq is discretized equidistantly with
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a) b)
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Figure 4.5 Adaption of bubble shape to hydrodynamic forces. a) Schematic sketch of shape
adaptation algorithm. b) Temporal evolution of ellipsoid aspect ratio X and scaled potential
displacement energy W for We = 2 and Re = 250.

N = (256, 128, 128) cells, corresponding to a spatial resolution of deq/∆x ≈ 18. The
bubble surface is represented with NL = 2122 Lagrangian forcing points. The time step is
chosen to yield CFL = 0.5. The particle position is xp = (0.5, 0.5, 0.5)Ly, and the particle
has an initial aspect ratio of X0 = 1.0. A uniform inflow is prescribed with u∞ = uref
and a convective outflow condition is applied at the opposite boundary as well as periodic
conditions at the lateral boundaries.

a) b)

Figure 4.6 Bubble shape coupled to fluid loads. a) Instantaneous pressure field (close-up) for
the final ellipsoidal shape with Reeq = 180, We = 2. b) Bubble aspect ratio versus Weber number.
Comparison of present simulation results for ellipsoidal and SH bubbles with data and fit from
[165].

To check whether a distinct global minimum in W and therefore an optimum shape exists,
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a preliminary simulation is performed stepping through the parameter range X ∈ [1.0, 4.0]
with ∆X = 0.1 and monitoring W (not shown here). Indeed, the potential displacement
energy takes a global minimum at an aspect ratio close to the value given in Figure 4.6
for a prescribed Weber number. It now needs to be studied how fast the optimization
strategy finds this optimum. The temporal evolution towards the final shape is displayed in
Figure 4.5b) for We = 2 and Reeq = 250. The adaptation process is started 4 deq/uref after
initialization. Starting from the initial aspect ratio of X = 1.0 the shape adapts towards
the equilibrium shape of X = 1.32 within approximately 2 deq/uref time units also obeying
the CFL-constraint. A moderate overshoot is observed while likewise the local flow field
adjusts to the new particle shape. The aspect ratio decreases very slightly as the global flow
field develops. At t ≈ 50 deq/uref vortex shedding sets in as to be expected for the chosen
Reynolds number. The residual in the surface potential W again somewhat increases since
the chosen shape parametrization is axisymmetric, but the flow and thus the fluid loads just
lost this property. The ellipsoid aspect ratio then oscillates periodically with a frequency
strongly correlated to the vortex shedding.
Results for different values of We and a constant Reynolds number Re = 180, as well as
a comparison with data of single, clean bubbles from the literature [165] is given in Figure
4.6b). Overall good agreement is found for all We considered. Note that for large Weber
numbers, the bubble shape deviates from ellipsoidal and the bubble obtains, e.g., a cap
shape. In this case a more sophisticated parametrization of the bubble shape is needed
allowing more degrees of freedom which is introduced in the next section.

4.4 Bubbles represented by spherical harmonics

4.4.1 Algorithm for shape adaptation

The bubble shape is described analytically by a series expansion in spherical harmonics
(SH). In the current framework, there are basically two options to increase the degree of
freedom for the bubble shape. On the one hand, one could use the triangulated discrete
forcing point distribution (Figure 4.2b)) and move each single marker point to satisfy the
equilibrium of the potential displacement energy. One major drawback of this approach is
that the calculation of surface curvature is rather inaccurate for shapes given by discrete
points. More details on this matter are provided in Section 3.1.
It seems therefore reasonable to use a continuous, analytical description of the bubble shape.
Here, spherical harmonics shall be used for this purpose. The bubble is described in a local
spherical coordinate system by

r(θ, φ) =
∞
∑

n=0

n
∑

m=−n

anmY
m
n (θ, φ) , (4.14)

with the spherical harmonic functions Y m
n (θ, φ) [77]. The Appendix J provides the quite

extensive mathematical formulae related to the SH, e.g. for the determination of pointwise
quantities like surface normal vectors or integral quantities like bubble volume. Although
all equations are given in a general form and the implementation was performed in a similar
fashion, the discussion of bubble shapes shall be restricted to axisymmetric shapes from
here on. Note that the axis of rotation may have an arbitrary orientation in the laboratory
system. Three-dimensional SH shapes are considered for bubble coalescence in Section 7.5.2.
We use a local spherical coordinate system (r, φ, θ) centered in xp where the coordinate
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axes are aligned with the principal axes of inertia of the bubble. The ansatz simplifies for
axisymmetric shapes in φ to

r(θ) =
∞
∑

n=0

qnPn(cos(θ)) ≈
NSH
∑

n=0

qnPn(cos(θ)) . (4.15)

with qn designating the coefficients of the series expansion and Pn the Legendre polynomials
of order n. The surface vector xS reads

xS = r(θ, φ) sin(θ) cos(φ), yS = r(θ, φ) sin(θ) sin(φ), zS = r(θ, φ) cos(θ). (4.16)

The local mean curvature κ(xS) is determined analytically as in [77] (Appendix J) with

κ = f (r; r,θ; r,θθ; xS,φ; xS,θ; nS,φ; nS,θ) (4.17)

involving first derivatives of the surface vector xS and the surface normal vector nS with
respect to φ and θ, as well as first and second derivatives of the local radius r(θ) which
is only a function of θ in the axisymmetric case. The calculation of surface curvature was
conscientiously validated against the solution for ellipsoids from equation (4.10). Note that
an ellipsoid is not a direct subset of the SH representation and therefore the test scrutinizes
all equations involved. Using NSH = 12 and an appropriate Gaussian quadrature, the
maximum error in the surface radius is smaller than 0.01% and the maximum error in
surface curvature is determined to be 0.43%, where the maximum deviations occur at the
poles. The description is hence very accurate and the error in curvature is substantially
smaller compared to a discrete representation of the surface. The results are plotted in
Figure 4.7 and the corresponding graphs of the analytically described ellipsoid and the SH
representation collapse nicely.

a) b)

Figure 4.7 Representation of an oblate ellipsoid with X = 1.5 by spherical harmonics with
NSH = 12. a) Surface radius. b) Surface curvature.

The algorithm determining the bubble shape and the involved optimization strategy differ
slightly from those pursued for the ellipsoidal shape. The SH shape adaptation is performed
in the local spherical coordinate system wherein the angles θi of the discrete, structured rep-
resentation are chosen according to a Gaussian quadrature of nθ points. First, the pressure
is interpolated to the SH surface and averaged in circumferential direction φ. To accurately
capture the pressure field, a sufficiently dense distribution of nθ points is used, exceeding
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the necessity of the quadrature determined by NSH . Then a derivative-free, iterative proce-
dure to determine the optimum shape of NSH + 1 degrees of freedom is employed instead
of the Newton algorithm for the single parameter X in the ellipsoidal case. It consists of
the following steps: A local residuum ε (θi) can be calculated from (4.4) using the local
pressure difference ∆p (θi) and the local curvature κ (θi). The surface is then shifted, locally
weighted by ε. The shape coefficients qn and the curvature κ(xS) of the adapted shape are
determined under the constraints of constant bubble volume and constant center of mass.
The displacement energy W is re-calculated until an optimum shape is found for the given
pressure field. A damped update of the bubble shape qn(t) is linearly distributed over the
interval ∆tsh. The change in shape takes into account the CFL-criterion.

4.4.2 Results for a prescribed pressure field

As a first and rigorous validation, the algorithm is shown to compute the correct bubble
shape for a prescribed, constant pressure field. The latter together with data for the bubble
shape was received from private communication with J. Degroote, the author of [46, 45]. In
these references, bubble dynamics are studied using front-tracking based on a partitioned
fluid-structure interaction algorithm. The coupling is implicit and body fitted grids are
employed. Those numerical results are also in very good agreement with corresponding
experiments from [164]. The studied case corresponds to an air bubble in water which had
just detached from an injection needle. An bubble equivalent radius of req = 2.165 mm and
thus an Eötvös number of Eo = 2.6 were obtained from the data. In the present simulation,
the received pressure field is first linearly interpolated to the nθ = 12 grid points of the
Gaussian quadrature. Starting from an initial ellipsoid with X = 1.2 the shape is then
adapted minimizing the potential surface energy as described above. Figure 4.8 shows that
the shape computed with the present SH algorithm is in very good agreement with the
reference data.

Figure 4.8 Spherical harmonic bubble shape coupled to fluid loads. Comparison of present
simulation results with simulation data from [46].
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4.4.3 Results for freely rising bubbles

The bubble shape of single, freely rising bubbles in quiescent fluid is studied. The major aim
of this section is to illustrate the capability of the SH approach to represent a wide range of
bubble shapes apparent from the shape diagram in Figure 4.1, but also to address the limits
of the present approach. At first, a comparison of bubble shapes is presented for low Re and
high Eo with predictions by a hybrid particle level-set method (HPLS) in [82, 81, 83] and
experiments documented in [13]. The expected bubble shapes are in the cap regime.
Two simulations are conducted where the Eötvös number is fixed with Eo = 116 and the
Galilei number is varied to be G = 13.9 (c1) and G = 62.0 (c2), respectively. The indications
c1 and c2 relate to the cases cap 1 and 2 in Figure 4.1, respectively.
The setup comprises an individual bubble which is represented by spherical harmonics with
NSH = 24, nθ = 120 and nφ = 12. It is initially spherical at rest and rises under the action
of gravity in stagnant liquid. The size of the computational domain and the discretization
are adopted from [82] with L = (4, 8, 4) deq and N = (240, 480, 240) corresponding to
deq/∆x = 60. The time step is adapted to yield CFL = 0.5. Periodic boundary conditions
are applied in all three directions. A fringe zone is introduced [81] traveling at some distance
in front of the bubble in which the fluid velocity is driven to zero to compensate for the rather
small domain extent in the direction of gravity. The distance of this fringe zone is chosen
to be 3deq with respect to the bubble center and it has a height of 0.25deq. In this zone, a
forcing term is introduced to the Navier-Stokes equations proportional to the difference of
the current fluid velocity and the desired zero velocity very similar to the IBM discussed
above.
The results of the two simulations are gathered in Figure 4.9 alongside the numerical and
experimental reference data.

Ret X
Exp. [13] 7.2 1.8
HPLS [82] 6.9 1.7
present 6.6 1.6

Ret X
Exp. [13] 42.2 3.2
HPLS [82] 40.2 3.1
present 39.7 3.0

Figure 4.9 Cap bubble shapes from experiment of [13], HPLS simulation of [82] and present
results with Eo = 116, G = 13.9 (top row, c2) and Eo = 116, G = 62.0 (bottom row, c3).
Comparison of rise Reynolds number Ret and bubble aspect ratio X .

A generally good agreement is found in both simulations. The bubble shapes agree well
with the shapes from the experiment and the simulation with the HPLS-method. The rise
Reynolds number as well as the aspect ratio are somewhat underpredicted in both cases by
the current simulations where the error is less apparent at higher rise Reynolds numbers.
The aspect ratio is here defined as X = 2max(xS)/(max(zs)−min(zs)). The main reasons
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for the deviation are the no-slip boundary condition that is enforced by the IBM and ne-
glecting viscous stresses for low Re. A comparison between a rigid ellipsoid with X = 2 and
an geometrically identical bubble is conducted in [159] showing the differences of a no-slip
to a free-slip condition at the interface. The drag coefficient is larger for rigid particles and
the difference is larger at low Re where viscous contributions play a marked role. A larger
drag yields a lower rise velocity and thus a smaller rise Weber number and therefore smaller
deformation. The cap shape is predicted correctly by the spherical harmonics algorithm
including the formation of a dimple or under cut at the rear side of the bubble. The shape
of the dimple, however, deviates from the predictions by the HPLS simulation. Also the
representation of the quite sharp corner for the very flat cap-shape bubble for G = 62.0 is
problematic with the SH-series. One should further keep in mind, that the SH-approach
allows only for a unique mapping of r onto the (φ, θ)-space, i.e. the predictions are limited
in terms of representing dimples and undercuts or skirted bubbles. This regime of very high
Eo-bubbles is beyond the scope of this study which is focused on spheroidal bubbles at high
Reynolds numbers.

Table 4.2 Overview of simulations regarding SH bubble shapes.

Run (s1) (s2) (e1) (e2) (e3) (e4) (e5) (c1) (c2) (c3)
spherical ellipsoidal cap

Eo 0.5 2.5 10 10 2.5 5.0 2.5 200 116 116
G 170 10 80 170 280 280 2825 10 13.9 62.0
Ret 224 3.8 66.4 159 336 298 3031 3.6 6.6 39.7

Further simulations were conducted to scan the shape diagram. An overview of all simu-
lations regarding the SH bubble shapes is provided in Table 4.2. The setup differs slightly
from the one described above with now L = (6.4, 12.8, 6.4) deq and N = (256, 512, 256).
The results are displayed in the shape regime map of Figure 4.1 and selected resulting bubble
aspect ratios are plotted over the terminal Weber number in Figure 4.6. The latter shows
good quantitative agreement with the correlation of equation (4.2) with a slight underpre-
diction in X which probably also stems from the chosen definition of the aspect ratio for the
SH bubbles. Three simulations were performed alongside the virtual boarder to the spherical
regime. The parameters Eo = 0.5, G = 170 (s1) and Eo = 2.5, G = 10 (s2) led to almost
completely spherical bubbles with the first result also being confirmed in [2] by a phase
field approach. The pairing Eo = 200, G = 10 (c1) yields a modest cap shape with a very
mild dimple. Additional simulations were conducted in the ellipsoidal regime. The two runs
Eo = 10.0, G = 80 (e1) and Eo = 10.0, G = 170 (e2) have been chosen to illustrate front-
to-back asymmetry. While the hydrostatic pressure difference from top to bottom leads to a
flatter shape at the rear, an increase in the hydrodynamic pressure component at the front
compared to the back leads to symmetric ellipsoidal shapes and front-flattened shapes. The
two simulations Eo = 2.5, G = 280 (e3) and Eo = 5.0, G = 280 (e4) show shape oscillations
around the displayed average shapes related to a zig-zag trajectory and corresponding veloc-
ity oscillations. The rise of a single bubble in liquid metal with Eo = 2.5, G = 2825 (e5) is
discussed in detail in Section 5.6 and published in [246]. Distinct path and shape oscillations
occur. However, the average shape corresponds closely to the one at Eo = 2.5, G = 280,
i.e. an increase of the rise Reynolds number by an order of magnitude shows a negligible
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influence on the average bubble shape.
The focus of this section lied on the prediction of steady shapes and time-averaged bubbles
shapes. The computed bubble shapes are also in good agreement with the observations in
[17]. Nonetheless, the SH algorithm also works for temporally varying shapes. Apart from
the aforementioned numerical experiments, a simulation of bubble-wall collision and a com-
parison to experimental data of [318] is conducted in Section 7.4.3 and excellent agreement
is found for strong, time-dependent bubble deformations.

4.5 Concluding remarks on bubble shapes

This section outlined the representation of particle shapes in the PRIME code reaching from
simple spherical particles to complex, flow-determined bubble shapes. The shortcomings and
the advantages of the present approach are now summarized: A large variety of shapes can
be described. Basically the full shape diagram is covered, but a certain limitation remains
due to the chosen parametrization. Very strong deformations of individual bubbles are dif-
ficult to capture, also the approach is limited in terms of particle topology, e.g. splashing of
drops or shearing-off of smaller bubbles from the skirt of a bigger one would be challenging.
Nevertheless, Section 7.5.2 describes the modeling of bubble coalescence, i.e. the merge of
two bubbles, within the framework of spherical harmonics. The present weak, fully explicit
coupling between bubble shape and fluid poses further limitations within the temporal evo-
lution of the bubble shape. Explicit coupling can become numerically unstable and requires
low time steps especially for strong or fast bubble deformations. As an outlook, implicit
coupling should be considered. Lower order methods for the pressure field [45] could mimic
a fully implicit treatment and would help to avoid substantial performance losses. If bubbles
at low Reynolds numbers are of interest, viscous stresses should be incorporated into the
fluid loads deforming the bubble.
Regarding the advantages, the shape of each individual particle is analytically described and
therefore the constraint of constant volume can be implemented easily. In this way the mass
of the disperse phase can be conserved exactly. The proposed algorithm for the simulation
of shape-varying bubbles employs two different shape representations. One is the highly
regular definition of the shape by analytical functions which allows to determine curvature
terms in closed manner, simultaneously performing regularization. The other is a discrete
one, defining Lagrangian markers on the surface, in order to accomplish the IBM-coupling
between fluid and bubble surface. It is a useful feature of the employed method that the
particle shape can be modeled directly. Experimental information on the bubble shape, if
available, can be introduced. The delicate introduction of surface tension forces are not
needed in the present model. This yields high robustness and avoids spurious currents [275].
Direct modeling of the bubble shape is very efficient and allows time steps of CFL ≈ 1
for moderate shape oscillations which is usually not achieved with typical V OF methods
resolving the density jump at the interface [149]. An exactly defined phase boundary, in
contrast to a diffuse interface, is also advantageous for the modeling of particle-particle and
particle-wall interactions [136] which will be discussed in Chapter 7.





5 Single Bubble Ascent Influenced by

a Magnetic Field

5.1 On the rise of a single bubble

The ascent of a single bubble in a quiescent liquid is a fascinating phenomenon, for the lay-
man as well as for the scientist. The trajectory of the bubble which can exhibit forms ranging
from straight vertical ascent to chaotic irregular motion, and regimes of shape ranging from
strictly spherical to irregularly wobbling still challenge physicists and engineers. An inter-
esting review assembling the early views on rising bubbles is given in [214]. In this reference,
the term Leonardo’s paradox is suggested for the tendency of sufficiently large bubbles to
rise along a zig-zag or spiraling path rather than along a rectilinear one. The reason for the
latter is attributed to the structure of the bubble wake. Two-threaded vortices of opposite
circulation induce a lift force on the bubble deflecting it from a strictly vertical trajectory.
A review on the hydrodynamic forces acting on isolated, spheroidal high-Reynolds-number
bubbles and the associated motion is provided in [168]. The vortical structures in the wake
of air bubbles in water have been analyzed by modern optical experimental techniques like
Schlieren optics [44], digital particle image velocimetry [27] or dye visualization [234]. Al-
ternately shed vortex filaments are observed for a bubble rising in zig-zag, while a spiral
trajectory is characterized by a continuous pair of parallel vortices wrapped around the axis
of the helix. In experiments, it has been observed frequently that the path first follows a
zig-zag and later on changes to a helical shape [230, 274], whereas a transition in the opposite
direction has not been reported so far. Not surprisingly, the structures in the wake behind
bubbles rising in zig-zag are similar to those observed behind rising solid spheres following
a zig-zag trajectory [113]. It has been shown experimentally [59] as well as numerically
[186, 187, 169] that path oscillations can appear in the absence of shape oscillations which
proves that indeed the vortex structures in the wake are responsible for the former. This
is extensively discussed in the review of Ern et al. [63] which assembles current knowledge
about the wake of fixed bodies and its relation to the onset and development of path insta-
bilities of both bubbles and rigid objects.
Most experimental and numerical work on bubbles so far has been conducted for the air-water
system, often using hyper-clean water which is almost free of contaminants and therefore jus-
tifies the application of a shear-free boundary condition at the gas-liquid interface [168, 169].
Nevertheless, there is a variety of industrial applications where gas bubbles play an important
role and where these conditions are not met. The continuous casting process in metallurgy is
one example [272, 271]. Here, gas bubbles are injected into the melt to clean the liquid metal
from contaminants and to stir and homogenize the liquid phase [320]. Magnetic fields are
used in liquid metal processes to starry [262] and to stabilize the flow regimes [300]. Liquid
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metals are prone to oxidation, and in general a melt is never free of contaminants so that
an oxide layer forms at the gas-liquid interface. Furthermore, contaminants and inclusions
agglomerate at the bubble surface. The appropriate condition for the velocity at the bubble
surface hence is the no-slip condition. This is backed by the observation that the drag of a
fully contaminated spherical bubble corresponds to that of a solid sphere [168, 66].
Liquid metals are opaque and therefore experimental data are difficult to obtain and rare.
The optical measurement techniques specified above hence cannot be used to get detailed
insight into liquid metal multiphase flows. Ultrasound Doppler velocimetry is an alternative
approach in this case and has been used to study the motion of a single bubble [319] and a
bubble-driven liquid metal jet [320] under the influence of magnetic fields. Local conductiv-
ity probes have also been used to measure the rise velocity of bubbles in mercury [183] as
well as the behavior of gas bubbles in turbulent liquid metal magnetohydrodynamic flows
[55, 56].
Direct numerical simulation of bubbles in liquid metals is challenging due to the large dif-
ferences of density and viscosity between the phases and the high bubble Reynolds number
typically encountered. As a result, there are only very few phase-resolving simulations of
bubbles in liquid metal under the influence of a magnetic field. A rising bubble in a small
enclosure under a vertical magnetic field was computed in [256] by means of a volume of
fluid approach with reduced density and viscosity ratio and very moderate Galilei number.
Gaudlitz and Adams [84] simulated the influence of a vertical magnetic field on the rise
of a single bubble in electrically conductive liquids with a hybrid particle level set method
neglecting the effect of interface contamination. The numerical parameters of this case cor-
respond to a small bubble in mercury, i.e. the Galilei number is smaller by a factor of five
compared to the present study.
It is known that homogeneous magnetic fields substantially modify vortical structures in
turbulent flows [139, 15] as well as the pressure field around fixed objects [173]. Therefore,
a considerable impact of such a field on the bubble dynamics is to be expected which in-
deed was observed in experiments [319, 320]. Despite these studies the actual influence of
a magnetic field on bubbles in liquid metal is still not fully understood. In particular, the
impact of a magnetic field on the interaction between bubble wake and bubble dynamics in
metallurgical systems is unclear and also the modification of the bubble shape in that case
is not fully understood to this date. This is mostly due to the lack of visual data impeded
by the opaque liquid metal.
The aim of the present paper is to fill this gap and to provide insight into the influence of
a longitudinal magnetic field on bubble wake and bubble dynamics. Phase-resolving direct
numerical simulations of an argon bubble in the liquid metal GaInSn have been conducted
for different values of magnetic interaction. The three-dimensional data of high spatial and
temporal resolution obtained from the simulations are evaluated, visualized and compared
against experimental data.
The chapter is structured as follows: Section 2 gives a short description of the equations to
be solved and the numerical approach employed, as well as a refinement study quantifying
the numerical error. Section 3 contains the numerical results for the ascent of a single bub-
ble with and without a magnetic field. Visualizations are presented to highlight conspicuous
flow features in the bubble wake. Furthermore, the numerical results are compared against
available experimental findings and other simulation data. The last section summarizes the
results of the present study and outlines future research directions. Part of this chapter was
published in [244, 248].
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5.2 Physical model and numerical method

5.2.1 Parameters of single bubble ascent

The problem of a single particle rising or falling in a pool of quiescent fluid due to the ef-
fect of buoyancy is governed by three parameters [63]: The particle-to-fluid density ratio,

πρ = ρp/ρf , the Galileo number, G =
√

|πρ − 1| g d3eq/ν, and a geometrical parameter relat-
ing to the shape of the particle, such as the ratio of diameter to height for a cylinder or the
aspect ratio for an ellipsoid of rotation for example. Here, g is gravity, deq is the diameter of
a volume-equivalent sphere and ν is the kinematic viscosity of the liquid. The terms bubble
and particle are practically used as synonyms, with index p throughout. Indeed, the term
’particle’ in the literature often designates any element of a disperse phase, be it solid, fluid
or gaseous [37]. In case of a rising bubble, the density ratio is very small and the motion
is predominantly governed by the inertia of the fluid. The Galileo number determines the
ratio of the driving buoyancy force to the viscous forces. Inserting the gravitational velocity,
uref =

√

|πρ − 1| g deq, into the definition of G yields a reference Reynolds number, Reref .

The latter velocity scale, uref , and in a similar fashion the reference time, tref =
√

deq/g,
are used for scaling here, together with the reference length deq.
The shape of a single rising bubble is governed by viscous and pressure forces deforming the
interface and by the stabilizing effect of surface tension driving the bubble shape towards
a spherical one. The Eötvös number Eo = ∆ρ g d2eq/σ which is the ratio of buoyancy force
to surface tension force therefore can be used to characterize the bubble shape. Here, ∆ρ
denotes the density difference between the phases and σ the surface tension. The three
parameters G, πρ and Eo characterize the system and are known a priori.

The bubble velocity, up = (up, vp, wp)
T , is a result of the simulation. The rise velocity vp

can then be used to determine the bubble Reynolds number Re = vp deq/ν. The instanta-
neous, vertical component of the bubble velocity is used here to calculate Re(t) because this
component was measured in the corresponding experiments [319].

a)a) b)b)

Figure 5.1 (a) Ellipsoidal bubble with NL = 664 Lagrangian forcing points, tilted by φz = 30◦.
(b) Shape oscillation X(t) = a(t)/b(t). The discontinuous lines indicate the states with maximum
and minimum aspect ratio observed in the simulation with N = 0 reported below.

In the present study, the bubble shape is approximated as an oblate ellipsoid of rotation
with aspect ratio X = a/b and semi-axes a = c > b (Figure 5.1b). The surface of each
individual bubble is described using a set of Lagrangian marker points interconnected by
a triangular mesh (Figure 5.1a). For the parameters of an argon bubble in GaInSn, the
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bubble shape is expected to be ’ellipsoidally wobbling’ [37]. The Weber number is defined
as We = ρf ‖up‖2 deq/σ using the absolute value of the bubble velocity. The instantaneous
Weber number We(t) is used to characterize the time-dependent bubble shape employing
the correlation X−1(t) = 1− 0.75 tanh(0.165We(t)) for the instantaneous aspect ratio of the
bubble.
Finally, the magnetic interaction parameter, N = σeB

2 deq/ (ρf uref ), is introduced to quan-
tify the relative strength of magnetic forces. It represents the ratio of magnetic forces to
inertial forces [319, 139]. The magnetic Reynolds number, Rm = µ0σedeq uref ≈ 4 · 10−3, is
indeed substantially smaller than unity and the quasi-static approximation is justified. The
material properties of a 4.6 mm argon bubble in GaInSn were used to calculate Rm and
µ0 designates the magnetic permeability of free space. The electric conductivity for both
phases was modeled to be the same for technical reasons at that time. This seems adequate
here as the focus is on the influence of a magnetic field on the bubble wake. The effect of
a phase-dependent electrical conductivity is then reviewed in the additional simulations of
Section 5.6.

5.2.2 Refinement study

A grid refinement study was carried out to estimate the numerical error of the spatial and
temporal discretization and to determine the overall order of convergence of the method in
the present setup. It was conducted for the initial phase of the ascent during which the
bubble accelerates and changes its shape from spherical to ellipsoidal with X ≈ 1.5. Re-
finement is performed simultaneously for the spacing of the equidistant Cartesian grid, the
Lagrangian surface mesh and the time step. Consequently, the CFL number is kept approx-
imately constant. The number of forcing points NL on the surface of the oblate ellipsoid is
increased as well throughout the grid refinement (Appendix B).
The refinement study was conducted in a cubic domain of extent L = 6.0 deq in all three
directions, and an equidistant grid of N3

x points was used with periodic boundary conditions
in all three directions. Gravity acts in negative y-direction. The setup basically corresponds
to the one of the simulations presented later on, where a significantly longer extent of the
computational domain in vertical direction was used, though. A single bubble is considered
with a Galilei number of G = 2825, an Eötvös number of Eo = 2.5, and a density ratio
of πρ = 10−3 corresponding to a 4.6 mm argon bubble in GaInSn. Note that with πρ ≪ 1
the results become independent of ρp. The particle is initially at rest, up = 0, ωp = 0, in
quiescent fluid, i.e. u = 0 in the whole domain. The initial bubble position was chosen
to be xp,0 = (3.0, 0.54, 3.0) deq. According to the shape correlation (4.2) the bubble has a
spherical shape X0 = 1.0 at the beginning of the simulation. A small initial inclination angle
of φ0 = (0, 0, 0.05) π was applied which is of no relevance for a sphere, but gives a very
small bias towards a zig-zag in the xy-plane once the bubble starts to deform.
We consider the initial acceleration of the bubble for a fixed duration tsim = 3 in dimen-
sionless time units, roughly sufficient for the bubble to reach its terminal velocity. The
temporal evolution of the bubble Reynolds number (based on vp) is shown in Figure 5.2a)
for different numerical resolutions. At the end of the simulation, t = tsim, the bubble has
traveled a distance in y of about 3 deq, corresponding to slightly more than half the size of
the computational domain (Figure 5.2.) The discretization error is estimated at te = 1.0
by comparison of the computed instantaneous particle Reynolds number with the value ob-
tained using the finest grid. In the reference case, the Eulerian grid has a spatial resolution
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a) b)

Figure 5.2 Refinement study. a) Bubble Reynolds number over time as a function of grid spacing.
b) Vertical position. N = 0.

of Nx = 512 corresponding to deq/∆x = 85.3 gridpoints over the equivalent diameter and a
total number 134.2 · 106 cells. A set of NL = 24976 Lagrangian forcing points was used in
this case to represent the bubble surface and a non-dimensional time step of ∆t = 1.25 ·10−3
was employed. By means of the fit depicted in Figure 5.3, excluding the two coarsest grids,
a convergence order of about 1.7 is obtained for the systematically refined grids employed.
The fluid discretization alone is second order accurate for single-phase simulations [134].
The direct forcing scheme utilized with the immersed-boundary method for coupling the
dispersed phase to the fluid yields a reduction of the order of convergence. The result for
the present configuration is in line with the data in [136].

Figure 5.3 Relative error in Re at t = 1.0 for the simulation in Figure 5.2.

Based on the results of the refinement study, the resolution Nx = 256 was chosen for the
simulations in the large computational domain. With an error of about 4%, it provides a good
compromise between accuracy and computational effort. Further refinement would exceed
the available computational resources. The chosen resolution therefore does not correspond
to a full DNS, but will be adequate to provide valuable and detailed insight into the physics
of this magnetohydrodynamic, multiphase flow. Interpreting the results of the refinement
study in physical terms we find that the time scale for the initial acceleration of the bubble
is longer on coarser grids. A coarse resolution also yields higher Reynolds numbers at the
end of these simulations (see Figure 5.2).
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5.3 Results for a single bubble without magnetic field

5.3.1 Setup of simulation without magnetic field

This section presents a simulation of a single bubble in liquid metal without magnetic field
and a comparison against the experimental data of [319]. The physical parameters of the
bubble correspond to those used for the refinement study above, G = 2825, Eo = 2.5 and
πρ = 10−3, which relate to an argon bubble with deq = 4.6 mm in eutectic GaInSn. As no
magnetic field is applied, the magnetic interaction parameter is N = 0.
Compared to the refinement study, the computational domain was enlarged in the direction
of gravity to resolve as much as possible of the bubble dynamics. The box extends over
L = (Lx, Ly, Lz) = (6.0, 30.0, 6.0) deq and was discretized with a spatial resolution of N =
(256, 1280, 256) points yielding a total of 83.9 Mio cells of the Eulerian grid. The bubble was
represented with NL = 9093 Lagrangian forcing points distributed over its surface. The time
step is ∆t = 2.5 ·10−3 in dimensionless units. Boundary conditions and initial conditions are
the same as in the refinement study of Section 5.2.2, i.e. periodic conditions were applied in
all three directions while the fluid as well as the bubble were initially at rest.

Figure 5.4 Computational domain of size (6, 30, 6) deq and events A, B, C of the bubble trajectory
as indicated in Figure 5.10 below.

In the experiments by Zhang et al. [319], an open cylindrical container with a diameter of
D = 100 mm and a height ofH = 220 mm was used corresponding toD×H ≈ (22×48)deq for
deq = 4.6 mm. The bubble was injected at the bottom center. A box with a quadratic cross
section (Lx × Lz) is used in the present study for technical reasons with periodic boundary
conditions which mimic a somewhat larger domain. Due to the high computational cost,
especially the horizontal extension had to be reduced whereas a moderate reduction was
chosen concerning the height. The areal blockage πd2eq/ (4Lx Lz) is about 2%. Gaudlitz [81]
used a lateral extent of only 4deq, also with periodic boundary conditions, for a simulation of
single bubble ascent at lower Re. It has been shown in [257] that the added mass coefficient
of a spherical bubble horizontally aligned with a second bubble equals the one of a single
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bubble if the distance exceeds 3deq. The wake of two spheres placed side by side in uniform
flow is only very weakly coupled if the spacing is larger than 3.5deq [242]. A sphere next to
a solid wall was studied in [317]. In [124] it is shown that for the largest Reynolds number
considered, Re = 300, and a wall distance of 4deq, drag and lift as well as the Strouhal
number deviate only slightly from the values obtained in an unbounded fluid. For these
reasons the horizontal extent of the computational domain selected for the present study in
combination with periodic boundary conditions is adequate to represent the conditions of
the experiments in the wide cylinder.

5.3.2 Results of the simulation and comparison with experimental

data

A runtime of 60 × 61.5 CPU hours on 60 cores of an SGI Altix 4700 is needed for one
crossing of the above box taking about 30 dimensionless units in time. The bubble Reynolds
number based on the vertical velocity vp is plotted over time in Figure 5.5. After an initial
acceleration the bubble rise velocity starts to oscillate quasi-periodically. The experimental
data of [319] is displayed in the same graph for comparison. These data were obtained
using single-sensor ultrasound Doppler velocimetry which allows to measure the velocity
component along a line.
An overview of the characteristic figures calculated from the instantaneous Reynolds number
Re(t) is given in Table 5.1, where Ret = 〈Re〉t denotes the average rise Reynolds number
obtained from a time average over the interval t ∈ (6, 29.2) and σRe the corresponding
standard deviation. The average rise Reynolds number is in excellent agreement with the
data from the measurements. Concerning the oscillation in Re(t), an underestimation of the
amplitude characterized by σRe is recognized. Asymmetric bubble deformation, a deviation
from an ellipsoidal shape, and partial slip at the bubble surface might be the reasons for
the deviation, besides the remaining discretization error discussed in Section 5.2.2. The
frequency on the other hand agrees well with the value reported in [319]. The dominant
frequency fRe of the oscillation in Re(t) was obtained from the Fourier spectrum by means
of a discrete Fourier transform (DFT) of Re computed with a Hanning window function to
account for the non-periodic time signal. In addition, the frequency was determined from
the roots in Re(t) − Ret and in the original experimental work of [319] by a least square
curve fit to a sine function. Comparing the results to some extent assesses the uncertainty
in the determination of fRe due to the irregular oscillation and the limited period of time.

Table 5.1 Results for a single bubble without magnetic field compared to experimental data of
[319]. Ret = 〈Re〉t is the temporally averaged Reynolds number, σRe the corresponding standard
deviation, fRe = f∗/fref with f∗ being the dominant frequency in Hz and fref =

√

g/deq.

Ret σRe fRe (DFT) fRe (roots) fRe (sine-fit [319])
Simulation 2871 245 0.276 0.270 —
Experiment [319] 2879 369 0.297 0.289 0.280
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Figure 5.5 Bubble Reynolds number over time for N = 0 and comparison to experimental data
of [319].

Additional data, interpretation and comparison with literature

Only the vertical component of the bubble velocity over time could be determined in the
experiments [319] due to the measurement technique employed. The present simulations
now offer full access to all velocity and pressure data for the continuous liquid metal phase
as well as 3D data of the bubble trajectory. Therefore the simulations can deliver valuable
complementary information on the bubble dynamics. This is reported in Figure 5.6. Indeed,
a zig-zag trajectory with lateral drift is observed in Figure 5.6a) as conjectured by the
experimentalists [319]. The maximum in Re(t) occurs at extreme points of the bubble path
xp(t). In these points, the bubble is oriented with its small semi-axis parallel to the gravity
vector, i.e. the inclination angle φz is approximately zero. The amplitude of the zig-zag,
measured between two extreme points of the path, is approximately ∆xz = 1.15 deq. An
oscillation in bubble inclination is found as well and plotted in Figure 5.6b). The temporal
change in the orientation φz around the z-axis of the laboratory system is clearly associated
with the zig-zag along x. Maximum tilting of the bubble is found closely after a local
minimum in Re(t) and approximately half way between the turning points of the zig-zag
trajectory where the lateral velocity is largest. Towards the end of the simulation and
with the onset of the lateral drift the other two rotation angles φx, φy also deviate from
zero and oscillate with a higher frequency. The maximum inclination angle is found to be
|φz|max ≈ 36◦.
These values can be compared to data from the literature. Lateral distances between two
extreme points in a zig-zag trajectory of 1.0 . . . 1.3 deq and a maximum tilting of 27 . . . 30◦

are reported for air-water experiments [167, 27] and for simulations of air bubbles in water
[81, 187] at lower Reynolds numbers.
Due to high contamination and oxidation of the gas-liquid metal system a no-slip boundary
condition is used here on the bubble surface as justified above. Therefore, besides the
higher Reynolds number of the present simulation also the boundary condition at the bubble
surface differs from the aforementioned simulations for air bubbles in water. Markedly larger
inclination angles are reported for rigid spheroids compared to bubbles in clean water [168],
and it is found in [63] that oblate bodies may follow highly non-linear trajectories with large
rotation rates if the Reynolds number is high enough. After the initial transient in the present
simulations the aspect ratio of the oblate ellipsoid determined according to equation (4.2)
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oscillates in the interval X ∈ [1.35; 1.57]. The bubble shapes for the mean, the minimum
and the maximum aspect ratio are displayed in Figure 5.1b) to convey an impression of the
amount of shape modification during the presented simulation.

a) b)

Figure 5.6 Zig-zag trajectory for N = 0. a) History of lateral bubble center coordinates xp
and zp, non-dimensionalized with deq. b) Bubble orientation over time described by the angles of
orientation.

Simulation of a smaller bubble

A smaller bubble with G = 1488, Eo = 1.05 corresponding to an argon bubble of deq =
3.0 mm in GaInSn was studied as well. The parameters were adjusted in the simulation by
changing viscosity and surface tension with all other parameters unchanged. For this smaller
bubble, the time-averaged Reynolds number is Ret = 1822. The shape of this bubble remains
almost spherical. The rise velocity again oscillates around its mean and a zig-zag path is
observed. The characteristic frequency, calculated from a Fourier spectrum of Re(t), is
fRe = 0.222 which is in good agreement with the data of [163] for an air bubble in water
at similar Ret. In [163], the non-dimensional frequency is determined from vortex shedding
visualized by optical measurements. If Re is high enough, a lock-in occurs between vortex
shedding and oscillations in the rise velocity of bubbles. No experiments in liquid metal were
conducted for this small bubble.

5.4 Results for a single bubble with magnetic field

5.4.1 Setup of simulation with magnetic field

A longitudinal, homogeneous magnetic field in the direction of gravity is now applied with
the magnetic interaction parameter being N = 0.5 and N = 1.0, respectively. All other pa-
rameters remain the same as for the simulation with N = 0 reported in the previous section.
Only the domain size was increased in y-direction to L = (6.0, 48.0, 6.0) deq with a mesh of
N = (256, 2048, 256), i.e. 134.2 Mio grid points. A longer box size in the direction of as-
cent is necessary because the zig-zag becomes stretched out and the characteristic frequency
decreases under the impact of a magnetic field as will be shown later. This box size now cor-
responds to the height of the experimental container of 220 mm for the deq = 4.6 mm bubble.



132 5 Single Bubble Ascent Influenced by a Magnetic Field

5.4.2 Overview of results

A longitudinal magnetic field has significant impact on the bubble dynamics. The influence
of the magnetic field is discussed for a single ascending bubble with the parameters G = 2825
and Eo = 2.5. Quantitative results of the simulations are summarized in Table 5.2. When
applying a longitudinal magnetic field this bubble rises faster and the oscillations in Re(t)
are damped as shown in Figure 5.7a). The maximum inclination of the bubble decreases
from |φz|max(N = 0) ≈ 36◦ in the absence of a magnetic field to |φz|max(N = 1) ≈ 17◦ for the
strongest longitudinal field considered which is a reduction by more than 50% (Figure 5.7b)).
The corresponding path deviates less from the vertical as shown in Figure 5.8. A zig-zag
trajectory is found for all values of N considered with the transverse distance between two
extreme points being reduced by the magnetic field. The time scale for one zig-zag increases
with increasing magnetic field, i.e. the path oscillation is stretched in the direction of gravity.
At the same time the amplitude of the oscillations is somewhat smaller, as shown in Figure
5.8 and Table 5.2. The resulting 3D bubble trajectory is therefore more rectilinear. With less
energy being periodically transferred to transverse motion and rotation, the amplitude of the
oscillation in Re(t) decreases with N and the bubble rises faster (Figure 5.7a)). The time-
averaged rise Reynolds number increases by about 8% for the largest field. The oscillation
in Re(t) appears more regular in the case with N = 0.5 and even more for N = 1 compared
to the case without magnetic field.

a) b)

Figure 5.7 Bubble dynamics for the three cases N = 0, 0.5, 1.0 and G = 2825, Eo = 2.5. a)
History of bubble Reynolds number. b) History of inclination angle φz.

Table 5.2 Summary of simulation results.

Eo = 2.5, G = 2825, fine Ret fRe (DFT) |φz|max ∆xz(Zig-Zag)
N = 0 2871 0.276 36◦ 1.15 deq
N = 0.5 2957 0.233 31◦ 1.08 deq
N = 1.0 3132 0.181 17◦ 0.78 deq
Eo = 2.5, G = 2825, coarse
N = 0 3029 0.297 35◦ 0.96 deq
N = 0.5 3054 0.246 29◦ 0.92 deq
N = 1.0 3202 0.185 15◦ 0.73 deq
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a) b)

Figure 5.8 Assessment of lateral motion with and without magnetic field. N = 0, 0.5, 1.0 and
G = 2825, Eo = 2.5. a) History of lateral bubble center coordinates xp non-dimensionalized with
deq illustrating the zig-zag trajectory of the bubble. b) Top view on domain, xp versus zp.

5.4.3 Comparison of results to experimental data and interpreta-

tion

A comparison with the experimental data from [319] is provided in Figure 5.9. Here, the
average rise Reynolds number and the Strouhal number are normalized with the value in the
absence of a magnetic field (N = 0) and are plotted over the magnetic interaction parameter,
N ,for different Eötvös numbers, Eo, reflecting different bubble sizes.

First, the time-averaged Reynolds number dependency on N and Eo is studied. Whether
the time-averaged rise velocity decreases or increases with increasing magnetic interaction
depends on the bubble size. This complex behavior is found in both, the present simulations
and the experiments in the literature [319]. An increase in rise velocity and hence Ret with
increasing magnetic field is found for large bubbles, i.e. large Eo, and a decrease in Ret
for small bubbles, i.e. small Eo. The reason for this phenomenon is a competition between
adverse effects generated by the magnetic field: On the one hand, a longitudinal magnetic
field increases the drag of an object. In order to pass around the object fluid elements need to
move in a direction perpendicular to the magnetic field which gives rise to a Lorentz force so
that the resulting pressure force on the particle increases with magnetic interaction. This was
shown experimentally for the flow around a fixed sphere and a disc at high Reynolds number
and moderate to high magnetic interaction [173, 314], as well as numerically for spheres and
ellipsoids at moderate Re in [245] and in Section 3.4.6. On the other hand, the magnetic field
suppresses the lateral dynamics and the bubble rises on a more rectilinear trajectory. Already
in the inviscid situation this leads to a larger rise velocity, simply because the trajectory is
shorter. Considering viscous effects in addition, less energy is transferred towards rotation
and towards motion in the transverse direction where it is dissipated further increasing the
rise velocity. The amplitude of the changes in |Ret(N)/Ret(N = 0)| with N lies well within
the band spanned by the data obtained from the experiments. The measurements, however,
show a different threshold in Eo for the reversion of the trend, i.e. Ret increases or decreases
with N at slightly larger Eötvös numbers. This is visualized in Figure 5.9a).
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a) b)

Figure 5.9 Impact of magnetic interaction N . a) Relative change with N in average rise Reynolds
number. b) Relative change with N in Strouhal number. Present simulations (bold symbols) with
code PRIME compared to experimental data of [319].

Further, the dependency of the characteristic frequency on N and Eo is studied. Different
ways of defining a non-dimensional frequency have been proposed in the literature, so that
before reporting the results obtained a few comments on this issue are appropriate. The
equivalent bubble diameter deq is a natural reference length in any case. But one can either
choose the a posteriori determined time-average rise-velocity 〈vp〉t or the a priori known
gravitational velocity scale uref =

√

deqg to determine a reference time scale. As in the
experiments [319], the Strouhal number, Sr = f ∗ deq/〈vp〉t, is employed here which is based
on the dominant frequency, f ∗, in the oscillation of the vertical bubble velocity, vp(t), and
on the average rise velocity, 〈vp〉t, of the bubble. The average rise velocity itself is a function
of bubble size and magnetic interaction. In contrast, the dimensionless frequency, fRe =
f ∗/fref = f ∗/

√

g/deq = f ∗ deq/uref , is based on the constant reference velocity given by the
gravitational velocity scale. Therefore the Strouhal number measures the combined effect
of an additional parameter on both, the average velocity and the frequency in the velocity
oscillations.
The determination of Sr and fRe can only be based on a small number of periods of the
oscillation in Re(t) due to the size of the computational domain. The number of periods
observed in the experiments is the same for N > 0. A decrease of Sr and of fRe is found
with increasing strength of the magnetic field for all bubble sizes as shown in Figure 5.9b).
The relative change in Sr is less pronounced for small bubbles than for large bubbles in
the simulation. For the larger bubble with Eo = 2.5, the reduction in Sr is over-predicted
at large magnetic interaction parameters in the simulations. To quantify the influence of
spatial resolution on the result, ’coarse’ simulations with an isotropic grid of step size 1.5
times the one of the common grid, i.e. Nx = 192, have been conducted for this bubble using
the same values of the interaction parameter N = 0, 0.5, 1.0. It appears that the results
for the relative change in Sr on the finer grid are closer to the experimental data.
Overall, the agreement of the results of experiments and numerical simulations is promising.
All dominant effects of the magnetic field have been captured by the simulation.
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5.5 Comparative analysis of wake with and without

magnetic field

5.5.1 Coherent structures in the wake

For the bubble with G = 2825, Eo = 2.5, particular instants in time are chosen for further
analysis. These events correspond to characteristic points in the bubble trajectory, extreme
points of bubble inclination φz(t) and path xp(t). They are highlighted as dots in Figures
5.10 and are denoted as A, B, C in chronological order. The inclination φz(t) is zero for
event A and C. The time of event B was chosen half way between the time of A and C
corresponding to approximately an extremum in inclination φz(t). Events A and C mark
approximately the turning points of the zig-zag in xp(t). We therefore restrict the discussion
to half a period of the zig-zag. At instant B, the transverse velocity up is close to a maximum
and the instantaneous rise Reynolds number Re = vpdeq/ν just passed a minimum (Figure
5.10c). As discussed in the introduction, the trajectory of the bubble is closely related to
the structure of its wake. In experiments with liquid metal, an analysis of coherent vortex
structures is difficult. The presently available experimental techniques only provide selected
one- or two-dimensional data with relatively coarse resolution [319, 320, 306, 218]. Here,
the present simulations can close this gap and furnish insight into vortical structures of the
bubble wake. This is provided in Figures 5.11 to 5.13 based on instantaneous 3D velocity and
pressure data available from the simulations. The dominant role of streamwise vorticity has
been emphasized by several others, for instance in [27, 63, 168]. Figure 5.11 and 5.12 for this
reason show the vertical component of the vorticity, ωy, for event B and C, respectively. Two
iso-surfaces are depicted, one with a positive and one with a negative value, so that counter-
rotating vortices can be detected. In these plots, complementary views of the same structure
are shown differing by an angle of 90◦. The magnetic interaction parameter increases from
left to right from N = 0 to N = 0.5 to N = 1.0.
The vorticity in the wake is distributed in an undulating pattern as a consequence of two
effects. One is the von Kármán instability of the wake leading to an alternating vortex
pattern even if the bubble would rise along a straight path. Additionally, once the path
of the bubble oscillates in horizontal direction, vorticity is generated at varying horizontal
positions, so that even without the wake instability a zig-zag trajectory yields a zig-zag
shape of the vorticity pattern. Also recall that in inviscid smooth fluid flows, vortex lines
move with the fluid [171]. In all cases, one can observe that vorticity is shed pair-wise with
alternating sign in the zy-plane. These counter-rotating vortex filaments induce a velocity in
the x-direction according to the Biot-Savart law yielding a tilting of the bubble and hence the
observed zig-zag motion in the xy-plane. Substantial damping of the vortical structures in
the bubble wake by the vertical magnetic field is found. Especially small structures vanish
with increasing N while the larger vortex filaments are more aligned with the field. The
vertical orientation of the vortices in turn is also caused by the more rectilinear trajectory
of the bubble.
While iso-contours of the vertical vorticity component give access to coherent structures
of smaller scales, iso-contours of pressure can be used to visualize larger scales [72]. As
vortex cores are characterized by low pressure regions, iso-contours of the pressure coefficient
Cp = p /

(

ρfu
2
ref/2

)

are displayed in Figure 5.13 for event C.
Vortex rings form in the wake of the bubble in the absence of a magnetic field triggered
by the zig-zag path which have also been visualized in experiments at similar Reynolds
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a)

b)

c)

Figure 5.10 Selected instants in time A, B, C characteristic for the bubble trajectory. They are
defined in the plot of the inclination angle φz and marked by dots in the other plots of bubble
position xp and bubble Reynolds number for the three cases N = 0, 0.5, 1.0; G = 2825, Eo = 2.5
in all cases.
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xy-plane
N = 0 N = 0.5 N = 1.0

zy-plane
N = 0 N = 0.5 N = 1.0

Figure 5.11 Event B: Iso-contours of ωydeq/uref = ±6.
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xy-plane
N = 0 N = 0.5 N = 1.0

zy-plane
N = 0 N = 0.5 N = 1.0

Figure 5.12 Event C: Iso-contours of ωydeq/uref = ±6.
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number [113]. A 4R vortex mode [113] is associated with one zig-zag period consisting of
two primary vortex rings at the extreme points of the path and two secondary rings in
between at maximum, absolute inclination. These rings are less pronounced in the case
N = 0.5 and eventually vanish for N = 1.0 due to the rather rectilinear path. The ’two-
legged’ structure of the bubble wake is clearly visible in the snapshot of N = 0.5 at the
chosen value for Cp.
The pressure iso-contours also show a region of high pressure at the front of the bubble
and a low pressure region aside from and behind the bubble. Both regions increase in size
with increasing magnetic interaction indicating an augmentation of the pressure drag on the
bubble with N as discussed in [173]. The Lorentz force is generated by the transverse velocity
components u and w for a vertical magnetic field, so that increasing magnetic interaction
leads to a damping of these lateral velocity components and to a straightening and stretching
of the path lines of fluid elements around the bubble in vertical direction resulting in the
described change in the pressure field. The effect is also visible in the graphs of Figure
5.14 where the extent of non-zero transverse vorticity in front of the bubble increases with
stronger magnetic fields.

xy-plane
N = 0 N = 0.5 N = 1.0

zy-plane
N = 0 N = 0.5 N = 1.0

Figure 5.13 Event C: Iso-contours of pressure with Cp = p /
(

ρfu
2
ref/2

)

= ±0.24.
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5.5.2 Quantification of the damping effect in the bubble wake

The vorticity in the bubble wake has been found to be the crucial quantity in understanding
bubble dynamics and path oscillations [63, 168, 27]. Therefore, the focus is now on the
quantification of the damping effect resulting from the applied magnetic field. The absolute
value of the normalized vorticity component in y-direction, ω̃y = ωy uref/deq, is integrated
in xz-planes according to

〈|ωy|〉xz =
1

d2eq

∫∫

|ω̃y| dx dz . (5.1)

The integration in equation (5.1) is conducted over the entire xz-plane and normalized with
d2eq. The transverse components 〈|ωx|〉xz and 〈|ωz|〉xz are determined in an analogous way.
Sample results for event C are plotted over the vertical distance from the bubble center
for increasing magnetic interaction N = 0, 0.5, 1.0 in Figure 5.14. The plots show global
maximum values of 〈|ωx|〉xz and 〈|ωz|〉xz at the front of the bubble in all cases. The values
of the maxima are similar since the bubble has zero tilting at event C and therefore the
geometrical configuration is symmetric with respect to x and z at this instant in time. With
increasing magnetic interaction the maximum in 〈|ωx|〉xz and 〈|ωz|〉xz is reduced and the
region of non-zero vorticity extends further upstream. In the bubble wake, considerable
damping of all vorticity components is found when a magnetic field is applied. The peaks of
〈|ωy|〉xz for N = 0 in Figure 5.14a vary in amplitude due to asymmetries in the zig-zag and
tilting of the bubble as well as due to irregular vortex shedding. With increasing magnetic
interaction, the bubble wake contains less vertical vorticity and the values of the extrema in
the plot are substantially reduced.
The damping effect of a vertical magnetic field is anisotropic. Joule damping associated

with the Lorentz force acts linearly on all scales with a privileged direction [139]. This is
now assessed by means of the average weight of |ωy| compared to the total vorticity |ω| using
the quantity

Γy =
1

nxz

nxz
∑

i=1

〈|ωy|〉(i)xz

〈|ω|〉(i)xz

. (5.2)

With the present data, nxz = 1280 equi-distributed xz-planes have been used for the interval
(yp − y) /deq ∈ [−5; 25]. The quantity Γy is reported in Table 5.3 for event C. The table
also lists an integral measure of vorticity for all three components obtained by summation
over all xz-planes. The difference in the damping of ωx and ωz is related to the privileged
direction of the zig-zag. A roughly linear decrease of Γy with N is found, i.e. the vorticity
component ωy is the one which is affected most by the magnetic field. In general, a vertical
magnetic field leads to homogenization of the transverse velocities u and w and therefore
reduces the gradients of these components with respect to z and x which enter in ωy.

N = 0 N = 0.5 N = 1.0
Γy 0.471 0.337 0.210
∑ny

i=1〈|ωy|〉(i)xz 73.2 36.7 25.8
∑ny

i=1〈|ωx|〉(i)xz 75.8 50.4 48.5
∑ny

i=1〈|ωz|〉(i)xz 74.5 45.3 39.6

Table 5.3 Event C: Average weight Γy of ωy compared to total vorticity according to (5.2) and
integral measure of vorticity for all three components.



5.5 Comparative analysis of wake with and without magnetic field 141

a)

b)

c)

Figure 5.14 a) Absolute vertical vorticity component 〈|ωy|〉xz integrated over horizontal planes
for the event C indicated in Figures 5.10, with comparison of the three cases N = 0, 0.5, 1.0.
b) Analogous data for the transverse component 〈|ωx|〉xz. c) The same data for the component
〈|ωz|〉xz.
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In summary, the applied vertical magnetic field particularly reduces the transverse velocities
u and w and therefore indirectly the vertical component of the vorticity ωy. This streamwise
vorticity is the direct cause of the zig-zag trajectory which is consequently reduced when ωy

is smaller.

5.5.3 Energy spectra

Using the simulation data, energy spectra were obtained for the velocity components v and
u, i.e. corresponding to the direction of ascent and the predominant direction of the zig-
zag, respectively. These spectra are spatial spectra and were determined along vertical lines
through the bubble center (xp, zp) and along additional vertical lines shifted by ±req in
x and z. The spectra resulting from these five lines were ensemble-averaged, as well as
time-averaged in an interval of ∆t〈 〉 = 1.25 around event C. A byproduct of the immersed
boundary method applied here is an artificial, weak flow field inside the bubble [136]. The
velocity field therefore is continuously differentiable in the entire domain and sampling data
through the bubble will not affect the convergence of the spectra. The spectra Evv and Euu

are shown in Figure 5.15 over the spatial wave number ξy for the case without magnetic field,
N = 0, and the strongest vertical magnetic field applied, N = 1. The results for N = 0.5 lie
in between and have been removed for readability.

Figure 5.15 Spatial energy spectra Evv of vertical velocity (v) and Euu of the horizontal velocity
(u) along vertical lines with ξy the spatial wave number in y for N = 0 and N = 1.

For N = 0, the spectrum of u exhibits an increase for low wave numbers, a maximum and
a regular decay over more than two decades beyond which a fine-scale range with steeper
decay is observed. The spectrum of the vertical velocity component behaves similarly. The
overall amplitude is larger, particularly for the lower wave numbers, as this component is
in the direction of the bubble rise velocity. Again, the high-frequency end of the spectrum
decays fast and does not exhibit any sign of unphysical behavior as it would occur from
under-resolution due to aliasing etc. On the other hand, it cannot be excluded that the
finest scales are influenced by the grid resolution. In addition to the grid study presented
above, the regular decay in both spectra over a large range of wave numbers demonstrates
that the flow indeed is well resolved in its energy-containing range and well beyond.
The second type of information which can be extracted from Figure 5.15 relates to the
application of the vertical magnetic field. It is apparent that the u-component, which is
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perpendicular to the field, is damped by an almost constant factor in the entire mid-to-high-
frequency range. The amplitudes of the large wave numbers are also uniformly damped,
but by a somewhat smaller factor. For the vertical component, a similar observation is
made, except for the low wave numbers where the slope of the spectrum is changed. As a
result, the largest scales are less influenced by the magnetic field. Overall, the damping by
the magnetic field is seen to be stronger in the spectrum of u compared to the spectrum
of v. This is coherent with the understanding of the action of the Lorentz force affecting
predominantly the velocity component perpendicular to the field as discussed above. The
spectra are instructive in this respect as they reveal damping, albeit less, also for the v-
component of the velocity.

5.6 Examination of the employed numerical modeling

and the experimental data

The scope of this section is to scrutinize the assumptions employed in the numerical mod-
eling, but also to provide a comparative view on the experimental data for the ascent of
a single argon bubble in the liquid metal GaInSn. During the course of this thesis, the
numerical methodology was gradually improved allowing, e.g., for a more complex bubble
shape. With the numerical model described above, already a very good agreement with the
experimental data was achieved. All dominant effects of the magnetic field observed in the
experiments were reproduced, and could be analyzed in more depth based on the available
computational data of high detail. However, there is still room for improvement in the quan-
titative agreement. Furthermore, awareness of possible sources of error is important and an
estimate about the magnitude of the error is a valuable information. Therefore, the following
aspects are examined:

- The influence of the bubble shape representation is studied.

- A cross-comparison of experimental data obtained with different techniques is con-
ducted.

- The impact of the phase-dependent electric conductivity is inspected.

5.6.1 Influence of bubble shape representation

In the previous study, the bubble shape was approximated as an oblate ellipsoid where
the ellipsoid aspect ratio was correlated to the instantaneous bubble Weber number, X(t) =
f(We(t)). For instance, the wake instability of a fixed axisymmetric bubble of realistic shape
[30] shows a perceptible difference to a bubble of oblate ellipsoidal shape [169]. Consequently,
an additional simulation is conducted where the bubble shape is represented by axisymmetric
spherical harmonics (SH) with NSH = 12 and the shape is computed directly from the fluid
loads by the SH shape algorithm described in Section 4.4. All other parameters of the
simulation remain unchanged. The non-dimensional numbers describing the simulation are
G = 2825, Eo = 2.5, N = 0, i.e. no magnetic field is applied.
Figure 5.16 shows the bubble aspect ratio over time as well as the time-averaged bubble
shape for both runs. The average shapes are nearly identical whereas the SH bubble has a
moderate front-aft asymmetry being a bit front-flattened. In the case of the SH bubble, the
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aspect ratio is computed from X = 2max(xS)/(max(zS) − min(zS)) in the local reference
frame resulting in a slightly lower value for the time-averaged aspect ratio. The projected
area of the bubble during the ascent is however basically the same. Also the amplitude and
frequency in the shape oscillation agree very well.

a) b)

Figure 5.16 Comparison of results obtained with SH algorithm and with ellipsoidal shape from
X(t) = f(We(t)), for parameters G = 2825, Eo = 2.5, N = 0: a) Aspect ratio over time. b) Time-
averaged bubble shape.

Table 5.17a) lists the main figures describing the bubble dynamics and compares the results
obtained with an ellipsoidal bubble shape, the SH representation, and the experimental data.
Figure 5.17b) again shows the history of the bubble rise Reynolds number for the three
cases. With the SH shape representation, a slightly higher average rise Reynolds number,
Ret, is observed compared to the ellipsoidal shape. The standard deviation, σRe, increases
noticeable towards the experimental value whereas the frequency, fRe, in the oscillation
remains almost unchanged. The maximum inclination, |φz|max, decreases somewhat to 32

◦,
while the measure of the zig-zag, ∆xz/deq, is basically unaltered.

a)

Ellipsoid SH Exp. [319]
Ret 2871 3037 2879
σRe 245 307 369
f 0.276 0.281 0.297
|φz|max 36◦ 32◦ —
∆xz/deq 1.15 1.17 —

b)

Figure 5.17 Comparison of SH algorithm and ellipsoidal shape for parameters G = 2825, Eo =
2.5, N = 0. a) Bubble dynamics and b) history of bubble rise Reynolds number.
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In summary, the approximation of the bubble shape as an oblate ellipsoid was well justified
in the present case. The more sophisticated approach with the bubble shape represented
by spherical harmonics and coupled to the hydrodynamic forces yields a very similar bubble
shape and well comparable bubble dynamics. A non-axisymmetric shape might further
improve the results. The correlation of the bubble aspect ratio to the instantaneous Weber
number did also yield good agreement for the bubble shape oscillation. The additional
simulation provides an a posteriori justification of the previous assumptions towards the
bubble shape.

5.6.2 Cross-comparison of experimental data

In order to access the uncertainty in the experimental data that was used as a reference
in the present study, further measurements and theoretical considerations are gathered. A
cross-comparison of this data is conducted concerning the average rise Reynolds number of
a single argon bubble of various bubble diameter in GaInSn without a magnetic field. The
data comprises:

- Measurements by ultrasound Doppler velocimetry (UDV) [319]

- Measurements by ultrasound-transit time technique (UTTT) [6, 74]

- Measurements by X-ray radioscopy [14, 74]

- Theory in form of the Mendelson equation [176]

- Present simulation data

The UDV measurements [319] in the non-transparent liquid were already discussed before.
With respect to the UTTT experiments [6, 74], only the two lowest argon flow rates (for two
nozzle diameters) were considered from that reference to ensure sufficient distance between
the bubbles and adequate single bubble motion. X-ray experiments [14, 74] were conducted,
where the dimension of the container perpendicular to the main bubble motion ws rather
narrow to allow the X-rays to penetrate the medium. The configuration is described in detail
in Chapter 6. An additional simulation of a single bubble with deq = 6 mm was performed
prior to the simulations of a bubble chain described in that chapter. The narrow dimension
between the walls seems to have little influence on the bubble rise velocity as long as now
direct bubble-wall contact is observed. This was also examined in the simulation using both
no-slip and free-slip walls with very similar results for Ret.
The Mendelson equation [176], which is derived from an analogy to the propagation speed
of inviscid waves traveling over deep water, yields the terminal velocity of the bubble

ut =

√

2σ

ρf deq
+
g deq
2

. (5.3)

Figure 5.18 shows the average rise Reynolds number versus the bubble diameter. Note that
deq enters linearly into Ret. The plot layout was chosen to again emphasize the high Reynolds
number in liquid metals and also to illustrate that the computational costs increase with
larger bubble sizes. Unfortunately, it seems quite difficult to create smaller bubbles using an
injection nozzle in the experiments in this gas-liquid system.
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Figure 5.18 Average rise Reynolds number versus bubble diameter for argon bubbles in GaInSn
without magnetic field. Comparison of present results achieved with the SH algorithm and experi-
mental data obtained with UDV by Zhang et al. [319], with UTTT by Andruszkiewicz et al. [6, 74]
and with X-ray radioscopy by Boden et al. [14, 74], as well as theoretical data calculated via the
Mendelson equation (5.3) [176].

In general, good agreement is found for Ret over deq for all experimental techniques, the
simulations and the theory with deviations in the order of 10 - 15%. The data spans a
corridor with the X-ray and UTTT measurements basically collapsing with the prediction
from the Mendelson equation at the upper border. The simulation results have a slight offset
towards lower Ret. At the lower border of that corridor, we find the UDV measurements
at approximately 0.9Ret obtained from the Mendelson equation. The cross-comparison
provides an interesting, but rough estimate of the error bounds related to the average rise
Reynolds number of single bubbles in GaInSn. It should be emphasized again at this point,
that the liquid metal GaInSn is very difficult to deal with and reproducibility is not easily
achieved, e.g. due to the oxidation process: To quote one of the experimenters: ”One day
you measure this, the next day something else.”

5.6.3 Influence of phase-dependent electric conductivity

One of the rather precarious assumptions of the previous study on the ascent of a single
bubble under the influence of a magnetic field was the constant electric conductivity. In
this section, the electric conductivity is made phase-dependent, σe(α), and the bubble is
treated as an local insulator. No one-to-one comparison again using the ellipsoidal shape
is conducted because the simulations are quite expensive. Instead the bubble shape is rep-
resented by spherical harmonics to achieve as much improvement as possible. All other
parameters remained as outlined above. The study is further extended towards larger mag-
netic interaction parameters. With the modified numerical modeling, the electric current
cannot penetrate the phase boundary and there is zero electric current within the insulating
bubble where σe(α = 1) = 0. Figure 5.19 shows an instantaneous, qualitative contour of
the current density component, jz, which is proportional to the Lorentz force component,
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−fL,x, in the present case of a vertical, homogeneous magnetic field. The non-dimensional
numbers describing the simulation are G = 2825, Eo = 2.5, N = 1. The current paths
have to close due to charge conservation which leads to the formation of circular patterns
in front of the bubble and distorted loops in the bubble wake. The corresponding Lorentz
force distribution leads to a damping of the transverse velocity components and indirectly
affects the rise velocity, e.g. by altering the pressure field around the bubble.

6

B

Figure 5.19 Instantaneous, qualitative contour of current density component, jz, and Lorentz
force component, −fL,x, where fL,x ∼ −jz for the present case of a vertical, homogeneous magnetic
field. Detailed view of phase boundary and mesh. Parameters: G = 2825, Eo = 2.5, N = 1 with
σe(α), and SH bubble shape. The contour is an xy-plane through the particle center.

Table 5.4 summarizes the main results obtained with the SH bubble shape and σe(α) for
various magnetic interaction parameters. The numbers in brackets indicate the previous sim-
ulation results with ellipsoidal bubble shape and constant electric conductivity. For N = 1,
the average rise Reynolds number, Ret, with phase-dependent electric conductivity σe(α)
and SH bubble shape is almost identical to the value obtained with an ellipsoidal bubble
and constant electric conductivity. The relative decrease in the standard deviation, σRe,
compared to the case without magnetic field is similar for both runs with larger absolute
values in the simulation with σe(α). The most significant change is that there is a sub-
stantially less pronounced damping in the dominant frequency, fRe, in the case with σe(α).
Now excellent agreement with the experimental data is found for the damping in the bubble
Strouhal number. At an interaction parameter of N = 1, we obtain Sr/Sr(N = 0) = 0.775
and the value calculated from the experimental data is 0.779 (Figure 5.20). With constant
electric conductivity and ellipsoidal shape, the quantitative agreement was less convincing
giving a relative change in Strouhal number of Sr/Sr(N = 0) = 0.656. The reference values
at N = 0 were obtained with the corresponding shape representation.
The extension of the study towards larger values of N supports the physical explanation of
the effects of an longitudinal magnetic field on the bubble dynamics given in the previous
sections. The data is plotted in Figure 5.20 in linear scaling. Indeed, there is a local max-
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Table 5.4 Summary of simulation results with SH bubble shape and σe(α). Numbers in brackets
indicate previous simulation results with ellipsoidal bubble shape and constant electric conductivity.
Eo = 2.5, G = 2825

N Ret σRe fRe

0 3037 (2871) 307 (245) 0.281 (0.276)
0.5 — (2957) — (166) — (0.233)
1.0 3122 (3132) 125 (90.3) 0.218 (0.181)
2.0 3009 144 0.138
4.0 2639 148 0.072

imum in Ret over N for larger bubbles. With further increasing the magnetic interaction,
the drag increases and the bubble rises slower. This is in agreement with the observation
of an monotonously increasing drag with N for the flow around a fixed sphere or ellipsoid
[173, 314]. The local increase in Ret for low and moderate N stems from the damping of the
lateral dynamics and the more rectilinear trajectory compared to the case without magnetic
field. A roughly linear decrease in the bubble Strouhal number with N is observed for small
to moderate interaction parameters which then seems to saturate at N = 4 where the damp-
ing is less pronounced. Note that the statistics for the simulation with N = 4 were obtained
for two crossings of the periodic domain, but still only three quasi-periods of the oscillation
in Re(t) could be used. The uncertainty in the frequency and standard deviation of the os-
cillation therefore is rather high. For the magnetic interaction parameters studied here, the
lateral dynamics of the high Reynolds bubble were not fully suppressed by the magnetic field.

Figure 5.20 Relative change in average rise Reynolds number and Strouhal number: Present
simulations with SH bubble shape and σe(α) compared to simulations with ellipsoidal bubble shape
and σe = const. for Eo = 2.5, G = 2825, as well as compared to experimental data of [319] for
various Eo.

In conclusion, using a phase-dependent electric conductivity does improve the quantitative
agreement with the experiments. The qualitative effect of the longitudinal magnetic field on
the bubble dynamics, however, remains the same as in the studies reported earlier. With
the improved modeling, further simulations at higher magnetic interaction were conducted
and the physical explanations on the impact of the field on the rise Reynolds number are
ascertained.
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5.7 Conclusions for the rise of a single bubble affected

by a longitudinal magnetic field

Phase-resolving simulations of single bubbles rising in liquid metal have been conducted.
In summary, the following effects are observed, when increasing the magnetic interaction
parameter N compared to the case without magnetic field:
The time-averaged bubble rise velocity increases for large bubbles (high Eo) reaches a local
maximum and then decreases. For small bubbles (low Eo) it decreases for all N studied. The
amplitude of oscillations in vp(t) decreases. The dimensionless characteristic frequency fRe

of oscillations in Re(t) and the resulting Strouhal number Sr decrease for all bubbles. The
amplitude of oscillation in lateral bubble positions xp(t), zp(t) decreases, i.e. the trajectory
is more rectilinear. Also the amplitude of oscillation in tilting angles φi(t) decreases. The
integral of the absolute value of the vertical vorticity component over cross sectional planes
in the bubble wake decreases. Similar observations are made for the transverse components,
but the vertical component of vorticity is affected most by the damping due to the vertical
magnetic field.
The results are in good agreement with the corresponding experiments presented in [319].
The present results for the instantaneous vertical bubble and fluid velocity support the find-
ings from these experiments where the velocity component along a line was measured by
ultrasound Doppler velocimetry. Furthermore, additional data are now available from the
simulations elucidating the full three-dimensional bubble trajectory, flow structures in the
bubble wake and wake vorticity as well as energy spectra. These data provide valuable
insight into the considered three-dimensional multiphase flow and into the dynamics of a
single bubble in liquid metal under the impact of a longitudinal magnetic field which can so
far not be obtained by experiments.
Simulations of bubble chains and swarms in liquid metal will be conducted to provide insight
into the influence of a magnetic field on collective effects in bubble driven flows. Another
interesting direction of research is the influence of a magnetic field on the flow through a
relatively tight cluster of bubbles as presented in [102].
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netic Field

6.1 Introduction to the influence of a magnetic field on

a chain of bubbles in liquid metal

The injection of bubbles into liquid metal, forming bubble chains, swarms, or plumes, is of
particular relevance for metallurgical applications, such as the continuous casting process
and other industrial applications like argon refining. The bubbles enhance mixing of the
melt, prevent blocking in the entry nozzle, and influence chemical reactions. Magnetic fields
are used in metallurgical applications to alter and control the flow. Numerical simulations
and experiments on both a laboratory and an industrial scale [272, 271] are conducted to
gain understanding of the nature of these flows. Analytical considerations of the impact of
a transverse magnetic field on a liquid metal jet or an axisymmetric vortex were developed
in [41, 43]. The dynamics of single bubbles and spheroids in a longitudinal magnetic field
were studied by simulations [244, 245] and by experiments [319] revealing the substantial
and complex impact of the field. Even without a magnetic field, the complexity of the flow
increases as the number of bubbles, and thus the gas fraction, increases. The dynamic be-
havior of bubbles rising in line and the mechanisms leading to instability are discussed in
[227, 228]. A general review of gravity-driven bubbly flows is given in [188] with empha-
sis on bubble-induced turbulence in bubble columns reaching from large-scale circulation to
small-scale vortical structures. The bubble-induced agitation and liquid velocity fluctuations
behind a bubble swarm at intermediate to high Reynolds numbers are studied in more detail
in [223]. A chain of nitrogen bubbles in water was experimentally investigated in [235] with a
high-speed camera in a large container. Reynolds numbers covered Re = 300− 650, yielding
distances between the bubbles of 6.5 − 300 diameters. Nearly identical bubble paths were
found at low frequencies, while at higher frequencies a scatter in paths is observed after a
certain height is achieved due to hydrodynamic interaction of the bubbles.
The behavior of gas bubbles in a turbulent liquid metal magnetohydrodynamic (MHD) flow
for longitudinal and transverse magnetic fields was studied in [55, 56]. Local resistance
probes showed a significant change in the bubble distribution over the channel cross-section
under the impact of a magnetic field. Ultrasound Doppler measurements were performed
in [320] to investigate a bubble-driven liquid metal jet in a confined cylindrical vessel with
a transverse magnetic field. The spatio-temporal mapping of the liquid velocity distribu-
tion showed a restructuring of the convective motion when a magnetic field is applied. The
previously axisymmetric stable flow becomes anisotropic with an oscillating flow pattern for
moderate magnetic fields, in contrast to the general expectation of magnetic braking. A
simulation of this configuration was conducted by Miao et al. [178] using an Euler-Euler
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approach and a RANS-SST turbulence model. The multiphase ansatz uses correlations for
the interfacial force, including analytic expressions for drag, lift, turbulent dispersion, etc.,
which were obtained without magnetic interaction and therefore do not consider the impact
of the magnetic field on the bubble dynamics. The turbulence model was altered to account
for bubble-induced turbulence and turbulence anisotropy due to the magnetic field.
In the present work, a three-dimensional phase-resolving simulation of a bubble chain in
liquid metal is performed to study the impact of a vertical magnetic field. The current con-
figuration comprises a channel of high aspect ratio, resembling X-ray experiments reported in
[14]. The standard X-ray measurement technique experiences difficulties if a magnetic field
is applied simultaneously. The simulations are capable of providing highly resolved, three-
dimensional data of the fluid and the bubbles and give valuable insight into this liquid metal
multiphase flow under the influence of a vertical magnetic field. Part of this manuscript was
submitted to the European Physical Journal and appeared in [247] and [74].

6.2 Configuration and estimate of discretization error

The present study deals with a chain of bubbles ascending in a container of high aspect
ratio filled with initially quiescent liquid metal. More specifically, separate individual argon
bubbles are injected into the metal alloy GaInSn, which is liquid at room temperature. The
material properties are provided in [319]. The configuration was originally studied experi-
mentally by Boden et al. [14] using a container with rectangular cross section and dimensions
L = (Lx, Ly, Lz) = (200, 300, 12) mm with a free surface. With Lz = 12 mm, the depth of
the container was only approximately two bubble diameters to allow X-ray measurements.
The experiments were performed without magnetic fields for technical reasons. The exper-
imental apparatus allowed for various injection positions, including injection from one side
of the container, its center, or simultaneous injection from both sides with different gas flow
rates. Here, the injection near the left wall is considered. The configuration is sketched in
Figure 6.1a. A preliminary simulation with relatively coarse resolution was performed with
the original experimental setup for a volumetric gas flow rate of 100 sccm (cm3 per minute
at standard conditions) and without a magnetic field. An instantaneous contour plot of
the vertical velocity obtained from this simulation is displayed in Figure 6.1c revealing the
formation of a large standing vortex driven by the bubble chain. The time-averaged vertical
velocity of the bubbles and its standard deviation are compared to the data from the X-ray
measurements in Figure 6.1b showing overall good agreement. Although the discrepancies
between the data sets are generally small, the simulation results yield a higher value for the
rise velocity. Averaged quantities are denoted by 〈 〉 throughout.
A grid refinement study was conducted considering the laps of time during which the first
nine bubbles are injected. All numerical parameters correspond to the simulations presented
below, but a mono-disperse bubble size distribution was used. From the coarse-grid simula-
tion, the resolution was successively refined by a factor of two and again by a factor of two
in all three directions, also requiring a corresponding reduction of the time-step size. Grids
with N = (480, 480, 40), (960, 960, 80), (1920, 1920, 160) cells were used, corresponding to
20, 40, 80 points per volume-equivalent diameter deq, respectively. Based on the finest grid,
the medium and coarse grid yield 3% and 8% larger average rise velocities 〈vp〉, 9% and
34% smaller absolute values of the transverse velocity 〈|up|〉, as well as 6% and 22% increase
in average aspect ratio, respectively. The medium grid was then used for the simulations
presented in this study. The numerical resolution provides a good compromise between
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a)

b)

c)

Figure 6.1 Original experimental configuration of [14] and initial coarse-grid simulation of this
case. a) Schematic view of the configuration. The origin of the coordinate system is in the lower
left, back corner of the container. b) Time-averaged vertical velocity 〈vp〉 and its standard deviation
σ(vp) from a preliminary coarse simulation and instantaneous experimental data [14]. c) Vertical
velocity without a magnetic field in the plane z = 0.5Lz. Window of X-ray measurements (orange
dashed line) and reduced computational domain used in the present study (dark dashed line).
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accuracy and computational effort. Further refinement would exceed the computational re-
sources available. The chosen resolution therefore does not correspond to a full DNS, but
will be adequate to provide valuable and detailed insight into the physics of this magnetohy-
drodynamic, multiphase flow. Due to the limited computational resources, also a reduction
of the container size was necessary to obtain converged statistical data on the bubble driven
flow. Each computation, although computed on 64 - 128 processors, took months in wall-
clock time, even for the reduced computational domain. The smaller computational box is
comparable to the X-ray window also shown in Figure 6.1c. Corresponding experiments in
this smaller container and with the application of a magnetic field are planned in the near
future.

6.3 Results for the influence of a magnetic field on a

bubble chain

6.3.1 Physical and numerical parameters

In the present work, the gravitational velocity uref =
√

|πρ − 1| g deq is used as the reference
velocity, and deq is employed as a reference length. Here, deq is the diameter of a volume-
equivalent spherical bubble. This yields the time scale tref =

√

deq / (|πρ − 1| g).
The parameters which govern the ascent of a single bubble in quiescent, contaminated, un-
bounded fluid are the Galilei number G, the Eötvös number Eo, and the density ratio πρ.
The respective definitions were given in Section 1.1.1. In the simulations, the physical pa-
rameters characterizing each single bubble are G = 4200, Eo = 4.2, πρ = 6· 10−4 and these
correspond to a deq = 6 mm argon bubble in GaInSn. A no-slip condition is enforced at the
phase boundary, and the bubble is electrically insulating.
In order to characterize a bounded domain, the dimensions of the container L are set in
relation to the size of the bubbles deq. The computational domain extends over L =
(24, 24, 2) deq and is visualized in Figure 6.1c (dark dashed line). No-slip boundary condi-
tions are applied at all walls, and a free slip condition approximates a free surface at the top
of the container. Note that the role of boundary conditions at a free surface in liquid metal
flows is unsettled [58] due to the complex formation of an oxide layer. All boundaries in the
present setup are electrically insulating. The computational domain is discretized with an
equidistant grid N = (960, 960, 80), i.e. 73.7 million cells. The time-step size is determined
adaptively to yield CFL = 0.8.
A disperse bubble chain can be described by the following parameters. The position of the
injection nozzle inside the container yields the initial position of the bubbles x0. The nozzle
is situated at x0 = (3.3, 0.8, 1.0) deq. Other conditions at the nozzle are the initial bubble
velocity, the direction of injection, and the initial bubble shape. The latter, however, could
not be measured from the experiments [14]. At the injection nozzle, an initial aspect ratio
of X0 = 1.0 and an initial bubble velocity of up,0 = 0 are prescribed.
The surface of each individual bubble is represented by NL = 9039 Lagrangian forcing points.
Axisymmetric spherical harmonic functions with a polynomial degree up to twelve are used
to describe the bubble surface [246, 22]. The bubble shape is determined from the loads
applied by the surrounding flow [246]. Therefore, collective effects on the bubble shape in
swarms, such as wake entrapment or drafting, as well as wall effects, are resolved. This
improves the bubble shape representation in comparison to bubble shapes imposed a priori
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or via shape correlations valid for single bubble ascent only, discussed in [244, 2].
The bubble detachment frequency fb is here assumed to be constant and can be used to cal-
culate the gas flow rate. A bubble detachment frequency of fb tref = 0.3644, and a variable
bubble size according to a Gaussian distribution are prescribed at the nozzle. The latter is
characterized by a mean diameter and a standard deviation corresponding to 〈deq〉 = 6 mm
and σd = 0.48 mm. The parameters were obtained by fitting experimental data which was
provided by the authors of [14] (private communication). In the experiments, the mean bub-
ble diameter and its standard deviation depended substantially on the wetting conditions
at the nozzle. In the simulation, the same bubble size distribution at the injection nozzle
is realized by means of simple random sampling [205]. The bubbles are ’removed’ from the
simulation before reaching the upper boundary by switching off the forcing in the IBM, i.e.
the phase coupling, and therefore the bubbles do not interact with the free surface.
A collision model based on a repelling potential is employed to represent inter-bubble col-
lisions and bubble-wall collisions as outlined in [102, 104] and Section 7.4 (CM-2). A coa-
lescence model was applied towards the end of the simulation which allows phase-resolved
merging of two bubbles. Such coalescence events, however, are very rare for the setup and
can also be neglected. Detailed information on bubble coalescence can be found in Chapter
7.
Finally, the magnetic interaction parameter is introduced representing the ratio of magnetic
forces to inertial forces [319, 139] In the present study, a homogeneous magnetic field B

is applied in the y-direction, i.e. anti-parallel to gravity. Two simulations were conducted
studying the influence of a vertical magnetic field on the bubble chain, one without a mag-
netic field, N = 0, and one with a magnetic interaction parameter of N = 1. The total
wall-clock time of the simulation was about 4 months for each case on O(100) cores of an
SGI Altix and IBM iDataPlex dx360M2, corresponding to about 2· 105 CPU hours.

6.3.2 Results for the continuous phase

A view into the nature of this bubble-driven flow is given in Figure 6.2, which shows the
instantaneous vertical velocity in the plane z = 0.5Lz and a visualization of the bubbles for
the two cases, with and without a magnetic field. The lowest, spherical bubble indicates the
position of the nozzle and is represented in its initial state. Its surface is penetrable until it
is released at t = a f−1b , a ∈ N.
The pictures show a disperse bubble chain remaining close to the wall in both cases. The
bubbles rise on zig-zag paths, and each bubble follows its predecessor to a large extent.
The bubble chain drives a large-scale vortex which covers the entire domain and yields
a large region of negative vertical velocity near the right boundary for N = 0. Significant
modifications of the flow field are visible in the presence of a vertical magnetic field. Without
a magnetic field, intense turbulent fluctuations can be observed in all parts of the flow: In
the upward bubble-driven region, including the bubble wakes, in the transverse flow at the
free surface, as well as in the downward and backward transverse flow at the right and lower
walls. In contrast, substantial damping of fluctuations is observed when a vertical magnetic
field is applied, as also observed in homogeneous turbulence [139] or turbulent MHD channel
flow [15, 145]. The rather small-scale isotropic vortices are reduced, and instead, large-scale
structures aligned with the field can be discerned, especially further away from the bubble
chain.
To estimate the end of the initial transient of the flow, the circulation Γ =

∮

u·ds is calculated
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N = 0 N = 1

Figure 6.2 Instantaneous vertical velocity in the plane z = 0.5Lz and visualization of bubbles by
a subset of forcing points on their surface without magnetic field (N = 0) and with magnetic field
(N = 1).

along a closed rectangular curve at z = 0.5Lz parallel to the boundaries and 0.5 deq apart
from these. It quantifies the overall amount of vorticity ωz contained in the area bounded by
the described curve. It could also be measured using four ultrasound Doppler sensors which
allow the measurement of the velocity component along a single line [319, 320, 58]. The
circulation can also be utilized as an input parameter for flow control by magnetic fields.
The temporal evolution of the circulation in the container is plotted in Figure 6.3. The case
without a magnetic field was started with the fluid entirely at rest. As we are only interested
in the steady state, the simulation with a magnetic field was initialized with results obtained
on a coarse grid.

Figure 6.3 Temporal evolution of circulation Γ without magnetic field (N = 0) and with magnetic
field (N = 1).
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Statistics were then obtained starting at t · fb = 200 for more than 250 rising bubbles. The
history of Γ indicates a vortex which rotates clock-wise with a circulation fluctuating around
a constant mean for the developed flow in both cases. The mean circulation, i.e. the overall
strength of the central vortex, is reduced substantially, by 57%, due to the vertical magnetic
field with N = 1. The time-averaged velocity field visualized by the absolute value of veloc-
ity and average path lines are shown in Figure 6.4 with and without a magnetic field.

N = 0 N = 1

Figure 6.4 Time-averaged absolute value of velocity in the plane z = 0.5Lz and path lines
without a magnetic field (N = 0) and with a magnetic field (N = 1). Spiraling path lines are due
to secondary flows in the z-direction.

An almost symmetric flow field is found in the case without the magnetic field. The center
of the dominating vortex is located approximately in the center of the domain. With the
magnetic field, the velocity magnitude at the free surface is reduced, which would be favor-
able in industrial applications to avoid slag entrainment. Consequently, mass conservation
is realized on a shorter circuit leading to a shrinkage of the vortex and a displacement of
its center towards the upper left of the domain. The fluid in the lower right part of the
container becomes almost stagnant. A straightening of the bubble-induced jet is observed,
and thus the jet moves away from the wall. The secondary vortex in the upper left corner
grows. A more central position of the injection nozzle or even just more straightening of
the jet due to stronger magnetic interaction can trigger downward flow also close to the left
wall. This can lead to long-term oscillations of the entire jet as encountered in simulations
with different parameters not shown here and observed in [320, 178] for a bubble-driven jet
in a transverse magnetic field.

6.3.3 Results for the disperse phase

Statistics for the disperse phase were determined in the time period indicated above by
dividing the domain in xy-bins of size 0.125 deq×0.125 deq and by calculating the probability
of the bubble center being observed in each bin. Variations in the z-direction were not
considered. Using the calculated probabilities, average bubble quantities can be determined
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as a function of column height. The time-averaged bubble trajectory and its standard
deviation are plotted in Figure 6.5 for the two cases, N = 0 and N = 1, respectively. In
addition, the right plot shows several sample paths to give an impression of the trajectories
of individual bubbles during the simulation.

Figure 6.5 Time-averaged bubble trajectory, its standard deviation σ(x) and sample bubble paths
without magnetic field (N = 0) and with magnetic field (N = 1).

The distinct zig-zag trajectory of an individual bubble, observed in the case without a
magnetic field, is stretched out in the vertical direction by the magnetic field, leading to a
more rectilinear path [244, 319]. This also yields a straighter average trajectory and reduced
transverse dispersion measured by the standard deviation σ(x) in the trajectory, especially in
the lower part of the container. In the upper region, the standard deviation in the transverse
bubble position is similar for both cases. The bubbles are pushed closer to the wall by the
more intense vortex in the case without a magnetic field. Note the truncated sample paths
for y & 15deq where the bubbles collide with the left wall for N = 0. Figure 6.6 reports the
time-averaged vertical bubble velocity with and without magnetic field. The average rise
velocity decreases by approximately 10% under the impact of the vertical magnetic field.
The regular oscillations in 〈vp〉 and 〈xp〉 for N = 0 do not entirely vanish by averaging

over the simulated period of time. The oscillations are related to the zig-zag pattern in the
bubble trajectory, and the bubbles follow the path of their predecessors to a large extent.
The oscillations are also present in the experimental data in the large container (Fig. 6.1b).
In the presence of the magnetic field, these oscillations are removed as expected from the
studies of single bubble ascent [244, 319].
Although the average rise velocity is lower, a flatter bubble shape is observed at the same
Eo when a magnetic field is present. The time-averaged bubble shape is pictured for both
cases at half the container height in Figure 6.7. The actual influence of magnetic fields on
the bubble shape is still in dispute. In [256], the rise of a single bubble in a narrow enclosure
under vertical magnetic fields was simulated by means of a volume of fluid approach with a
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Figure 6.6 Time-averaged vertical bubble velocity without magnetic field (N = 0) and with
magnetic field (N = 1). The primes indicate a bubble reference frame.

significantly reduced viscosity ratio, density ratio and Galilei number compared to a realistic
liquid metal system. For very strong magnetic fields in the direction of the ascent, resulting in
a complete suppression of recirculation in the bubble wake, an elongation of the bubble along
the magnetic field lines is reported. A longitudinal magnetic field modifies the pressure field
around the bubble and consequently the bubble shape. At moderate interaction parameters,
N = O(1), and high Reynolds numbers, Re > 100, especially the strength and size of the
stagnation pressure region at the bubble front increase [173, 252, 245] leading to a flatter
bubble shape. Note that the depicted axisymmetric bubble shape is represented in the local
reference frame of the bubble. The orientation of the bubble is computed in each time
step and fluctuates substantially. For the present regime, X-ray visualizations indeed show
spheroidal bubble shapes in the xy-plane [14].

Figure 6.7 Time-averaged bubble shape at half the container height y = 0.5Ly without magnetic
field (N = 0) and with magnetic field (N = 1).
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6.4 Conclusions on the influence of a magnetic field on

a single bubble chain

The flow driven by a bubble chain in liquid metal has been simulated using an immersed
boundary method. The influence of a homogeneous magnetic field acting anti-parallel to
gravity has been quantified statistically for the continuous phase as well as for the dispersed
bubbles. Three-dimensional, time-averaged and instantaneous data of high temporal reso-
lution provide valuable insight into the physics of a bubble chain under the influence of a
magnetic field. With a magnetic field, a restructuring of the flow field is found, comprising
reduced overall circulation in the container, a more rectilinear average bubble trajectory and
a reduction of the average rise velocity of the bubbles. Damping of turbulent fluctuations
is observed, especially away from the jet. The issue of numerical resolution for the direct
numerical simulation of liquid metal multiphase flows was addressed in Section 6.2. With
the given computational resources, elucidating details about the flow were gathered that
confirmed expectations from single bubble simulations and experiments, as well as experi-
ments on bubble jets with transverse magnetic field.



7 Bubble Collision and Coalescence

Modeling

7.1 Introduction to bubble interaction

The ascent of single bubbles is an interesting phenomenon and has been investigated for
many years [168]. Additionally, the issue of interaction between bubbles becomes impor-
tant when considering bubble chains, swarms, or bubble columns. If two bubbles approach
they can either bounce or undergo coalescence depending on the nature of the interaction.
Coalescence, as well as its counterpart bubble breakup, alter the bubble size distribution,
and hence the characteristics of the entire multiphase system. The impact of bubble size at
identical void fraction was studied, for example, by Santarelli et al. [236] considering mono-
disperse, spherical bubbles by phase-resolving simulations in turbulent channel flow. For the
same void fraction, a substantial influence of the bubble diameter on the turbulent statistics
and coherent structures was found. This highlights the need for adequate representation of
coalescence and breakup in this type of simulation and constitutes the motivation of the
present work. Here, we will only consider coalescence as this occurs more frequently in the
flows investigated.
In simulations of bubbly flows which do not resolve individual bubbles, i.e. the bubble size is
smaller than the grid size, the prediction of the bubble size distribution is crucial for correct
closures and the choice of correlations. Models for coalescence and breakup have been found
to be one of the weakest points [71, 162]. A review of coalescence models for such simulations
is provided by Liao and Lucas [161] and a comparison of their predictions to experimental
data is given in [222, 162]. Besides the influence of coalescence on the bubble size distribution,
bubble shape oscillations related to the merging of two bubbles induce turbulent fluctuations
with velocities larger than the rise velocity of the bubble [264, 265, 269, 270, 268].
To this date, no consensus is found in the literature on how to predict realistic coalescence
[118]. The latter review concentrates on the processes in the very thin film between two
bubbles and the mechanisms that eventually lead to the rupture of this film and thus to co-
alescence. There is general agreement that van der Waals forces, which are inter-molecular
attracting forces, need to become important to yield coalescence [118, 54]. These forces have
a range of about 10 − 60 nm. Compared to the size of a bubble, typically with diameter
100 µm −10 mm, a gap of several orders of magnitude would have to be bridged if the rise
of the bubble and the film thinning were to be resolved in the same simulation.
The simulation of the processes leading to a single coalescence can be achieved using, e.g.,
Boundary Integral Methods [213]. The phase-resolved simulation of many bubbles can be
conducted for instance with front-capturing methods [307] like the Volume of Fluid Method
(VOF) or the Level Set Method. In many of these methods, a diffuse interface exists between
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Figure 7.1 Coalescence modeling in phase-resolved simulations. During the bubble approach a
coalescence criterion is used to decide whether a collision or a coalescence is modeled.

the gas and the liquid and numerical coalescence always occurs when the distance between
the bubbles becomes smaller than the grid size. Due to the limitation in grid size resulting
from limited computational resources such methods cannot resolve the processes in the liquid
film between the bubbles and hence cannot accurately predict coalescence. Consequently,
modeling is required. To create a model for bubble coalescence without resolving the mi-
croscopic processes inside the fluid film between the bubbles, but resolving the geometry of
the bubbles, requires two features. One is a criterion for coalescence that accounts for the
evolution of the film, the other is a representation of the bubble surface during coalescence.
Figure 7.1 shows a schematic view of the modeling approach. In the following, we use the
term ’interaction’ when two bubbles come sufficiently close for the surfaces to touch (within
the precision of the numerical grid). Interaction can then be subdivided into collisions, where
the bubbles bounce back, and coalescence events. The coalescence process is understood as
the merging of the bubbles, as well as the subsequent shape oscillations resulting from it.
The present chapter is structured as follows:

- The inter-bubble distance is delt with in Section 7.2 with the focus on the numerical
evaluation of the distance for different bubble shapes.

- For bubbles being sufficiently close, the coalescence criterion, introduced in Section
7.3, determines whether the bubbles undergo coalescence or bounce back.

- Section 7.4 provides an overview of the employed collision models.

- Section 7.5 introduces a coalescence model applicable to phase-resolving simulation of
many bubbles in turbulent flows.

- Finally, the application of the developed coalescence model for the rise of two adjacent
bubble chains is presented in Section 7.6.

7.2 Inter-particle and particle-wall distance

The modeling of bubble interaction, either collision or coalescence, requires the determi-
nation of the distance between the bubble surfaces. The bubble shapes are represented
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analytically. The shapes comprise spherical bubbles, ellipsoidal bubbles and bubbles repre-
sented by spherical harmonic functions (SH) as presented in Chapter 4. Consequently, the
distance between two bubbles or the distance of a bubble surface and a wall or a free surface
can also be determined with high accuracy.

7.2.1 Spherical bubbles

For spherical bubbles, the calculation of the inter-particle distance is trivial. Figure 7.2
provides a sketch of the configuration. The distance between the interfaces of particle A and
particle B is given by ζA,B = ‖xp,A − xp,B‖ − (rA + rB). The straight line connecting the
particle centers gives the location of the sub-contact points (base points) xsub,A and xsub,B

on the respective particle surfaces. For two touching bubbles, ζA,B = 0, these sub-contact
points coincide and yield the contact point. The particle-wall distances are determined from
Table 7.1.
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Figure 7.2 Schematic representation of distance determination between particle surfaces. a)
Spheres. b) Ellipsoids.

7.2.2 Ellipsoidal bubbles

For ellipsoidal particles of arbitrary orientation, the calculation of the inter-particle distance
and the determination of the sub-contact points is less trivial. Figure 7.3 shows three exam-
ples for two tri-axial ellipsoids illustrating the problem to solve. The inter-particle distance
varies substantially based on the orientation of the ellipsoids. The ellipsoids would touch
if the longest semi-axes a were aligned since the distance of particle centers is chosen as
‖xp,A − xp,B‖ = 2a.
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a) b) c)

Figure 7.3 Inter-ellipsoid distance. a) - c) Three examples of closest distance for different orien-
tations of two tri-axial ellipsoids. Distance of particle centers is ‖xp,A − xp,B‖ = 2a.

An approximation for the computation of the inter-particle distance was proposed by Para-
monov and Yaliraki [206]. It is derived from the ellipsoid contact function. The approach
was implemented and validated throughout the student thesis of Quering [217]. It is only
very briefly recalled here. The main idea is to expand or shrink the two ellipsoids by a
common factor until they touch. The virtual contact point of the touching, scaled ellipsoids
is then used to construct two planes tangential to the unscaled ellipsoid surfaces from which
then the distance is determined.
Isotropic scaling of a tri-axial, ellipsoid is realized by multiplying the semi-axes with the
factor

√
Eco

x2

Ecoa2
+

y2

Ecob2
+

z2

Ecoc2
= 1 , (7.1)

where Eco > 1 yields an expansion and Eco < 1 yields a shrinkage. The case of a non-rotated
ellipsoid centered in the origin was used here.
To derive the contact function of two ellipsoids and determine Eco for the general case, it is
useful to describe the ellipsoid by the quadratic form

E (x− xp, φp, a, b, c) = (x− xp)
T E (x− xp) (7.2)

where the matrix E carries information on the orientation of the ellipsoid and its extents,

E (φp, a, b, c) = A(φp)





a−2 0 0
0 b−2 0
0 0 c−2



 AT (φp) , (7.3)

and A (φp) is the rotation matrix introduced above. The description is not limited to the
surface of the ellipsoid, but also determines whether a point lies inside or outside the ellipsoid.

E (x− xp, φp, a, b, c)











< 1 for x inside the ellipsoid

= 1 for x on the surface of the ellipsoid

> 1 for x outside the ellipsoid

(7.4)

Two ellipsoids, A and B, are described by EA and EB, respectively. An affine combination
of both is defined according to [206, 207] using the parameter λ ∈ [0, 1]. It reads as

S(x, λ) = λEA + (1− λ)EB . (7.5)

The minimum of S(x, λ) for each value of λ describes a curve

x(λ) = [λEA + (1− λ)EB]
−1 · [λEA · xp,A + (1− λ)EB · xp,B]

−1 (7.6)

which can be geometrically interpreted as a connection of the centers of the ellipsoids with
the gradient vectors ∇EA and ∇EB being parallel along the curve. The virtual contact point
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xco is found along this curve where S(x(λ), λ) reaches its unique maximum. It is shown in
[206] that the condition of a vanishing derivative of S(x(λ), λ) with respect to λ (denoted
by S ′) in the virtual contact point yields

S ′(xco, λco) = EA(xco)− EB(xco) = 0 , (7.7)

which can be rewritten as

EA(xco) = EB(xco) = Eco . (7.8)

We therefore find the virtual contact point xco and thus Eco by solving (7.7), which leads to a
numerical determination of the root. It can be geometrically interpreted as approaching the
surface EA(x) = EB(x) along the curve x(λ) given by (7.6). The root search is performed
numerically, taking only a few iterations, using e.g. the bisectional algorithm, the secant
method or the Newton’s method, as S ′(λ) decreases monotonously.
The sub-contact points on the respective ellipsoids are then determined by

xsub,A = xp,A + E−1/2co (xco − xp,A) , xsub,B = xp,B + E−1/2co (xco − xp,B) (7.9)

A good approximation of the closest distance between the ellipsoids is then achieved using
the distance between two parallel planes being tangent to the respective ellipsoids in the
sub-contact points. The normal vector describing these planes is calculated from

nsub,AB = nA,B =
∇EA (xsub,A)

‖∇EA (xsub,A) ‖
= − ∇EB (xsub,B)

‖∇EB (xsub,B) ‖
, (7.10)

and the distance between the planes is finally computed by

ζA,B ≈ |nsub,AB · (xsub,A − xsub,B)| (7.11)

The computed distance slightly underpredicts the actual minimum distance between the two
ellipsoids. A small overprediction would be achieved using the distance between the sub-
contact points. The incorporated way of calculating the distance between the surfaces of two
ellipsoids is very efficient and therefore also feasible when dealing with very large numbers
of ellipsoids. The computed normal vector can then also be utilized in the computation of
the normal collision force and the respective collision moment.
The particle-wall distances are determined by first solving for the sub-contact point from

nw = −nsub,A =
∇EA (xsub,A)

‖∇EA (xsub,A) ‖
, (7.12)

and the distances of the surface of particle A to the respective walls are then computed from
Table 7.1.

Table 7.1 Particle-wall distance ζA,w employing compass notation.

West ζA,wW = xsub,A East ζA,wE = Lx − xsub,A
South ζA,wS = ysub,A North ζA,wN = Ly − ysub,A
Front ζA,wF = zsub,A Back ζA,wB = Lz − zsub,A
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7.2.3 Bubbles described by spherical harmonics

The inter-particle distance is defined by

ζA,B = min (‖xS,A − xS,B‖) , (7.13)

with xS,A and xS,B being points on the surface of bubble A and B, respectively.
For general and complex bubble shapes (e.g. represented by SH), several approximations for
the inter-particle distance were considered differing in accuracy and numerical costs.

A reasonably accurate approximation for SH bubbles that deviate only marginally from an
ellipsoidal shape is using an approximating ellipsoid and the algorithm described above. This
approach is in general the one with the least numerical costs. Since a large region in the bub-
ble shape diagram [37] is covered by ellipsoidal bubbles, the approximation is quite useful.
The only necessary step is the determination of the semi-axes of the approximating ellipsoid
which then enter in (7.2). For axisymmetric spherical harmonics, an approximating, oblate
ellipsoid is used with a = c = max(r(θ)) and b = 0.5(max(r(θ) cos(θ))−min(r(θ) cos(θ))).

Iterative procedures can be used to solve the minimization problem (7.13) and to determine
the inter-particle distance. These procedures may employ the analytical description of the
particle surfaces or its discrete representation. For SH bubbles, two surface grids are available
- the unstructured triangular, basically equidistant Lagrangian forcing point grid and the
structured grid of the spherical coordinates used for the spherical harmonic representation
which is clustered towards the poles. The simplest approach is just iterating over all points
of both surface grids until the minimum distance is found. Using the Lagrangian forcing
point grid the inter-particle distance is computed by

ζA,B = min (‖xfp,A − xfp,B‖) . (7.14)

The particle-wall distance, here written down only for the x-direction, follows from

ζA,wW = min (xfp,A) ζA,wE = Lx −max (xfp,A) . (7.15)

This approach, however, can become quite costly for many particles, Np, and large num-
bers of forcing points, NL (or points of the SH grid). The computational costs scale with
0.5N2

LNp!/(Np − 2)!. Consequently, it is recommended to narrow down the number of pos-
sible collision partners beforehand and then calculate the surface distance. This can be
achieved using bounding spheres, with e.g. rA = max(r(θ, φ)), and the set of equations
introduced for spherical bubbles above.

A more efficient approach uses an iterative procedure with a multi-grid algorithm on the
structured SH surface grids of the bubbles, i.e. we search for ζA,B = min (‖xSH,A − xSH,B‖).
For clarity, we only discuss a two-stage multigrid algorithm here. An initial solution ζcoarse
is found using only, e.g., every tenth point in both directions of the spherical (θ, φ) grid.
The solution is then improved in the vicinity of the initial solution using every point of the
SH grid. The principle of the algorithm is sketched in Figure 7.4.

A directional iteration using the tangential vectors of the SH shapes represents another way
of calculating the inter-particle distance efficiently and accurately. For convex shapes, the
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Figure 7.4 Schematic representation of distance determination between particle surfaces for com-
plex bubble shapes. a) Multigrid approach. b) Directional iteration using tangential vectors.

distance vector connecting the two sub-contact points, as well as the two normal vectors in
these points are collinear. Consequently, the scalar product of the distance vector ζA,B =
xsub,A−xsub,B with either one of the four tangential vectors tθ in the sub-contact point is zero.
An iterative algorithm was developed in the diploma thesis by Tschisgale [280] which relates
the value of this scalar product to a change in the angular coordinates. If the scalar product
becomes zero also the change in the angular coordinates vanishes and the sub-contact points
are found. The application of the algorithm to the continuous (in contrast to discrete)
surface representation of the SH bubbles A and B leads to a very accurate determination of
the distance between the bubble surfaces. However, it requires the calculation of the spherical
harmonic basis functions, derivatives etc. at given values for (θ, φ), which becomes quite
costly. It was therefore recommended using the discrete SH surface grids of the two bubbles
instead, where the required quantities are already calculated. We group the indices of the
SH grids of both bubbles as ISH = [i, j, k, l] with the corresponding angular coordinates
θ = [θi, φj, θk, φl]

T . Hence, the iterative algorithm towards the sub-contact points reads in
the index space

Im+1
SH = ImSH + sgn (ζm · tm

θ
) , (7.16)

with sgn(x) =











+1 x > 0

0 x = 0

−1 x < 0 ,

where m denotes the iteration step. The sketch illustrating the procedure is provided in
Figure 7.4. The initial values at m = 0 are chosen from the intersection of the straight
line connecting the bubble centers xp,A and xp,B and the respective surfaces. The algorithm
(7.16) can be interpreted geometrically as successive diagonal jumps on the structured grid
of each of the bubbles marching towards to respective sub-contact points. During this path
the distance between the bubbles, as well as the scalar product between the distance vector
and the tangential vectors are minimized. The algorithm is stopped when a fixpoint-iteration
is detected and the final indices IfinalSH yield the sub-contact points xsub,A and xsub,B.
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Potential overlap, i.e. negative inter-particle or particle-wall distances, is directly accounted
for when using spheres, ellipsoid contact function and algorithm based on tangential vectors
for SH bubbles. Additional calculations are necessary when using the iterative procedures
searching for the minimum of the absolute value of the distance, e.g. first one has to dis-
tinguish between a left and a right particle A and B (bottom and top, etc.), based on the
particle centers, and then a search for the minimum of the signed distance between the
surfaces is conducted.

7.3 Coalescence criteria

When two bubbles approach they either bounce or merge forming one larger bubble. Whether
coalescence occurs is determined by the characteristics of the bubble interaction. Based on
film thinning theory, the film thickness between two bubbles needs to become sufficiently
small for van der Waals forces to become important and lead to coalescence [118]. A criterion
can also be expressed relating the film drainage time and the interaction time between two
bubbles [161]. If the interaction time is long enough, the film drains out and becomes thin
enough to rupture. In other words, gentle bubble interactions yield a higher probability
for coalescence to occur. Hence, the approach velocity must be below a critical value for
coalescence to occur. If it is above that threshold, the bubbles bounce back. Figure 7.5 shows
experimental data of Ribeiro and Mewes [221] on the occurrence of collision and coalescence
events as a function of bubble size and the relative approach velocity. Air bubbles in water
and ethanol were studied. Table 7.2 lists the physical properties of these systems. The
proposed critical values for the approach velocity are also given in the plots, being 9.6 cm/s
for air bubbles in water at 20◦C and 4.8 cm/s for air bubbles in ethanol at 30◦C. The relative
approach velocity, urel, of the two bubbles is determined with respect to the bubble centers
in the experiments and thus also in the simulation. Note that the actual relative velocity of
the interfaces at the contact point might differ.

a) b)

Figure 7.5 Occurrence of collision and coalescence for bubble pairs, data digitized from [221].
Critical relative velocities [221] compared to critical relative Weber number Wecrit = 0.18 [54]. a)
Air bubbles in water at 20◦C. b) Air bubbles in ethanol at 30◦C.

Duineveld [54] proposed another criterion for coalescence which is based on the relative ap-
proach Weber number, Werel = ρfu

2
relr12/σ where r12 denotes the characteristic radius of



7.3 Coalescence criteria 169

the two interacting bubbles with r−112 =
(

r−11,eq + r−12,eq

)

/ 2 and d12 the respective diameter.
Duineveld suggested a critical value of Wecrit = 0.18 for air bubbles in water. This criterion
is also traced in both graphs. The suggested value ofWecrit is a good threshold for both gas-
liquid systems. It also reproduces the slightly negative slope in the critical velocity observed
in the data. Note that a slightly larger value of Wecrit would even better fit the experiments
of Ribeiro and Mewes [221]. There is, however, a substantial scatter in experimental data
across the literature which can be related, e.g., to the purity of the considered gas liquid
systems which limits the accuracy of a threshold in any case. For instance, Lehr et al. [156]
report a critical relative velocity of 8 cm/s for air bubbles in water at the same temperature
which is 17% lower than the value of [221].

Table 7.2 Physical properties of gas-liquid systems. Fluid density ρf , fluid kinematic viscosity ν
and surface tension σ [40, 265, 319].

Gas-liquid system ρf [kg/m
3] ν [m2/s] σ [N/m]

Air - ethanol, 30◦C 781.4 1.255 · 10−6 0.0217
Air - water, 20◦C 995.5 1.038 · 10−6 0.0738
H2 - 1-M H2SO4, 20

◦C 1066.1 1.100 · 10−6 0.0730
Ar - GaInSn, 20◦C 6361.0 3.459 · 10−7 0.533

In summary, coalescence criteria can be formulated based on:

- Critical distance or film thickness between bubbles

- Drainage and interaction time

- Critical approach velocity

- Critical approach Weber number

Due to the extremely small length scales of the liquid film between the bubbles, the film
cannot be resolved in the simulations presented below. A criterion based on a critical film
thickness would therefore be rather inappropriate in the present simulations. Zenit and Leg-
endre [318] show that the film drainage of deformable bubbles is dominated by inertial effects
for millimeter sized air bubbles in water. Viscous effects are of secondary importance. The
Weber number, as the ratio of inertial forces to surface tension forces, hence is a reasonable
and general coalescence criterion.
The following coalescence criterion was implemented into the PRIME code. Based on the
discussion of the criteria above, a two-step criterion is proposed here. As a primary criterion,
the distance of the interfaces of the two bubbles needs to drop below a critical value which
is selected to be twice the grid spacing here. This critical distance also corresponds to the
range of the collision model employed and discussed below. The critical distance can also
be specified in terms of the bubble diameter, e.g. as 0.1 d12, to meet experimental consider-
ations. The first step requires the calculation of the distance between bubbles of complex,
three-dimensional shapes. The determination of the inter-particle distance is described in
Section 7.2. For bubbles below the prescribed distance, the secondary criterion, the relative
approach Weber number, is activated. If Werel < Wecrit = 0.18 coalescence is initiated,
otherwise the bubbles are set to bounce, employing a collision model.
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7.3.1 Relative Weber number criterion

The employed coalescence criterion is based on experimental observations. Here, derivations
of the relative Weber number criterion based on lubrication theory are briefly re-called from
the literature. A thorough prediction, whether the bubbles will bounce or get sufficiently
close to undergo coalescence, can be obtained by solving the Navier-Stokes equations for
the flow in the thin film between the bubbles and the evolution of this film. Separate
treatment of substantially diverse length and time scales leads to the challenge of multi scale
modeling, such as thin film models discussed in [276, 277, 267]. A review on film drainage
and coalescence is found in [31] with specific discussion of the boundary conditions and
assumptions for the thin film. In [54] a bouncing criterion is developed for bubbles of equal
size. If the kinetic energy is transferred to surface energy before the film is drained, the
bubbles will bounce back. Significant assumptions are posed including spherical bubbles,
small deformations, a small rise Weber number, inviscid flow and a parabolic profile of the
initial film thickness. For two equi-sized, trailing bubbles, i.e. the bubbles are aligned along
the direction of gravity, a critical relative Weber number of Wecrit = 0.5 was derived, as
also found in [34]. If the bubbles rise side-by-side, the critical relative Weber number is
Wecrit = 0.21.
The interaction of a bubble with a free surface, corresponding to an infinite radius of one
’bubble’ for the vertical interaction, was addressed in [34] and Wecrit = 0.125 was derived
under the same assumptions. In this study, the influence of viscosity is discussed, and very
similar results are obtained if Rerel = urelr12/ν > 100. Otherwise, the thinning rate of the
film decreases leading to a somewhat smaller critical Weber number. It is stated in [127] that
viscous forces are negligible until the very last stages of the film drainage. The bouncing
of a bubble at a free surface was studied as above, but with a finite rise Weber number
correction, and Wecrit = 0.24 was obtained.
The critical Weber number range obtained from theoretical considerations agrees quite well
with the chosen experiment-based value of Wecrit = 0.18.

7.4 Collision model

This section is dedicated to outlining the collision models used throughout this work. Ac-
curate representation of collisions in context of phase-resolving simulations of particle laden
flows is very delicate even for spherical particles in viscous fluids as illustrated in [134, 135].
It becomes even more challenging when considering other particle shapes. It shall be stated
clearly here, that the issue of collision modeling and its improvement is not the scope of
this work. The intention here is to provide a very brief overview and a summary of existing
models, which were applied during the course of the thesis with only minor modifications.
It is tempting to use similar modeling strategies for bubbles as for rigid particles, although
the underlying physical mechanisms might differ. Indeed, there is experimental evidence
that the description of the rebound process of a particle from a solid wall can be brought
into a common form [154], for bubbles, drops and rigid spheres. This can be realized by
relating the ratio of rebound to impact velocity to an appropriately defined Stokes number.
The Stokes number is defined as the ratio of the hydrodynamic response time of the particle
to a characteristic time scale of the flow as indicated below (7.20).
For bubbly flows, the inertia of the liquid phase clearly dominates over that of the dispersed
phase, in contrast to immersed, heavy particles. Thus, the dynamics of two approaching
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bubbles and their evasive motion are to large extent captured by the direct resolution of
the hydrodynamic forces on the bubbles. Furthermore, bubbles undergo deformation and
surface oscillations during collision which is directly accounted for by the SH shape coupling
algorithm [246]. However, a short range collision model becomes necessary if the distance
falls below critical threshold, e.g. twice the grid spacing. Then additional repulsive forces
and the corresponding moments are introduced. The modeling accounts for inter-particle, as
well as particle-wall collisions. Apart from being unphysical, overlapping of particles yields
divergence issues and thus stability problems. Hence, one of the major goals of the collision
modeling is to guarantee numerical robustness.

The main idea, discussed in [134, 135], is to decompose a general oblique collision into a
normal and a tangential collision and to then calculate the respective collision forces and
collision moments,

Fcol = Fcol,n + Fcol,t, Mcol = (xsub − xp)× Fcol, (7.17)

with xsub being the subcontact point on the particle surface determined as described in
Section 7.2. Tangential and normal collisions are then modeled according to experimental
observations and findings from theoretical analysis. Furthermore, the forces in each direction
can be decomposed into contributions originating from different physical mechanisms, as the
elastic or plastic ’dry’ collision of rigid particles, mechanisms related to lubrication and the
liquid film between the particles, rolling or sliding of the particles, etc. The resulting colli-
sion force and moment acting on a particle, possibly stemming from collisions with multiple
partners, are then introduced as respective source terms into the momentum equations (1.7)
and (1.8) which describe the translational and rotational motion of the particle.

7.4.1 Normal collision

First, the modeling of the normal collision is addressed. The repulsive forces are determined
from a mass-spring-damper system.
A general formulation of surface normal collision force Fcol,n for a collision between particles
A and B is given by

F
(A,B)
col,n =

(

kcol,n ζ
E
n − dcol,n un,rel

)

A,B
nA,B , (7.18)

with kcol,n being the normal stiffness, ζn the normal distance measure of the two colliding
surfaces, and E a constant exponent. The normal damping coefficient is denoted by dcol,n
with damping being proportional to the normal relative velocity un,rel of the two surfaces.
The direction of the normal collision force is given by nA,B being the normal vector in the sub-
contact points on the two particle surfaces. Additional collision forces are only introduced
within the range of the collision model ζcol, e.g. ζcol = 2∆x, which yields for the normal
distance measure ζn = ζA,B − ζcol.
Depending on the choice of the model constants of (7.18), different models can be identified
which are well documented in the references provided in Table 7.3.
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Table 7.3 Overview of collision models employed.

Model E dcol,n kcol,n Applications
CM-1 2.0 0 a priori Quadratic repelling potential of Glowinski [89, 90]

with application to heavy, rigid ellipsoids in [203, 204,
202], problem specific, a priori choice of kcol,n.

CM-2 1.0 0 2πσ Spring stiffness kcol,n = 2πσ derived from surface ten-
sion force of spherical bubbles. Application to bubble
clusters and foams [101, 102, 104].

CM-3 1.5 adaptive adaptive Adaptive Collision Model (ACM) for heavy, rigid
spheres [135, 134], with dcol,n and kcol,n being deter-
mined adaptively for each collision to yield physically
sound rebound.

In CM-1 and CM-2, usually a collision range of ζcol = 2∆x is employed, whereas in CM-3
ζcol = 0 is used, i.e. the model is active in case of surface contact and inter-penetration.
In turbulent, particle laden flows confined by walls, collisions may comprise rapid impacts,
gentle sliding or entrapment of one particle between multiple collision partners. It is therefore
difficult to cover all these scenarios with a priori determined model constants. Given the
spring stiffness is too low, the particles will overlap creating divergence issues due to the
incompressibility constraint. On the other hand, a too high spring stiffness leads to a very
short collision with large accelerations and possibly unphysically high rebound velocities.
For that reason, the main concept of the ACM (CM-3) is to determine the stiffness, kcol,n,
and the damping, dcol,n, at the beginning of each collision by solving the differential equation

(ρp + CAM ρf )Vp
d2ζn
dt2

+ dcol,n
dζn
dt

+ kcol,nζ
E
n = 0 (7.19)

to yield a given relative rebound velocity after a given collision time tcol when ζn is again
zero. In the original ACM [135] for spherical, solid, heavy particles, the exponent E = 1.5 is
used based on the Hertz contact theory [108] and no added mass, CAM = 0, is considered as
the model describes the ’dry’ part of the collision. With the ACM, an additional lubrication
model accounts for fluid forces on the particle during approach and rebound.
It appears appealing to also apply an adaptive collision model for bubbles. The remainder
of this section is used to adapt the ACM for bubbles. To obtain dcol,n and kcol,n from the
mass-spring-damper system (7.19), the approach and rebound velocity, the collision time,
as well as the associated mass need to be determined. In the case of bubbles, an exponent
of E = 1.0 is applied as motivated in the literature [102, 318, 154], yielding a linear mass-
spring-damper system.
To globally describe the outcome of particle collisions, the coefficient of restitution en is
introduced,

en = −
uoutn,rel

uinn,rel
, (7.20)

as the negative ratio of the normal, relative velocity of the rebound, uoutn,rel, to the value of
approach, uinn,rel. The exact definition of these latter two velocities is somewhat difficult. In
model experiments, e.g. the normal collision of a bubble with a horizontal wall [318], uinn,rel is
chosen to be the terminal rise velocity of the bubble, i.e. the undisturbed velocity far away
from the wall. The rebound velocity is defined as the minimum relative velocity of the bubble
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center after the impact, which in this case coincides with the velocity when the bubble loses
’wall contact’. Defined in this way, in general, the restitution coefficient quantifies the loss
of kinetic energy during the collision due to viscous dissipation, material damping, shape
oscillations, etc. The coefficient of restitution is well documented and tabulated in the
literature for bubbles [318, 279, 278], drops [154, 224] and rigid spheres [92, 126, 311], and
is therefore a suitable input parameter for the ACM. A fit of experimental data for en from
bubble-wall collisions is provided in [318] with

en = exp

(

−30
√

Ca

St∗

)

(7.21)

where the dimensionless group
√

Ca/St∗ = Oh∗ is a modified Ohnesorg number deter-
mined from the capillary number, Ca = un,inµf/σ, and the modified Stokes number, St

∗ =
(ρp + CAM ρf ) dequn,in/(9µ). The modified Stokes number accounts for the added mass of
the bubble, where the added mass coefficient for an ellipsoid of rotation as a function of the
aspect ratio X can be determined from [150, 318]

CAM =
(X2 − 1)

1/2 − arccos (X−1)

arccos (X−1)− (X2 − 1)1/2X−2
. (7.22)

The well known value of CAM = 0.5 is obtained in the limit X = 1 for a sphere. Thus, this
equation for CAM is derived for unbounded fluid, i.e. not taking into account the vicinity of
a wall, which is in agreement with the definition of en. A rebound of bubbles is observed
from equation (7.21) if inertial forces dominate over viscous forces. In contrast, the bubble
sticks and possibly oscillates without notable bouncing for large dissipation.
The collision time, tcol, might be approximated for bubbles colliding with a wall by tcol =

π
√

5/12
√

(ρp + CAM ρf ) r3eq/σ, which is derived in [154] from one half-period of the un-

damped, linear oscillator implied in (7.19). For inter-particle collisions, a suitable approx-

imation is tcol = π/
√
12

√

ρf r3eq/σ, which corresponds to one half-period of the dominant

mode of a bubble shape oscillation around the spherical shape [150] with assumptions out-
lined below equation (7.25).
Bubble-wall interactions in general have longer collision times than the corresponding particle-
wall collisions of rigid spheres. Bubble deformation serves as an intermediate energy storage
prolonging the approach, impact and rebound phase of the collision compared to rigid par-
ticles. Therefore, a stretching of the collision process to at least tcol = 10∆t, as applied in
the original ACM [135], is usually not necessary. However, a respective lower limiter for tcol
is used in production runs.
There are some remaining issues within the application of the ACM for bubbles. In produc-
tion runs with many collisions in turbulent flow, the detection of the beginning of individual
collisions, as it enters the respective definition of the restitution coefficient (7.20) and of the
collision time, is challenging. As a compromise, the start of the collision is indicated when
ζn = 0, and a somewhat larger restitution coefficient is used, e.g. en = 0.8. Even for a
single bubble-wall collision in quiescent fluid, the bubble shape and thus the added mass
differ substantially during the course of the collision which limits the applicability of the
mass-spring-damper system (7.19). In contrast to the original ACM, a force or safety range,
ζcol > 0, has to be used to enable the pressure interpolation for the SH shape algorithm.
Also employing the inter-particle or particle-wall distance (including the force range) as a
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measure of deformation, ζn, has to be scrutinized for large shape oscillations. Nevertheless,
the modified ACM for bubbles provides good approximations for dcol,n and kcol,n and yields
robust and physically sound bubble collisions as will be shown later.

7.4.2 Tangential collision

The tangential collision modeling is not discussed in detail here, as it has basically been
neglected in the simulations presented in this thesis. A thorough review is found for spher-
ical, rigid particles in [135, 134]. The nature of tangential contact between the collision
partners determines whether rolling or sliding motion occurs. For pure rolling, the relative
tangential velocity in the contact point is zero. In contrast, a sliding motion is characterized
by tangential slip between the surfaces. A suitable modeling strategy, comprises setting the
tangential collision force Fcol,t proportional to the relative tangential velocity in the contact
point [95]. For bubbles, rolling motion is not to be expected even in contaminated systems.
Experimental data for bubble collisions with a tangential component are available in Podvin
et al. [211] who examined the interaction of a bubble with an inclined wall and compared
the results to model predictions derived from [180, 138]. The agreement between model and
experiment is moderate. In the experiments, states of pure sliding or pure, repeated bounc-
ing and intermediate states with transient bouncing and sliding were found depending on the
inclination angle of the wall, as well as further parameters characterizing the bubble itself
and the approach. Similar experiments can also be found in [279]. In both experiments, a
critical angle of the wall measured from the horizontal of 55◦−60◦ is found for the transition
from sliding to bouncing. A drop sliding along an inclined wall is examined employing a thin
film model for phase-resolving simulations in [267, 276]. Since only collisions with vertical
walls take place in the simulations of bubbly flows in wall-bounded domains presented below,
the process of bouncing needs to be considered in more depth which is done in paragraph
7.4.3. The rebound process is dominated by the wall normal forces described above. In the
present work, only a very weak tangential force is applied for bubbles, e.g. to damp numeri-
cal oscillations and sliding along a fully horizontal wall in the test case 7.4.3. Further studies
should be conducted in the future focusing on the tangential interaction between multiple
bubbles and bubbles with a solid wall. Tangential contact and collision modeling can be ex-
pected to be equally important to its normal counterpart in bubble foams and dense clusters.

7.4.3 Deformable bubble impacting against horizontal wall

Configuration

The dynamics of a bubble impinging on a horizontal wall are studied with focus on the
performance of the bubble-wall collision modeling and the SH shape algorithm for strongly
deformed bubbles. A principle sketch of the configuration is provided in the left part of
Figure 7.6. The simulation captures the approach, impact and rebound of the bubble and
the respective fluid motion. The simulation results are compared to experimental data by
Zenit et al. [318] using the experimental run with the largest bubble deformation and the
highest rebound velocity presented in that reference. The system considered is supposed to
be fully wetting, i.e. at all times there remains a thin liquid film between the bubble and
the wall.
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Figure 7.6 Collision of a bubble with a horizontal wall, sketch (left). Bubble shape during wall
collision (right). Top row shows experimental data [318], bottom row shows present simulation
data: 1) Terminal or equilibrium shape of bubble at t vp,0/deq . −1 (beginning of approach, still
far from wall). 2) Maximum deformation and zero velocity at t vp,0/deq ≈ 0 (impact). 3) Largest
absolute rebound velocity and loss of ’contact’ with wall at t vp,0/deq ≈ 0.9 (rebound). Contour of
absolute value of fluid velocity illustrated in gray scale (0, 1.5ug) in a plane intersecting the bubble
center.

Numerical parameters

The non-dimensional numbers characterizing the rise and shape of an individual bubble
are chosen as Eo = 4.2, G = 250, πρ = 1· 10−3 to match the shape and the velocity of
approach vp,0 from the experiment. An approach Reynolds number ofRep,0 = vp,0deq/ν = 241
is achieved and the collision process is characterized by the modified Stokes number of
St∗ = 22.1. Results from the simulation of a freely rising bubble in a large container (Section
4.4) are re-used here to initialize the simulation and enable a smaller size of the computational
domain with L = (6.4, 5.0, 5.0) deq. A local spatial resolution of deq/∆x = 40 is used and
the time step is chosen to yield CFL = 0.1 based on vp,0. A no-slip condition is applied at
the upper wall and on the bubble surface. Periodic boundary conditions are prescribed in
the lateral directions and the boundary condition at the lower wall is a free-slip one. The
experimental data by [318] was obtained for a partially contaminated system as apparent
from the drag coefficients provided in that reference, i.e. the boundary condition at the
bubble surface is neither a pure no-slip, nor a pure free-slip condition. The bubble shape is
represented by axisymmetric spherical harmonics with NSH = 12 and constraints of constant
bubble volume and no wall penetration of the bubble surface. A straight bubble trajectory is
imposed during the approach. The ACM for bubbles is used as described above with E = 1.0
and kcol,n, dcol,n are determined adaptively. The range of the collision model is chosen as
ζcol = 4∆x. We stress again that the terminal rise velocity vp,0, undisturbed by the wall, is
used as an input of the model and in the definition of the restitution coefficient. Further, also
the added mass coefficient is determined from the bubble shape still not influenced by the
presence of the wall. The ACM for bubbles provides good estimates for kcol,n, dcol,n if applied
as described above and it improves the agreement with the experimental data for the chosen
case substantially compared to the application of CM-2 (not shown). However, to match the
experiment with better accuracy, as displayed in Figure 7.6 and 7.7, a parameter study was
conducted yielding kcol,n = 480, dcol,n = 0.9. The results comprise an approximately four
times stiffer spring constant compared to the ACM and 13 times stiffer compared to CM-2,
respectively. The damping constant is about half of the value obtained from the ACM.
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Bubble shape during wall collision

Figure 7.6 displays the bubble shape during the wall collision with the snapshots chosen
to represent the approach, impact and rebound. The top row shows the experimental data
of [318] and the lower row the present simulation data. A contour of the absolute value
of the fluid velocity illustrates the flow field in a plane intersecting the bubble center. At
the beginning of the approach phase (1), the bubble is still unaffected by the wall and
its equilibrium shape and rise velocity correspond to those in unbounded fluid. In the
present case, the bubble shape is basically steady ellipsoidal with a slightly flat front. As the
bubble further approaches the wall, the pressure at the bubble front increases leading to a
deceleration and a flatter bubble shape. The bubble front even becomes dimpled [34]. Fluid
is squeezed out to the sides as the thickness of the film between bubble and wall further
decreases [318]. The maximum deformation of the bubble is reached at wall impact (2)
when the velocity of the bubble center comes to zero. Here, we observe also the formation
of a dimple at the rear of the bubble due to the impinging wake fluid. The rebound (3) is
characterized by a cap-shaped bubble of small aspect ratio. Here, a minimum in the bubble
center velocity is reached, approximately as it loses the ’contact’ with the wall. More wake
fluid moves in counter-flow to the bubble and needs to be driven aside. The agreement
between numerical and experimental bubble shapes is excellent with the simulation giving
slightly larger bubble deformations.

Bubble dynamics during wall collision

The history of the vertical velocity of the bubble center normalized with the terminal rise
velocity is plotted in Figure 7.7. The origin of the temporal axis is set at vp = 0. Roughly one
full bubble-wall interaction is shown consisting of the deceleration phase during approach,
impact at vp = 0 and reverted motion with vp < 0. It is shown in [318] that the normalized
plots of the bubble center velocity, vp(t)/vp,0 collapse for different modified Stokes numbers
until the impact at t vp,0/deq ≈ 0. The simulation results are in good agreement with the
experimental data of [318], especially for the restitution coefficient en = 0.47. Two vertical
dashed lines indicate the temporal beginning and end of the collision model, i.e. the time
when the particle-wall distance is within the range of the collision model. The particle cen-
ter velocity has already decreased to approximately 60% of the approach velocity vp,0 due
to resolved viscous forces as collision modeling sets in. The slope in the velocity-time plot
then becomes steeper due to the additional collision force. The minimum in particle center
velocity is reached approximately at the same time after impact in both experiment and
simulation. Shortly after the minimum in vp(t) the location of the bubble surface leaves
the wall and thus the range of the collision model. An additional oscillation in vp(t) can
be observed as the center velocity again becomes zero in the simulation and in a weaker
form in the experiment. This instant corresponds to the maximum rebound height and the
oscillation is caused by a reversal in bubble shape from rear to again front flattened. The
maximum absolute rebound height measured from the upper wall is 0.70 deq in the simula-
tion and therefore slightly smaller than the corresponding value from the experiment with
0.75 deq.
Further findings, that were not addressed or plotted above, are documented now. The

collision model CM-2 (Table 7.3) yields lower rebound velocities and lower rebound heights.
If a collision is underresolved by the spatial or by the temporal discretization, lower deforma-
tion, lower rebound velocity and shorter collisions were observed, given the simulation was
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Figure 7.7 Bubble wall collision. History of the vertical velocity of the bubble center normalized
with the terminal rise velocity. Origin of temporal axis set at vp = 0.

still stable. In the student thesis of Hoffmann [109], simulations conducted without bubble
deformation unveiled a general tendency towards an underprediction of collision time and
rebound height. This tendency was more or less independent of the choice of the ansatz
itself and the parameters in (7.18).
In conclusion of the present simulation, very good agreement with experimental data for
bubble-wall collision can be achieved for properly chosen parameters of the collision model.
The bubble shape and trajectory match the experimental observations. The very complex
interplay of film drainage, bubble shape deformation, which serves as temporarily kinetic en-
ergy storage, and the mass-spring-damper collision model was captured successfully. Herein,
the representation of the temporal evolution of bubble shape determines the collision dy-
namics to a large extent. There exists substantial room for improvements with the actual
collision modeling of bubbles.

7.4.4 Towards improved bubble collision modeling

If high gas volume fractions and large collision rates characterize the configuration to be
studied, the collision model can be estimated to have a significant influence on the results.
Even though the idea of a unified collision model for rigid particles and deformable bubbles
seems tempting, there are limitations to this approach. For solid particles, a very short
contact of the two particle surfaces exists and the particle velocities prior and after this
contact can be described by a ’dry’ collision [135]. The shape of the rigid particle remains
spherical at all times. The last stage of the particle approach and the early stage of the
particle departure are captured by a lubrication model. For bubbles on the other hand, a
very thin film remains in-between the two bubbles at all times if the bubbles are supposed to
bounce back. The bubble shape deforms on the global scale and on the local scale near the
point of closest inter-particle distance. A very important next step towards the improved
collision modeling for bubbles is the inclusion of a suitable lubrication model for bubbles
describing the physical processes in this thin film. The theoretical basis for this step and
experimental data obtained by atomic force microscope measurements are gathered in [32].
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The most challenging task is to distinguish between resolved and unresolved contributions
during the collision. Other authors [318, 154] provide a model for the full collision process
of a single bubble-wall collision in quiescent fluid on the global scale. The deformation, ζ∗n,
in their mass-spring-damper model can then be defined as the deviation from the spherical
bubble shape. The definition of ζn in the present context is non-trivial and needs to be
scrutinized. Within the IBM, the global deformation of the bubble is resolved to a large
extend by the present method and the influence of the bubble deformation is thus inherently
already included in the bubble’s equation of motion. The collision model takes the role of a
subgrid scale model and the collision forces and moments appear as additional source terms
in the bubble momentum equations when the bubble surfaces get very close. A consistent
formulation thus requires that the modeled collision force vanishes if the grid spacing of the
simulation approaches zero, ∆x→ 0, i.e. the collision is fully resolved. It is further required
that Fcol,n → 0 if ζn → 0, i.e. the closest inter-particle distance enters or leaves the specified
range of the collision model.
The normal and tangential collision model have potential for improvement, also with regard
to thin film modeling [267, 277], in order to get a better representation of inter-bubble and
bubble-wall interaction at reasonable computational cost.

7.5 Coalescence model

If the coalescence criterion introduced in Section 7.3 is fulfilled, the bubbles do not bounce
back, but undergo coalescence. A topological change from two individual bubbles to one
larger bubble has to be realized in the phase-resolved simulation. This new object is described
with a new local, spherical coordinate system r(θ, φ) centered in the contact point of the
two bubbles. The bubbles are then shifted marginally towards each other to initialize the
coalescence process creating a minor overlap, thus removing any singularity at the contact
point. The outer hull of the resulting large bubble is described by three-dimensional spherical
harmonics [77] (Appendix J),

r(θ, φ, t) =
∞
∑

n=0

n
∑

m=−n

anm(t) Y
m
n (θ, φ) ≈

NSH
∑

n=0

n
∑

m=−n

anm(t) Y
m
n (θ, φ) (7.23)

where r(θ, φ, t) designates the distance of a point on the interface from the origin of the
local coordinate system at a given time t, NSH is the number of modes employed, anm are the
shape coefficients and is the spherical harmonic function of grade n, m. When computing
the resulting shape coefficients, anm, of the merged bubble, these are adjusted such that the
volume of the large bubble equals the sum of the single bubble volumes.

7.5.1 Detailed simulation of bubble shape during coalescence

Configuration and numerical parameters

In the following, a detailed simulation of the temporal evolution of the bubble shape after
film rupture is presented using the SH shape algorithm [246] which computes the bubble
shape from the fluid loads. The setup comprises two 375µm diameter hydrogen bubbles
coalescing in the gap between two plate electrodes in quiescent, aqueous 1-M H2So4 and
corresponds to the experimental configuration of Stover et al. [265, 264]. The gas-liquid
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system has similar physical properties as air in water, as demonstrated in Table 7.2. The
Ohnesorg number of the present configuration is Oh = ν

√

ρf / r12σ = 9.7 · 10−3 indicating
low influence of viscous forces compared to inertial and surface tension forces.

z

x
y

Figure 7.8 Coalescing bubbles between plate electrodes. Configuration and initial bubble shape.
Only a fraction of the computational domain in x and z is shown.

In the simulation, the initial shape was defined by a so-called ’inverse ellipse’ of rotation
according to the definition in [112] reading

γ = arctan ((1 +miE)/(1−miE) tan(θ + π/2))

x(γ) =
riE (1−m2

iE) (1 +miE) cos(γ)
√

1 +m2
iE (1 + 2miE cos(2γ) +m2

iE)
(7.24)

y(γ) =
riE (1−m2

iE) (1−miE) sin(γ)
√

1 +m2
iE (1 + 2miE cos(2γ) +m2

iE)
.

The parameters were chosen with miE = 0.99 and πr2iE determines the cross sectional area
slicing through the axis of rotation (here r2iE ≈ 2r212). This shape is a single closed object with
differentiable surface and very close to two touching spheres. Each bubble is in contact with
a plate electrode. The initial shape is displayed in Figure 7.8. The computational domain
extends over L = (8, 2, 8) d12 and is discretized with a Cartesian grid N = (256, 128, 256),
i.e. 8.4 million cells. The local resolution near the coalescing bubble is deq/∆x = 80 and
the grid is stretched away from the bubble in x- and z-direction. No-slip walls bound the
domain in y-direction; periodic boundary conditions are applied in x- and z-direction. A
no-slip condition is enforced on the bubble surface. It was shown in [265] that the influence
of hydrostatic pressure on the bubble shape is negligible which is why this component is
not taken into account in the simulation. Constraints applied to the SH shape algorithm
are constant bubble volume, a maximum extent in y-direction of 2d12 and an axisymmetric
shape with the axis of rotation parallel to the y-axis. Translational and rotational degrees
of freedom of the bubble are disabled, so that only the change in bubble shape generates
a velocity in the surrounding liquid. The characteristic length scale of the problem is the
radius r12 and the characteristic time scale is tref =

√

ρfr312/σ. A constant time step size
of ∆t/tref = 2.5 · 10−4 is applied throughout the simulation. A large number of modes,
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NSH = 30, is used to describe the bubble shape and to accurately represent the large
curvatures.

Results for the dynamics of the saddle point

The saddle point indicates the point where the bubbles touch initially. The saddle point
radius rs is measured as the distance of this point to the axis of rotation. The temporal
evolution of rs is shown in Figure 7.9 and the present results are compared to the experimental
data of [265]. Initially, the saddle point moves outwards with high velocity. The initial motion
of the saddle point radius scales approximately with t1/2 [269]. This is very well reproduced
by the simulation, as well as the experiment. The maximum slope of the saddle point
motion near time zero, corresponding also to the maximum induced velocity, is 3.46 m/s in
the present simulation, compared to 3.6 m/s in the experiment. This is substantially higher
than the gravitational velocity scale of the bubble with ug =

√
g d12 = 6.1 cm/s which is the

characteristic velocity scale of the free rise of a single bubble. After the initial transient, the
saddle point radius over-shoots the equilibrium position and a damped, harmonic oscillation
around the equilibrium follows. The largest deviations to the experimental data are found
around the first maximum in rs. Note that in the experiments of Figure 7.9, the bubble
detached from the electrodes and moved out of the focus which is apparent from the net
shift in rs. Apart from a slight difference in frequency, and bearing in mind the experimental
uncertainty, the match of the simulation with theory and experiment is convincing. High
frequency and low amplitude oscillations in rs(t) in Figure 7.9 indicate the occurrence of
capillary waves in Figure 7.9.

Figure 7.9 Temporal evolution of the saddle point radius rs normalized with the radius of the
coalesced bubble req from the present simulation and comparison to experimental data [265].

Results for the bubble shape

Figure 7.10 displays a sequence of the bubble shapes extracted from the temporal evolution.
At early times highly distorted bubbles and capillary waves are observed. These waves
are created in the highly curved neck region and then travel outwards to the ends of the
deformed bubble. The surface waves are gradually damped and at later stages a purely
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ellipsoidal oblate-prolate shape oscillation prevails. The computed bubble shapes are also
consistent with the experimental observations by Menchaca-Rocha et al. [175].

Figure 7.10 Evolution of bubble shape from detailed simulation of the configuration in Figure
7.8. a) - f) display the shape at t/tref = 0.6, 1.2, 2.4, 3.2, 4.2, 6.1.

As time proceeds, surface energy is converted to kinetic energy, back and forth, and is
dissipated in the surrounding fluid. Initially high velocities are induced in the vicinity of
the bubble. The rapid motion, however, is confined to a region close to the bubble and
has only very limited influence on the far field. The bubble shape remains axisymmetric as
imposed by the method. The flow field is predominantly axisymmetric, but also contains a
superimposed three-dimensional contribution of the order of 0.1 m/s which is small compared
to the initial velocity of the junction of 3.46 m/s mentioned above. Figure 7.11 shows one
snapshot of the induced absolute value of the resulting fluid velocity, c, near the bubble. In
this figure, the plotted range is limited to c ∈ [0, 0.6] m/s for better visibility; c ≈ 0.6 m/s
is thus not the maximum velocity.

Figure 7.11 Bubble shape and absolute value of fluid velocity, c, in a plane z = const. through
the bubble center at t/tref = 0.86. The color scale is cut-off at 0.6 m/s for better visibility.

The frequencies of the bubble shape oscillation of mode n around the spherical shape with
r = const. = req can be estimated according to Lamb [150]:

fn =
1

2π

√

(n+ 1)(n− 1)(n+ 2) σ

ρfr3eq
, f2 =

1

2π

√

12σ

ρfr3eq
(7.25)
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These expressions were derived in the inviscid limit for small deviations from the spherical
shape and in an unbounded domain. However, good agreement is also observed for shape
oscillations of rising and coalescing bubbles in viscous fluids [54, 22, 233]. The characteristic
frequency in the present simulation was determined from rs(t), as shown in Figure 7.9, and
from the temporal evolution of the cross sectional area in the xy-plane, both providing
almost identical results. The present simulation yield a leading frequency of 1.26 kHz which
agrees very well with the theoretical value of 1.26 kHz according to equation 7.25. In the
experiments [265], a frequency of 1.1 kHz was obtained. The damping rate was 0.52 1/ms
in the present simulation, whereas 0.54 1/ms was reported in [265]. The agreement hence
is very good so that this case constitutes a sound validation of the method to compute the
instantaneous bubble shape.

7.5.2 Modeled evolution of bubble shape

Although the agreement of the simulated coalescence dynamics with both experimental data
and theory is quite good, several difficulties are apparent from the direct simulation. A very
small time step is necessary to compute the initial phase of the coalescence process. With
insufficient temporal resolution, especially the occurrence of capillary waves poses stability
problems for the present weak, explicit coupling scheme. Furthermore, a small time step
size would impair the performance when dealing with turbulent, bubbly flows. We therefore
motivate a further modeling of the bubble shape evolution. This motivates a higher level of
modeling when representing the evolution of the bubble shape during coalescence. The idea
is the following. Once coalescence is initiated by the fact that the criterion defined above
is fulfilled, the evolution of the bubble shape is not computed from the balance of forces at
the interface, but judiciously modeled for the initial phase of the evolution. This allows for
a larger time step and the usage of less modes, NSH , for the representation of the bubble
shape. Principally, the same method is used as before, employing a local coordinate system
positioned in the contact point and a tiny shift of the bubbles towards each other. But
then, the evolution of the coefficients anm(t) is imposed by the following procedure. After
the merging at t = t0, the initial values anm(t0) = a0nm are known. Then, an appropriate
state for the end of phase being modeled is chosen, defined by the time t0 + ∆Te and the
coefficients anm(t0 + ∆Te) = aenm. Instead of using the local balance of forces along the
surface, the evolution anm(t) is then computed via

anm(t)− a0nm
aenm − a0nm

= f(t), t ∈ (t0, t0 +∆Te) (7.26)

The size of the time step during the coalescence takes into account the CFL criterion. The
time interval of the coalescence model ∆Te is chosen based on the used shape evolution
function (SEF) f(t). The shape at the end of the modeling interval is approximated as
an ellipsoid of revolution based on the covariance ellipsoid [20] computed from the initially
touching bubbles. This ansatz also provides the orientation of the ellipsoid in the laboratory
system at the end of the modeling interval. An example for the bubble shape at the beginning
and the end of the coalescence model is provided in Figure 7.12 from [280].

Two shape evolution functions (SEF) f(t) were implemented and tested:

SEF-1 f(t) = ∆T−1/2e (t− t0)
1/2 (7.27)

SEF-2 f(t) : damped, harmonic oscillator (7.28)
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a) b)

Figure 7.12 Bubble shape a) at beginning of the coalescence with anm(t0) = a0nm and b) at the
end of the coalescence modeling with anm(t0 +∆Te) = aenm [280].

The model SEF-1 is inspired by the initial transient, resulting from theory and experiment.
The constant was determined such that f(t0 + ∆Te) = 1. It requires shorter modeling
intervals, e.g. ∆Te = max(100∆t, tref ). The model SEF-2 is motivated by the damped
shape oscillations observed in Figure 7.9 and 7.10. Experimental and theoretical knowledge,
as well as simulation results, are used to determine the oscillation frequency and damping
rate. Furthermore, f(t) can be made dependent on the indices n and m which would, e.g.,
allow to damp higher modes stronger than lower modes, if desired. The reason for considering
variant SEF-2 is to use a larger duration of the time interval during which modeling is applied,
e.g. ∆Te = max(100∆t, 4tref ). The production runs below were conducted with variant
SEF-1.

a) b) c)

Figure 7.13 Modeled evolution of bubble shape determined by anm ∼ f(t). a) Small spherical
and large ellipsoidal bubble. b) Side-to-side coalescence of two ellipsoidal bubbles. c) Front-to-back
coalescence of ellipsoidal bubble and cap-shaped bubble. Time evolves from top to bottom with
non-constant time intervals selected to highlight the different intermediate shapes.

The model allows for a general and robust description of the bubble shape evolution during
coalescence. It covers various coalescence scenarios, like side-to-side coalescence, and wake
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capturing for bubbles of different size and shape. Figure 7.13 shows the modeled evolution
of the bubble shape for three examples using SEF-2. During the coalescence the constraint
of constant bubble volume is fulfilled avoiding mass losses as they would usually occur with
V OF methods. With the proposed model, the velocities created in the surrounding liquid
are well represented since the evolution of the bubble shape is well captured. Afterwards the
bubble shape is again computed from the force balance.

7.6 Simulation of two adjacent bubble chains

7.6.1 Configuration and setup

A simulation of two adjacent bubble chains in a container of high aspect ratio was per-
formed using the coalescence model with shape evolution function two (7.28). The container
extends over L = (24, 24, 2) deq (Figure 7.14). The configuration is chosen in analogy to
the simulation of a single bubble chain in liquid metal without representing coalescence in
Chapter 6 and [247]. The narrow extension in z-direction also resembles the experimen-
tal configuration of Ribeiro and Mewes [221] and it promotes coalescence events. Recall
that this experiment was conducted for single bubble pairs. The gravitational velocity scale
uref = ug and the sphere-volume equivalent diameter deq serve as reference velocity and
length scale, respectively. The average bubble diameter at the nozzle is denoted as deq here.
The non-dimensional numbers governing the ascent of an individual bubble are the Galilei
number, G = 420, the Eötvös number, Eo = 4.2, and the particle to liquid density ratio,
πρ = 10−3. The chosen values correspond to 3.5 mm air bubbles in ethanol. For comparison,
the Ohnesorg number is determined to be Oh = 5.710−3 and thus similar to the detailed
simulation of coalescence presented above. During the course of the simulation, the bubbles
are injected in pairs with a detachment frequency of fb = 0.364 ug / deq. At the nozzles, a
Gaussian size distribution is prescribed for the bubbles with a mean diameter of 3.5 mm and
a standard deviation of 0.28 mm, and the bubble size selected independently for the two
bubbles simultaneously released. The injection nozzles are located at x

(1)
p,0 = (11, 0.8, 1) deq

and x
(2)
p,0 = (13, 0.8, 1) deq. The spacing between the nozzles is thus two bubble diameters.

The bubbles have spherical shape when they are inserted and have zero velocity. The bubble
shape is represented with NSH = 16 spherical harmonics and coupled to the loads applied
by the surrounding fluid. Bubble collisions are accounted for by the adaptive model. The
computational domain is discretized with N = (480, 480, 40) cells of a Cartesian equidistant
grid and the time-step is adapted to yield CFL = 0.5. No-slip boundary conditions are
applied at all walls, apart from the top boundary where a free-slip condition was used to
represent a free surface. In an experiment, the bubbles can leave the fluid through the upper
free surface. In the simulation, this was mimicked by removing the bubbles just before they
reached the upper boundary. When an IBM is used, where the interior of each bubble is
filled with ’artificial fluid’ of the same density as the surrounding fluid [282], this can be im-
plemented easily by just setting the forcing terms in the momentum equation resulting from
the IBM to zero. Still, conservation of mass and momentum of the fluid are verified without
further need for adjustment. The initial condition of the simulation for the continuous phase
was quiescent fluid.
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Figure 7.14 Adjacent chains of air bubbles in ethanol (Eo = 4.2, G = 420). Instantaneous
contour of the absolute value of velocity, c, in the center plane.

7.6.2 Results for the continuous phase

Two dominant vortices develop in the container created by the bubbles ascending in the
center. Figure 7.15 depicts the average streamlines in the center plane, z = Lz/2, together
with the magnitude of the velocity vector. The upward vertical jet generated by the ascending
bubbles is very well visible. The flow descends along the left and the right wall of the
container (without bubbles, as these are removed at the top). Close to the bottom, the
fluid is entrained towards the center of the container by the vertical jet, so that a closed
recirculation region with low velocity is formed in each of the lower corners. Note that the
spiraling of the streamlines is not an imprecision of the graphic software, nor is it a violation
of continuity. It is rather a reflection of the secondary flow of the first kind [200] generated
by streamline curvature. Centrifugal forces act in the center plane driving the fluid outwards
while new fluid enters the vortex centers perpendicularly to this plane.
Time-averaged profiles of the vertical liquid velocity v are plotted over x in Figure 7.16

for different vertical locations (0.25, 0.5, 0.75 times the container height, and z = Lz/2).
Additional spatial averaging was applied using the symmetry in x. The v-profiles show the
spreading of the bubble jet with height, as well as the downward flow to the left and to the
right of the center jet. Slightly positive velocities near the walls at y/deq = 6are caused by
the corner vortices.

7.6.3 Results for the disperse phase

The large-scale vortices drive the two bubble chains towards each other and lead to subse-
quent bubble interactions. Figure 7.14 displays an instantaneous contour plot of the absolute
value of velocity, c, in the center plane. Coalescing bubbles can be observed at approximately
half of the container height and one large, already coalesced bubble is apparent near the free
surface.
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Figure 7.15 Flow pattern in container visualized by time average of absolute value of velocity c
(z = Lz/2).

Figure 7.16 Averaged profiles of the vertical liquid velocity v induced by the bubble jet at
different vertical locations 0.25, 0.5, 0.75 times the container height (z = Lz/2), shift of ±uref for
the upper and lower position, respectively, to enhance visibility.
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A sample of individual bubble trajectories is plotted in Figure 7.17. The bubble paths reveal
a zig-zag motion of the bubbles. The center of individual bubbles is tracked. Interrupted
paths are a consequence of bubble coalescence. A larger sample of coalescence events is in-
dicated by triangular symbols. Most coalescence events take place very close to the nozzles
at first contact as also reported by Duineveld [54] for individual bubble pairs. A second
region where coalescence occurs in the present setting is found at approximately half of the
container height. Coalescence events in the upper third of the vessel are rare.

Figure 7.17 Sample of individual bubble trajectories showing zig-zag motion of individual bub-
bles. Also shown is a larger sample of coalescence events indicated by triangular symbols.

Quantitative results on bubble coalescence were determined from the simulation over a du-
ration of t = 268f−1b , i.e. covering the injection of 268 bubble pairs. In this time interval
361 interactions were counted which provides the average frequency of interaction. Along
the trajectory, the first interaction with a second bubble may already lead to coalescence,
otherwise a collision takes place often leading to a subsequent second and possibly third
interaction. Note that the start and the end of individual collisions are difficult to detect.
In the present study, the criterion applied for the detection of the end of a collision was
that, after contact, the distance of the bubble surface is again larger than 0.1d12, i.e. the
bubbles have bounced back to an amount which is also measurable in experiments. Almost
all interactions occurred between the bubbles of one pair simultaneously released (see Figure
7.14 for an example). Less than 3% of the interactions occurred with trailing or leading
bubbles, often after one of these had previously undergone coalescence thus having a larger
volume than the other. In total, 124 coalescence events were gathered for the observed 361
interactions yielding a coalescence efficiency of λ12 = 0.343. Only a single coalesced, large
bubble underwent a second coalescence.
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7.6.4 Comparison to semi-empirical model predictions

Comparing the present results to predictions from ’point bubble’ coalescence models is diffi-
cult. These models were reviewed thoroughly by Liao and Lucas [161] and they are conceived
for simulations with the bubble size being smaller than the step size of the numerical grid.
Most of these models are also based on the film thinning theory. Film drainage models then
often compute the coalescence efficiency from λ12 = exp(−tdrainage/tcontact). The time scales
are then derived from dimensional analysis, physical reasoning or semi-empirically taking
into account one or more mechanisms that may lead to bubble interaction. These comprise
turbulent motion and eddy capture, bubble contact due to mean velocity gradients, and
relative bubble velocity due to different rise velocities stemming from different bubble size
or due to wake interaction. A model taking into account all the mechanisms is presented
in Liao et al. [162], but the model constants are poorly documented. Note that even for
identical input, these models may give substantially different results with deviations of 50%
and more (see Fig. 6 in [161] or Figure 7.18 providing a comparison of two models for the
same coalescence mechanism).

Figure 7.18 Prediction of coalescence efficiency λ12 as a function of diameter d12 by the models of
Liao et al. [162] and Lehr et al. [156] for the two systems air-water and air-ethanol with urel = uε
and ε = 0.8 m2/s3.

A different parametrization is used in the model of Lehr et al. [156] with λ12 = min(ucrit/urel, 1).
Here, ucrit is the critical approach velocity (e.g. from data as displayed in Figure 7.5) where
the authors report 8 cm/s for air-water in contrast to 9.57 cm/s observed by Ribeiro and
Mewes [221]. The relative velocity in the model of Lehr et al. is computed from

urel = max

(√
2 ε1/3

√

d
2/3
eq,1 + d

2/3
eq,2 , |vp,1 − vp,2|

)

. (7.29)

The first term describes the relative motion due to turbulence; the second one is the relative
velocity due to different rise velocities. In the present case, the bubbles rise side-by-side
with very similar rise velocities. The dissipation rate of turbulent kinetic energy ε used in
the correlation is not easily brought into accordance with the high resolution data of the
simulation. The dissipation rate is first determined as a temporal average at each grid point
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of the domain from the average and fluctuating part of the velocity field. Additional spatial
averaging over the entire domain yields 0.8 m2/s3, a local average in 10 ≤ x/deq ≤< 14, i.e.
the main corridor of the bubble paths, yields 4.0 m2/s3. Using the global average of ε, the
model of Liao et al. [162] predicts λ12 = 0.381, whereas the model of Lehr et al. [156] yields
λ12 = 0.177. If the local average is used, both models underestimate the coalescence efficiency
(λ12 = 0.193 and λ12 = 0.099, respectively). Prediction for the coalescence efficiency λ12 as
a function of diameter d12 of both models are shown in Figure 7.18 for the two systems air-
water and air-ethanol. Note that both models yield non-vanishing coalescence efficiencies
even for large relative velocities or relative Weber numbers which is in contrast to Figure
7.5 and might lead to an over-prediction of bubble sizes as apparent in the simulation of
bubbly, vertical pipe flow in [162]. In general, there is significant room for improvement in
the prediction of coalescence efficiencies.

7.6.5 Comparison to results without coalescence model

It was stated in the introduction that the prediction of the correct size distribution as a
consequence of coalescence and breakup is one of the most crucial points in the simulation of
bubble-laden flows [71, 161]. To quantify the deviations related to the coalescence modeling
for the present case, the previous simulation was repeated with all parameters unchanged,
but without a coalescence model. This means that no merge of bubbles will occur forming
larger bubbles and that every bubble interaction yields a collision.
Figure 7.19 presents histograms of normalized equivalent bubble diameter db/deq obtained at
the nozzle and near the free surface. The bubble size distribution at the nozzle is a prescribed
Gaussian one. The plot shows a realization obtained from the 268 bubble pairs of the run
with coalescence and additional 256 bubble pairs from the simulation without coalescence
model. In the case without coalescence, the bubble size distribution remains unchanged over
the height of the container. In contrast, coalescence leads to the formation of larger bubbles
which is clearly visible from the histogram obtained near the free surface in Figure 7.19b).
The new mean bubble diameter is 1.096 deq at yp/deq = 22. Two bubbles with deq form a
bubble with twice the volume, and the new diameter increases to 3

√
2 deq ≈ 1.26 deq. Larger

bubbles have a higher rise velocity than smaller ones [37]. The bubble shape and dynamics,
as well as the generated wake structures are determined by larger bubble Reynolds and We-
ber number. Table 7.4 lists the changes in the results obtained with and without coalescence
model. The absolute value of the horizontal velocity component, which is distinctive for the
zig-zag trajectory, is increased by 16.2% in average if a coalescence model is applied. With
a coalescence model, the average bubble rise velocity is increases by 7.3%.
For comparison, the effect of coalescence is set in relation to other impact parameters influ-
encing the rise velocity studied throughout this thesis. The strongest magnetic field altered
the rise velocity of a single bubble ascending in quiescent liquid metal by 13.1% as studied
in Chapter 5. About 10% change in average rise velocity were obtained for a single bubble
chain under the influence of a magnetic field with magnetic interaction of Ny = 1 in Chapter
6. Again for the rise of a single bubble, a discretization error in bubble rise velocity of about
10% compared to the reference solution was determined using only half the number of grid
points in all three directions as in the production runs. This corresponds to 1/16 of the
computational effort since also the time step needs to be adjusted.
The global flow patter remains unchanged also without coalescence model, as the double
bubble chain creates two large scale vortices to the left and right of the bubble jet. A higher
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a) b)

c) d)

Figure 7.19 Bubble size distribution, fluid velocity profiles and bubble-induced turbulent kinetic
energy with and without coalescence model. Histograms of normalized equivalent bubble diameter
db/deq a) at the nozzles (yp/deq = 0.8), b) near the free surface (yp/deq = 22) with coalescence. c)
Averaged profiles of the vertical liquid velocity 〈v〉, and d) bubble-induced turbulent kinetic energy
k/u2g = k/ (gdeq) at 0.75 times the container height (z = Lz/2).
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peak fluid velocity is observed in Figure 7.19c) in the center of the jet for the case with coales-
cence model due to the higher average bubble velocity. Significant changes are apparent with
respect to velocity fluctuations. With coalescence, the local average (10 ≤ x/deq ≤< 14) and
the global average of the dissipation rate of turbulent kinetic energy 〈ε〉loc and 〈ε〉glob increase
by 21.4% and 22.8%, respectively. The pointwise statistics were not fully converged at the
end of the simulation. However, the preliminary results indicate that the turbulent kinetic
energy increases substantially compared to the simulation without coalescence as shown in
7.19d) for profiles obtained at 0.75 times the container height and z = Lz/2.
Thus, the deviations caused by bubble coalescence are indeed substantial even at the mod-
erate coalescence efficiency of the present setup.

Table 7.4 Comparison of simulation results obtained with and without coalescence model for
average bubble rise velocity 〈vp〉, average, absolute, horizontal velocity 〈|up|〉, local and global
average of dissipation rate of turbulent kinetic energy 〈ε〉loc and 〈ε〉glob.

〈vp〉 [m/s] 〈|up|〉 [m/s] 〈ε〉loc [m2/s3] 〈ε〉glob [m2/s3]
without coalescence 0.262 0.0357 3.32 0.663
with coalescence 0.281 0.0415 4.03 0.814
deviation 7.3% 16.2% 21.4% 22.8%

7.7 Towards bubble break-up

Bubble break-up is mainly caused due to turbulent fluctuations and collisions, viscous shear
forces and interfacial instability, where the mechanisms and the theoretical models covering
break-up are thoroughly reviewed in [160].
The modeling of bubble break-up in the context of an IBM can be achieved in a similar way
as for the bubble coalescence. A break-up criterion needs to be stated which activates the
topology change. A mother-daughter-size distribution can be described or can be obtained
from the resolved deformation. As a further modeling step, a defined surface evolution could
be included. A preliminary combined breakup criterion is defined. Break-up occurs if a spec-
ified critical Weber number is exceeded, e.g. Wecrit = 12 [210], or if substantial deformation,
e.g. due to shear, is measured. The latter can be quantified for instance by the ratio of a
higher spherical harmonic mode to the zeroth ’spherical’ mode. The critical Weber number
stated above roughly corresponds to the occurrence of the maximum bubble aspect ratio of
four in uniform flow in Figure 4.6.
Successful early tests have been conducted with a very simple model, where the surface evo-
lution during the break-up is neglected and two equi-sized, spherical daughter bubbles are
initialized near the removed mother bubble’s position once the criterion is fulfilled. As the
bubble is substantially deformed and elongated prior to a realistic break-up, a redistribution
or adding of forcing points is probably necessary in a future model.
With a representation of coalescence and break-up, a self-determined bubble size-distribution
can be obtained in large scale simulations also capturing the main physics during coalescence
and breakup.
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7.8 Conclusions and outlook with respect to bubble

interaction

After reviewing coalescence criteria, which determine whether bubbles merge or bounce back,
an overview on collision modeling was given and the involved computation of inter-particle
distances was elaborated. A coalescence model for the phase-resolving simulation of bubbly
flows was developed. The change in shape of the coalescing bubble is prescribed by a tempo-
ral evolution of the shape coefficients in a spherical harmonic expansion judiciously chosen
to match fairly well the physical behavior. The choice of a shape evolution function is backed
by direct simulation of the shape oscillation, as well as by experimental data and theoretical
considerations. The coalescence model was then applied in a simulation of two adjacent
bubble chains. Statistics were obtained for the liquid phase, and also for the interaction fre-
quency and the coalescence efficiency. The latter were compared to model predictions used
for closure in ’industrial scale CFD’. The influence of the coalescence model was quantified
by comparison to results obtained for a simulation where coalescence was disabled and the
deviations are indeed substantial. The dissipation rate of turbulent kinetic energy appears
as a significant parameter in all ’point bubble’ coalescence models. Liquid metal systems
should be examined to study the influence of turbulence on bubble coalescence. As an out-
look we mention that at present simulations are planned which consider the same geometry
as described above, but where air and ethanol are replace by argon and the liquid metal
GaInSn. This pairing is relevant to model experiments devoted to liquid metal technologies.
A substantial body of research in this area is reviewed in Fröhlich et al. [74].

Figure 7.20 As Figure 7.14, but for 6 mm argon bubbles in the liquid metal GaInSn (Eo = 4.2
and G = 4200) - initial phase.

Figure 7.20 provides a snapshot of argon bubbles in the liquid metal GaInSn to illustrate the
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qualitative changes in the fluid dynamics compared to the air-ethanol systems studied above.
The snapshot was taken in the initial phase and the dominant vortices are not developed yet.
The turbulent character of the bubble wakes and the induced flow, however, is already quite
distinct [244, 247]. Gas-liquid metal systems are characterized by large Reynolds numbers
due to the low kinematic viscosity of the liquid metal. Similar Weber numbers as for air-
water systems are achieved as the high density of the liquid metal is accompanied by a large
surface tension. The generality of the critical relative Weber number as coalescence criterion
needs to be double checked for very high surface tension systems. Further experiments and
numerical simulations should be conducted to get more insight into the mechanisms that lead
to coalescence. Additionally, a bubble breakup model needs to be developed as a counterpart
to estimate bubble size distributions realistically. Similar strategies as for coalescence could
be pursued employing a criterion for the occurrence of the breakup [160], followed by an
interface-resolved topology change.
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An immersed boundary method for the phase-resolving simulation of rigid particles and de-
formable bubbles in magnetohydrodynamic flows has been developed. The Navier-Stokes
equations of the incompressible Newtonian fluid were coupled to the electromagnetic equa-
tions in the quasi-static approximation by the Lorentz force. The single phase MHD was
rigorously validated and extended by a representation of immersed insulating objects.
As a central aspect of this thesis, the IBM was extended towards more general immersed
geometries including the development of a suitable data structure and a modification of the
forcing procedure at the interface. The description of the orientation and motion of non-
spherical particles was introduced and the IBM is now capable of dealing with very light
particles. A structured study of the flow around spheroidal particles was conducted to ex-
amine the mechanisms leading to path oscillations and to illustrate the complex interaction
of particle shape, wake and dynamics. The study was completed by a characterization and
quantification of the impact of a magnetic field on the flow and the particle trajectory, re-
vealing increased drag and damped lateral dynamics of the particle in the presence of an
aligned magnetic field.
The representation of bubble shapes by the IBM was realized by a classification of observed
bubble shapes and matching analytical numerical descriptions. A large share of all possi-
ble bubble shapes can be depicted by rather simple shape parametrizations which comprise
spherical or ellipsoidal bubble shapes. More complex bubble shapes are represented by
spherical harmonic functions which analytically describe the interface between the phases
and enable the accurate computation of surface normals and curvature. Only very distorted
bubble shapes, e.g. strongly dimpled with geometric undercuts, cannot be accounted for. A
numerical algorithm was developed to capture bubble deformation by the flow and it was
validated and applied towards quasi-steady and time-dependent bubble shapes.
The rise of a single bubble in liquid metal under the impact of an aligned magnetic field
was studied in detail and the results were compared to experimental data showing good
agreement. The experimental findings on the impact of the magnetic field on the bubble
wake and bubble dynamics could be backed by highly resolved, three-dimensional numerical
data giving elucidating insight into the otherwise opaque system.
A bubble chain exposed to an aligned magnetic field was simulated to quantify the influence
of the field on the bubbles and the induced global flow field in the mold. The average bubble
trajectory was found to be more rectilinear at a decreased average rise velocity leading to
a reduced overall circulation in the container. The results allow for implications towards
electromagnetic flow control in industrial applications.
A view on particle interaction was provided in the last chapter with the specific focus on
bubble collisions and bubble coalescence. The computation of the inter-particle distance was
realized for complex particle shapes and the current status towards bubble collision modeling
was surveyed. A new coalescence model was developed to account for the merge of two bub-
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bles given a specified coalescence criterion is fulfilled. The model was applied towards the
quantification of the impact of bubble coalescence and a leading order influence was found
for the test case considered.
Throughout this thesis, the boundary condition at the bubble surface was chosen to be a
no-slip condition. This is well-satisfied for contaminated systems [2, 168], and specifically
liquid metal systems are always substantially contaminated and furthermore a thin oxide-
layer forms at the bubble surface. However, the forcing procedure of the IBM is not limited
to the forcing of a no-slip condition. The forcing of a free-slip condition, the appropriate
boundary condition in hyper-clean systems, can also be achieved. With the surface grid on
the bubble, either the triangular mesh or the structured spherical harmonics grid, there is
also a sound basis for more advanced boundary conditions in-between the two extreme cases.
An additional transport equation of the contaminants could be solved in the fluid and on the
bubble surface to compute the level of contamination and an appropriate, spatially varying
partial slip.
With the present IBM, a sound basis is provided for the study of systems with many bub-
bles, as well as bubble-turbulence interaction by means of computationally efficient, phase-
resolving simulation. Based on the present IBM, studies on the clustering of spherical bubbles
and the formation of wet metal foam were conducted [102, 101, 104]. Many spherical and
ellipsoidal light particles in turbulent channel flow were examined with the extended IBM
for example in [236, 238, 237]. Figure 8.1 provides a snapshot from a present simulation of
an upward turbulent channel flow, where the bubbles are represented by spherical harmonics
and gravity points downwards.

?

g

Figure 8.1 Bubbles in upward turbulent channel flow. Instantaneous streamwise velocity contours
u, where the bulk velocity is ub = 1. Snapshot of the distribution of bubbles, where each deformable
bubble is represented by spherical harmonic functions.

Without going into detail on the simulation, the configuration shall be briefly described.
No-slip walls bound the flow in y-direction and periodic boundary conditions are applied in
the other directions. The system is rather dilute with a gas volume fraction of one percent.
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The bulk Reynolds number is kept constant at Reb = 5263 based on the channel height
Ly. The Eötvös number of the equi-sized, deformable bubbles is Eo = 4.2, with Ly/deq =
18.9. Coalescence and break-up are inhibited to achieve a temporally constant bubble size
distribution. A rather small computational domain was chosen for this illustration. It can be
stated that the mean flow, the turbulence statistics and coherent structures are significantly
altered by the presence of the deformable bubbles compared to the unladen turbulent channel
flow [16, 236, 166]. The bubbles form clusters and take preferential orientations [238, 237, 39].
The turbulence modulation by the bubbles is of significant importance for many applications,
such as the reduction of frictional drag bubbles for ships [190]. With the present IBM,
a powerful tool has been provided that enables efficient fundamental research by phase-
resolving simulation. Open issues were addressed straightforward throughout the thesis.
Future research should follow the idea of multiscale modeling [276, 135] to the capture
physics taking place at strongly diverse length and time scales efficiently, as it was discussed
for bubble collision and coalescence above. Another key aspect for future research is the
LES of turbulent particulate flows. The development of subgrid scale models needs to be
advanced for both, the fluid momentum equation and the particle momentum equation,
accounting for the particle-turbulence interaction. The present IBM can be employed to
gather important phase-resolving reference data for the LES development.
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[27] C. Brücker. Structure and dynamics of the wake of bubbles and its relevance for bubble
interaction. Phys. Fluids, 11(7):1781–1796, 1999.

[28] E. Buckingham. On physically similar systems; illustrations of the use of dimensional
equations. Phys. Rev., 4:345–376, 1914.

[29] P. Burattini, M. Kinet, D. Carati, and B. Knaepen. Anisotropy of velocity spectra in
quasistatic magnetohydrodynamic turbulence. Phys. Fluids, 20(6):065110, 2008.

[30] J.C. Cano-Lozano, P. Bohorquez, and C. Mart́ınez-Bazán. Wake instability of a fixed
axisymmetric bubble of realistic shape. Int. J. Multiphase Flow, 51:11–21, 2013.



Bibliography 201

[31] D.Y.C. Chan, E. Klaseboer, and R. Manica. Film drainage and coalescence between
deformable drops and bubbles. Soft Matter, 7:2235–2264, 2011.

[32] D.Y.C. Chan, E. Klaseboer, and R. Manica. Theory of non-equilibrium force measure-
ments involving deformable drops and bubbles. Adv. Colloid Interface Sci., 165:70–90,
2011.

[33] C. Chan-Braun, M. Garcia-Villalba, and M. Uhlmann. Force and torque acting on
particles in a transitionally rough open-channel flow. J. Fluid Mech., 684:441–474,
2011.

[34] A.K. Chesters and G. Hofman. Bubble coalescence in pure liquids. Appl. Sci. Res.,
38:353–361, 1982.

[35] A.J. Chorin. A numerical method for solving incompressible viscous flow problems. J.
Comput. Phys., 2:12–26, 1967.

[36] M. Chrust, G. Bouchet, and J. Dušek. Parametric study of the transition in the wake
of oblate spheroids and flat cylinders. J. Fluid Mech., 665:199–208, 2010.

[37] R. Clift, J.R. Grace, and M.E. Weber. Bubbles, Drops, and Particles. Dover Publica-
tions, 1978.

[38] C.T. Crowe. Multiphase Flow Handbook. CRC Press, 2005.

[39] S. Dabiri and G. Tryggvason. Simulation of a rising bubble near vertical walls. Int.
Conf. Multiphase Flow, Jeju, South Korea, (570), 2013.

[40] T.E. Daubert and R.P Danner. Data compilation tables of properties of pure com-
pounds. American Institute of Chemical Engineers, 1985.

[41] P.A. Davidson. Magnetic damping of jets and vortices. J. Fluid Mech., 299:153–186,
1995.

[42] P.A. Davidson. Magnetohydrodynamics in materials processing. Annu. Rev. Fluid
Mech., 31(1):273–300, 1999.

[43] P.A. Davidson. An Introduction to Magnetohydrodynamics. Cambridge University
Press, 2002.

[44] A.W.G. de Vries, A. Biesheuvel, and L. van Wijngaarden. Notes on the path and wake
of a gas bubble rising in pure water. Int. J. Multiphase Flow, 28(11):1823–1835, 2002.

[45] J. Degroote, P. Bruggeman, R. Haelterman, and J. Vierendeels. Bubble simulations
with an interface tracking technique based on a partitioned fluid-structure interaction
algorithm. J. Comput. Appl. Math., 234(7):2303–2310, 2010.

[46] J. Degroote, P. Bruggeman, and J. Vierendeels. A coupling algorithm for partitioned
solvers applied to bubble and droplet dynamics. Comput. Fluids, 38(3):613–624, 2009.
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[74] J. Fröhlich, S. Schwarz, S. Heitkam, C. Santarelli, C. Zhang, T. Vogt, S. Boden,
A. Andruszkiewicz, K. Eckert, S. Odenbach, and S. Eckert. Influence of magnetic
fields on the behavior of bubbles in liquid metals. Eur. Phys. J. ST, 220(1):167–183,
2013.

[75] Deutsches Institut für Normung e.V. DIN 9300-1+2: Luft- und Raumfahrt; Begriffe,
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field on the formation of wet metal foam. Eur. Phys. J. ST, 220(1):207–214, 2013.

[105] R. Hermann, M. Uhlemann, H. Wendrock, G. Gerbeth, and B.Büchner. Magnetic field
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Diploma thesis, 2010.

[200] H. Oertel. Prandtl - Führer durch die Strömungslehre. Grundlagen und Phänomene.
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Appendix

A Discretized MHD equations

This appendix presents the discretized electrodynamic equations for the computations of
the Lorentz force in Section 2.1. The indices i, j, k are cell centered and i + 1

2
, j + 1

2
, k + 1

2

correspond to faces of the cuboidal control volume sketched in Figure 2.1. The finite volume
discretization can also be interpreted in terms of finite differences. Central difference schemes
are employed. First, the electric fields originating from the gradient of the electric potential,
eΦ, and the electric field based on the cross product of velocity and magnetic field, eu , are
computed. Constant indices are dropped on the rhs:
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Herein, u and B have to be interpolated to the required face positions. The preliminary
current density is then computed from
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,

where j∗ does not necessarily fulfill charge conservation. A divergence free current field is
obtained by a projection method solving a correction Poisson equation for δΦ. This is done in
a similar way as for the pressure. Indeed the same Poisson solver [134] is used and therefore
not discussed in further detail here,
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Φi,j,k = Φi,j,k
0 + δΦi,j,k , (A.5)

where Φ0 is the previous value of the electric potential.
The divergence free current density follows from:
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Finally, the Lorentz force is calculated [94] by
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where j has to be interpolated to the required face positions.
The face-to-face interpolation is illustrated by an example for vi+

1
2
,j,k, the other quantities

are interpolated in the same fashion. On a uniform grid, interpolation with a 4-point stencil
yields
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The face-to-face interpolation can be interpreted as a two-step procedure. This is now
outlined by the interpolation with a 4-point stencil on a non-uniform grid. The face-to-face
interpolation can be seen as two face-to-center interpolations where the results are then
combined by a center-to-face interpolation. First, the velocity fluxes at the faces of the
control volume are used to obtain the velocity at the center,
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, (A.9)
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Second, the velocity at the face position is calculated,
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B Number of forcing points

The number of forcing points is provided for one Lagrangian forcing point controlling one
Eulerian cell, i.e. VE = VL. A shell with a thickness of one mesh width h is formed by two
tri-axial ellipsoids with the respective semi-axes a ± h/2, b ± h/2 and c ± h/2. The shell
volume is obtained from

Vshell =
4

3
πh

(

ab+ ac+ bc+
1

4
h2

)

. (B.1)
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Given an even distribution of NL Lagrangian surface markers, a single forcing point volume
shall be given by VL = Vshell/NL. For an equidistant Eulerian grid and thus VE = h3 = VL,
we get

NL,ellipsoid =
π
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. (B.2)

Equation (B.2) yields for an oblate ellipsoid, a = c > b,
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and for a prolate ellipsoid, a > b = c,
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It simplifies for a sphere a = b = c to the known form [282]

NL,sphere =
π

3

(

12a2

h2
+ 1

)

. (B.5)

In the above equations, we employed the ellipsoid aspect ratio X = a/b and the volume-
equivalent radius obtained from V = 4/3 πabc = 4/3 πr3eq. This also yields:

oblate ellipsoid: a = c = reqX
1/3 and b = reqX

−2/3 ,

prolate ellipsoid: a = reqX
2/3 and b = c = reqX

−1/3 .

The provided number of forcing points, NL, constitutes a lower limit for the present imple-
mentation in PRIME.

C Normal vector and curvature for triangulated sur-

face

For particles of ellipsoidal shape or particles represented by spherical harmonics, the ana-
lytical solution can be used for the surface normal and the surface curvature. For general
geometries, the triangulated surface is used to compute these quantities at the forcing point
location. Two approaches were considered,

i) based on discrete surface triangles,

ii) based on a local Monge patch [302].

Figure 3.2 provides the nomenclature. For variant i), the unit surface normal of a triangle
is obtained from

ntri =
a△ × b△

‖a△ × b△‖
. (C.1)
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It is further ensured that the normal vector points outwards. The surface normal vector at
the forcing point is obtained from a weighted average of the triangles associated with this
point,

nfp =
1

∑Nnt

n=1w
(n)

Nnt
∑

n=1

w(n)n
(n)
tri , (C.2)

where w(n) = 1 gives an arithmetic average, w(n) = 1/A
(n)
tri weights with the inverse of the

triangle area. Further details are provided in [304].
The general definition of the mean curvature is

H =
1

2
∇ · n , (C.3)

where the evaluation is rather delicate on a unstructured triangular surface grid. For suitable
approximations, see [304]. The computation of curvature for the surface tension force is also
addressed in [275].
A simple measure of the curvature is obtained by fitting a sphere to two triangles sharing one
edge and adjacent to the forcing point of interest. The procedure is repeated for all neighbor

triangles and the mean curvature is approximated fromHfp = 1/2
(

1/min(R
(i)
s ) + 1/max(R

(i)
s )
)

where R
(i)
s denotes the radii of the fitted spheres with i = 1, . . . , Nnt.

With a more sophisticated approach, a differentiable representation is created based on the
discrete triangulation which leads to variant ii), the Monge patch. A triangle and its neigh-
bor triangles which share one edge are considered providing in total six corner points (see
Figure 3.2). A local coordinate system, shifted and rotated to the triangle reference frame,
is employed. We fit a quadratic surface to define the Monge patch x = (u, v , h(u, v)) with

h(u, v) = c0 + c1u+ c2v + c3uv + c4u
2 + c5v

2 . (C.4)

The surface normal in the projected center of mass of the triangle, S̃tri, is then computed
from

ntri(S̃tri(u, v)) =
xu × xv

‖xu × xv‖
, (C.5)

where the indices denote partial derivatives with respect to u and v. To obtain the surface
normal at the forcing point, nfp, the result is rotated back to the particle reference frame, an
outward orientation is ensured and again a weighted average for the triangles is employed.
The mean curvature can now be expressed by

H(S̃tri(u, v)) =
(1 + h2v)huu − 2huhvhuv + (1 + h2u)hvv

2 (1 + h2u + h2v)
3/2

. (C.6)

The curvature at the forcing point Hfp location is again obtained from the weighted average
of Htri. Equation (C.6) also yields the analytical solution for the mean curvature of an
ellipsoid (4.10). Ellipsoids of various aspect ratios were used for validation purposes. The
agreement with the analytical values is good for moderate aspect ratios and NL ≥ 500 [275].
However, larger errors in curvature arise for stronger deformations or locally poor resolution.
This motivated the analytical representation of the entire particle by spherical harmonics.
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D WALE Model

The Wall-Adapted Local Eddy viscosity model [53, 198] has the advantage of reproducing the
scaling νt ∼ y+3 near a solid wall and therefore no additional wall damping, like van Driest
damping for the Standard Smagorinsky model, is needed. The turbulent eddy viscosity
vanishes in case of pure shear. These properties should be advantageous in connection with
the application of an immersed boundary method. Modeling of the eddy viscosity is realized
by

νt = CνV
2/3
st

(Sd
ijS

d
ij)

3/2

(SijSij)5/2 + (Sd
ijS

d
ij)

5/4
, (D.1)

where Vst = ∆x∆y∆z is the cell volume of the staggered grid. A model constant of Cν = 0.1
was used as proposed in [72, 198].
The model is based on the traceless symmetric part of the square of the velocity gradient
tensor

Sd
ij =

1

2

(

g2ij + g2ji
)

− 1

3
δijg

2
kk , (D.2)

with the velocity gradients

gij =
∂ui
∂xj

. (D.3)

The deformation tensor S̄ij reads

S̄ij =
1

2

(

∂ūi
∂xj

+
∂ūj
∂xi

)

. (D.4)

An overbar denotes the resolved / low pass filtered scales.

E Conversion between Euler parameters and Euler an-

gles

The conversion between a given set of Euler angles in zyx-convention and Euler parameters
q is given according to [91] by:

q0 = cos

(

1

2
φ1

)

cos

(

1

2
φ2

)

cos

(

1

2
φ3

)

+ sin

(

1

2
φ1

)

sin

(

1

2
φ2

)

sin

(

1

2
φ3

)

, (E.1)

q1 = sin

(

1

2
φ1

)

cos

(

1

2
φ2

)

cos

(

1

2
φ3

)

− cos

(

1

2
φ1

)

sin

(

1

2
φ2

)

sin

(

1

2
φ3

)

,

q2 = cos

(

1

2
φ1

)

sin

(

1

2
φ2

)

cos

(

1

2
φ3

)

+ sin

(

1

2
φ1

)

cos

(

1

2
φ2

)

sin

(

1

2
φ3

)

,

q3 = cos

(

1

2
φ1

)

cos

(

1

2
φ2

)

sin

(

1

2
φ3

)

− sin

(

1

2
φ1

)

sin

(

1

2
φ2

)

cos

(

1

2
φ3

)

.

Inversely, the conversion from Euler parameters q to Euler angles in zyx-convention is ob-
tained from:

φ1 = atan2
(

2 (q0q1 + q2q3) , 1− 2
(

q21 + q22
))

, (E.2)

φ2 = asin (2 (q0q2 − q3q1)) ,

φ3 = atan2
(

2 (q0q3 + q1q2) , 1− 2
(

q22 + q23
))

.
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F Further time integration schemes for the virtual mass

approach

Additional time integration schemes are listed for the virtual mass approach. The generic
test case of a sphere rising under Stokes flow conditions is considered with the nomenclature
introduced in Section 3.3.2.

Multistep methods

The Crank-Nicolson method (CN-vm) is a two-step, implicit scheme and reads for constant
time step size

fn
v = ca

3un − 4un−1 + un−2

2∆t
, (F.1)

fn = cuu
n + cgg + fn

v , (F.2)

un+1 = un +
∆t

2

(

fn + fn+1
)

. (F.3)

Second order convergence is obtained (Table 3.3). An iterative solution is necessary due to
fn+1 on the rhs.

The Leap-Frog method (LF-vm) uses un−1 as the basis for the advancement. It is explicit
and for a constant time step it is given by

fn
v = ca

3un − 4un−1 + un−2

2∆t
, (F.4)

un+1 = un−1 + 2∆t (cuu
n + cgg + fn

v ) . (F.5)

It combines easy implementation and second order accuracy. However, it tends to oscilla-
tions and instability in more general applications.

Predictor-Corrector schemes

The scheme RK3-1-AM3-vm uses a 3-stage Runge-Kutta predictor and a three-step Adams-
Moulton corrector. Within the RK3 -predictor, fn

v is used in all substeps:

fn
v = ca

11un − 18un−1 + 9un−2 − 2un−3

6∆t
, (F.6)

k1 = cuu
n + cgg + fn

v , (F.7)

k2 = cu (u
n + a21∆tk1) + cgg + fn

v , (F.8)

k3 = cu (u
n + a31∆tk1 + a32∆tk2) + cgg + fn

v , (F.9)

un+1
pred = un +∆t (b1k1 + b2k2 + b3k3) . (F.10)

The Adams-Moulton corrector reads

fn
v,pred = ca

11un+1
pred − 18un + 9un−1 − 2un−2

6∆t
, (F.11)

fn = cuu
n + cgg + fn

v,pred , (F.12)
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un+1 = un +
∆t

12

(

5fn+1 + 8fn − fn−1
)

. (F.13)

The combined method is still only first order accurate as the predicted un+1
pred is only of first

order and so is fv,pred. No iterative solution is necessary and a reduction of the absolute er-
ror is achieved compared to the pure predictor scheme in the considered test case (Table 3.3).

If a Leap-Frog-predictor is applied and the trapezoidal rule is used for the virtual force in
the Runge-Kutta method, this yields the scheme

fn
v = ca

3un − 4un−1 + un−2

2∆t
, (F.14)

un+1 = un−1 + 2∆t (cuu
n + cgg + fn

v ) , (F.15)

fn+1
v,pred = ca

−un−1 + 4un − 3un+1

−2∆t , (F.16)

f̃
n+ 1

2
v =

1

2

(

fn
v + fn+1

v,pred

)

, (F.17)

k1 = cuu
n + cgg + f̃

n+ 1
2

v , (F.18)

k2 = cu (u
n + a21∆t k1) + cgg + f̃

n+ 1
2

v , (F.19)

k3 = cu (u
n + a31∆t k1 + a32∆t k2) + cgg + f̃

n+ 1
2

v , (F.20)

un+1 = un +∆t (b1k1 + b2k2 + b3k3) . (F.21)

termed LF-RK3-vm here. Stability issues might arise from the predictor step. Lower ab-
solute errors are obtained than for scheme LF alone. Overall second order convergence is
found for the present test case (Table 3.3).

Employing a second order Lagrange approximation for the virtual force fv (t
n + ci∆t) in the

Runge-Kutta substeps yields the scheme

fv (t
n + ci∆t) = caP

′
2 (t

n + ci∆t) , (F.22)

k1 = cuu
n + cgg + fn

v , (F.23)

k2 = cu (u
n + a21∆t k1) + cgg + fv (t

n + c2∆t) , (F.24)

k3 = cu (u
n + a31∆t k1 + a32∆t k2) + cgg + fv (t

n + c3∆t) , (F.25)

un+1 = un +∆t (b1k1 + b2k2 + b3k3) , (F.26)

termed Lag-RK3c-vm here, which is thus very similar to the scheme RK3-a-vm. The advan-
tages of this scheme are simple implementation for variable time steps, low absolute errors
and second order convergence (Table 3.3).
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G Derivation of Runge-Kutta coefficients

The derivation of the coefficients of a three stage Runge-Kutta method is adapted in the
present nomenclature from [50] for the unmodified problem, u̇ = f(u(t)) and u0 = u(t = 0),
i.e. without virtual force.
The local discretization error is given by

ǫn+1 = un+1 − un −∆t (b1k1 + b2k2 + b3k3) . (G.1)

Taylor series expansion for un+1 and ki at t
n yields:

un+1 = u (tn +∆t) , (G.2)

= un +∆t u′ +
1

2
∆t2u′′ +

1

6
∆t3u′′′ +O

(

∆t4
)

,

= un +∆t f +
1

2
∆t2F +

1

6
∆t3 (F fu +G) +O

(

∆t4
)

,

where
F = ft + fu f , G = ftt + 2ftuf + fuuf

2 , (G.3)

and

k1 =f (t
n, un) = f , (G.4)

k2 =f (t
n + c2∆t, u

n + c2∆t k1) , (G.5)

=f + c2∆t (ft + f fu) +
1

2
c22∆t

2
(

ftt + f ftu + f 2fuu
)

+O
(

∆t3
)

,

=f + c2∆t F +
1

2
c22∆t

2G+O
(

∆t3
)

,

k3 =f (t
n + c3∆t, u

n +∆t (a31k1 + a32k2)) , (G.6)

=f + c3∆t ft +∆t (a31k1 + a32k2) fu +
1

2
c23∆t

2ftt

+ c3∆t
2 (a31k1 + a32k2) ftu +

1

2
∆t2 (a31k1 + a32k2)

2 fuu +O
(

∆t3
)

,

=f + c3∆t F +∆t2
(

c2a32F fu +
1

2
c23G

)

+O
(

∆t3
)

.

The discretization error is thus expressed by:

ǫn+1 =∆t f (1− b1 − b2 − b3) (G.7)

+ ∆t2 F

(

1

2
− b2c2 − b3c3

)

+∆t3
(

F fu

(

1

6
− b3c2a32

)

+G

(

1

6
− 1

2
b2c

2
2 −

1

2
b3c

2
3

))

+O
(

∆t4
)

.

For the method to be consistent, the condition

3
∑

i=1

biki = b1 + b2 + b3 = 1 (G.8)
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has to be fulfilled.
The following additional constraints result, if the higher order terms in (G.7) shall vanish:

3
∑

i=1

bici = b2c2 + b3c3 =
1

2
, (G.9)

3
∑

i=1

bic
2
i = b2c

2
2 + b3c

3
3 =

1

3
,

3
∑

i,j=1

biaijcj = b3a32c2 =
1

6
, (G.10)

with c1 = 0 and aij = 0 for j ≥ i.

H Additional data with respect to the virtual mass

concept

The effect of the choice of the density ratios πρ = 0.5 and πρ = 0.1, as well as the choice
of the virtual mass coefficients Cv = 0.5 and Cv = 1.0 are studied. The parameters are
chosen as in Section 3.3.2, i.e. the physical properties are µf = 0.001, ρf = 1000, g = 9.81,
rp = 0.0007 and the discretization is conducted with ∆t = tend/N∆t where tend = 0.5.
Additional to the maximum or L∞-error (3.52) used above, also the L1-error
ǫave = 1/N∆t

∑

|u(t)− uref (t)| is provided here, with uref obtained from (3.50).

Table H.1 Error ǫave and ǫmax in u(t) for the density ratios πρ = 0.5 and πρ = 0.1, as well as the
virtual mass coefficients Cv = 0.5 and Cv = 1.0. The scheme is Lag-RK3tp-vm throughout.

πρ = 0.5, Cv = 0.5 N∆t = 400 800 1600 3200 Order q
ǫave 2.81E-06 7.18E-06 1.81E-06 4.56E-07 1.99
ǫmax 9.45E-05 2.42E-05 6.13E-06 1.54E-06 1.99
πρ = 0.1, Cv = 0.5
ǫave 1.10E-03 3.01E-04 8.00E-05 2.06E-05 1.96
ǫmax 2.62E-02 5.60E-03 1.35E-03 3.48E-04 1.82
πρ = 0.5, Cv = 1.0
ǫave 5.70E-05 1.46E-05 3.68E-06 9.25E-07 1.99
ǫmax 1.92E-04 4.91E-05 1.24E-05 3.13E-06 1.99
πρ = 0.1, Cv = 1.0
ǫave 2.30E-03 6.18E-04 1.61E-04 4.15E-05 1.96
ǫmax 6.22E-02 1.38E-02 2.93E-03 7.03E-04 2.06

I IBM patch and stretched grid

The present IBM [136] requires an equidistant grid. This is mainly founded on the symmetry
properties of the delta function involved in the forcing procedure of the boundary condition
[225]. In the original implementation, a globally equidistant grid is assumed. Very high
numerical efficiency can be achieved by the usage of such a structured grid. Further, many
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operations can be executed using the index space, e.g. the x-coordinate of the cell i is
obtained from xi = i∆xi=1 employing the spacing of the first grid cell. Vice versa the index
of a cell is easily found from a given coordinate by i = nint

(

xi∆x
−1
i=1

)

. In the original
implementation of the IBM, these efficient formulation are incorporated in the interpolation
of velocities and spreading of forces with the regularized delta function, the determination
of bounding boxes around the particle for computation of cut cell volumes, the master-
slave distribution in the parallelization etc. In general, a grid stretching outside the range
of the delta function is permitted. For some simulations of fundamental character, it is
beneficial to create a locally fine resolution, e.g. around a single fixed particle, and to
enable large computational domains by stretching the grid towards the outer boundaries.
An example for such a grid is provided in Figure I.2a) with the nomenclature used in the
actual implementation in PRIME for the x-direction. A local equidistant patch is situated
around the particle location. All of the operations connected to the IBM are conducted in a
coordinate system translated from the laboratory frame to Oeq - the origin of the patch.

a) b)
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Figure I.2 IBM patch. a) Local patch with equidistant grid and grid stretching away from patch.
b) Local patch refinement with hanging nodes for solution of Poisson equation ∇2p = −1 with
Dirichlet boundary conditions by M. Jurisch (student project).

With the stretched grid, a substantial reduction of grid cells can be achieved for specific
setups. For example, the simulation of the flow around a fixes sphere at Re = 100 with a
globally equidistant grid with N = (256, 128, 128) (4.2 million cells) for a domain of extent
L = (12.8, 6.4, 6.4) dp yields a drag coefficient of CD = 1.179. The same result is obtained
with the same local resolution around the sphere and a grid with N = (128, 72, 72) which
is stretched in all three directions away from the patch and has only about 1/6 of the cells.
However, a bit of caution has to be taken as the convergence speed of the solver, as imple-
mented from the hypre library, changes compared to an equidistant grid and stability issues
might arise for large aspect ratios of the cells and strong grid stretching.
Future developments could include patches moving with the particle since found knowledge
on moving structured meshes is available within the group [106]. Adaptive mesh refinement
with hanging nodes and hierarchical patches [225, 93] is currently progress in the making.
Figure I.2a) illustrates the solution of the Poisson problem ∇2p = −1 with Dirichlet bound-
ary conditions on such a patch. The actual performance plus of such an approach has to be
scrutinized in a highly parallel environment with many particles.
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J Spherical Harmonics

In a local spherical coordinate system, the location of the interface is represented by

r(θ, φ) =
∞
∑

n=0

n
∑

m=−n

anmY
m
n (θ, φ) , (J.1)

with the spherical harmonic function [77]

Y m
n (θ, φ) =

√

(

(2n+ 1)(n−m)!

4π(n+m)!

)

Pm
n ( cos(θ) ) e

imφ , (J.2)

and Pm
n being associated Legendre functions of the argument cos(θ) consisting of a set of

orthogonal polynomials. The angles are spherical coordinates defined within 0 ≤ θ ≤ π
and 0 ≤ φ ≤ 2π. In the actual implementation in PRIME, the spherical coordinate θ is
mapped to the standard interval [−1, 1] as also indicated by the argument of the Legendre
polynomials Pm

n ( cos(θ) ).

For a given surface the coefficients of the series are found from

anm =

∫ 2π

0

∫ π

0

dφ dθ sin(θ) r(θ, φ) Y m∗
n , (J.3)

with the star denoting the conjugate complex.

The partial derivatives of r with respect to φ and θ are

rφ =
∞
∑

n=0

n
∑

m=−n

(im) anmY
m
n (θ, φ) , (J.4)

rφφ =
∞
∑

n=0

n
∑

m=−n

−m2 anmY
m
n (θ, φ) ,

rθ =
∞
∑

n=0

n
∑

m=−n

−anmfnm
sin θ

[

(n+ 1) cos θPm
n − (n−m+ 1)Pm

n+1

]

eimφ ,

rθθ =
∞
∑

n=0

n
∑

m=−n

anmfnm
sin2 θ

[(n+ 1 + (n+ 1)2 cos2 θ)Pm
n − 2 cos θ(n−m+ 1)(n+ 2)Pm

n+1

+(n−m+ 1)(n−m+ 2)Pm
n+2] e

imφ ,

rφθ =
∞
∑

n=0

n
∑

m=−n

−im anm fnm
sin θ

[

(n+ 1) cos θPm
n − (n−m+ 1)Pm

n+1

]

eimφ ,

= rθφ ,

with the auxiliary function

fnm =

√

(2n+ 1)(n−m)!

4π(n+m)!
. (J.5)
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The surface vector reads as

xS = r(θ, φ) sin(θ) cos(φ) ,

yS = r(θ, φ) sin(θ) sin(φ) ,

zS = r(θ, φ) cos(θ) , (J.6)

x = xS .

The index S for surface is dropped from now on as well as the arguments of r.

Differential surface element:

dA = Sdθdφ , (J.7)

S = ‖xθ × xφ‖ ,= r[r2φ + r2θ sin
2(θ) + r2 sin2(θ)]1/2 . (J.8)

Derivatives of the surface vector:

xφ =





rφ sin θ cosφ− r sin θ sinφ
rφ sin θ sinφ+ r sin θ cosφ

rφ cos θ



 , (J.9)

xθ =





r cos θ cosφ+ rθ sin θ cosφ
r cos θ sinφ+ rθ sin θ sinφ

rθ cos θ − r sin θ



 . (J.10)

Surface normal vector:

n =
xθ × xφ

‖xθ × xφ‖
. (J.11)

Derivatives of the surface normal vector (component i):

ni,φ = S−1
[

ai − bi

(rφ
r
+
ci
S2

)]

, (J.12)

where

a1 = r2φ sinφ+ rrφφ sinφ+ rrφ cosφ− rφrθ sin θ cos θ cosφ− rrθφ sin θ cos θ cosφ+

rrθ sin θ cos θ sinφ+ 2rrφ sin
2 θ cosφ− r2 sin2 θ sinφ

b1 = rrφ sinφ− rrθ sin θ cos θ cosφ+ r2 sin2 θ cosφ

c1 = r2(rφrφφ + rθrθφ sin
2 θ + rrφ sin

2 θ

a2 = −r2φ cosφ− rrφφ cosφ+ rrφ sinφ− rφrθ sin θ cos θ sinφ− rrθφ sin θ cos θ sinφ−
rrθ sin θ cos θ cosφ+ 2rrφ sin

2 θ sinφ+ r2 sin2 θ cosφ

b2 = −rrφ cosφ− rrθ sin θ cos θ sinφ+ r2 sin2 θ sinφ

c2 = c1

a3 = rφrθ sin
2 θ + rrθφ sin

2 θ + 2rrφ sin θ cos θ

b3 = rrθ sin
2 θ + r2 sin θ cos θ

c3 = c1 (J.13)

ni,θ = S−1
[

ai − bi

(rθ
r
+
ci
S2

)]

, (J.14)
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where

a1 = rθrφ sinφ+ rrθφ sinφ− r2θ sin θ cos θ cosφ− rrθθ sin θ cos θ cosφ

−rrθ cos2 θ cosφ+ rrθ sin
2 θ cosφ+ 2rrθ sin

2 θ cosφ+ 2r2 sin θ cos θ cosφ

b1 = rrφ sinφ− rrθ sin θ cos θ cosφ+ r2 sin2 θ cosφ

c1 = rφrθφ + rθrθθ sin
2 θ + rrθ sin

2 θ + r2θ sin θ cos θ + r2 sin θ cos θ

a2 = −rφrθ cosφ− rrθφ cosφ− r2θ sin θ cos θ sinφ− rrθθ sin θ cos θ sinφ

−rrθ cos2 θ sinφ+ rrθ sin
2 θ sinφ+ 2rrθ sin

2 θ sinφ+ 2r2 sin θ cos θ sinφ

b2 = −rrφ cosφ− rrθ sin θ cos θ sinφ+ r2 sin2 θ sinφ

c2 = c1

a3 = r2θ sin
2 θ + rrθθ sin

2 θ + 2rrθ sin θ cos θ

+2rrθ sin θ cos θ + r2 cos2 θ − r2 sin2 θ

b3 = rrθ sin
2 θ + r2 sin θ cos θ

c3 = c1 (J.15)

Elements of first and second fundamental tensor:

E = xθ · xθ ,

F = xθ · xφ ,

G = xφ · xφ ,

L = −xθ · nθ ,

M =
1

2
(xθ · nφ + xφ · nθ) ,

N = −xφ · nφ . (J.16)

Mean curvature:

H(θ, φ) =
EN +GL− 2FM

2(EG− F 2)
=
1

2
κ . (J.17)

Gaussian curvature:

K(θ, φ) =
LN −M2

EG− F 2
. (J.18)

Integral quantities :

Surface:

A =

∫ 2π

0

∫ π

0

r[r2φ + r2θ sin
2(θ) + r2 sin2(θ)]1/2dθ dφ . (J.19)

Volume:

V =
1

3

∫ 2π

0

∫ π

0

r3(θ, φ) sin(θ)dθ dφ . (J.20)

Volume correction:
To fulfill the constraint of constant bubble volume, Vb = const., the obtained shape coeffi-
cients are linearly scaled, aVnm = CV anm, to correct the current volume, V , to the desired
volume, Vb. From (J.1), one obtains rV (θ, φ) = CV r(θ, φ) which can be employed in (J.20)
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to determine the correction constant CV :

Vb =
1

3

∫ 2π

0

∫ π

0

r3V (θ, φ) sin(θ) dθ dφ ,

=
1

3

∫ 2π

0

∫ π

0

(CV r(θ, φ))
3 sin(θ) dθ dφ , (J.21)

= C3
V V ,

⇒ CV =

(

Vb
V

) 1
3

. (J.22)

Inertial tensor:

I11 =
1

5
ρp

∫ 2π

0

∫ π

0

r5(θ, φ) sin(θ)[1− sin2(θ) cos2(φ)] dθ dφ ,

I22 =
1

5
ρp

∫ 2π

0

∫ π

0

r5(θ, φ) sin(θ)[1− sin2(θ) sin2(φ)] dφ dθ ,

I33 =
1

5
ρp

∫ 2π

0

∫ π

0

r5(θ, φ) sin3(θ)dθ dφ ,

I12 = −1
5
ρp

∫ 2π

0

∫ π

0

r5(θ, φ) sin3(θ) cos(φ) sin(φ) dθ dφ ,

I13 = −1
5
ρp

∫ 2π

0

∫ π

0

r5(θ, φ) cos(θ) sin2(θ) cos(φ) dθ dφ ,

I23 = −1
5
ρp

∫ 2π

0

∫ π

0

r5(θ, φ) cos(θ) sin2(θ) sin(φ) dθ dφ . (J.23)

Center of mass:

xi,cm =
1

V

∫ 2π

0

∫ π

0

∫ r

0

xi r
2(θ, φ) sin(θ) dr dθ dφ . (J.24)

K Moving-Least-Squares method

The Moving-Least-Squares method [151, 158, 193] provides a continuously differentiable,
global approximation fg(x) of data fi scattered at xi locations. The global function consists
of a set of local approximations, fg(x) = f(x), obtained from a weighted least squares
fit around a specific point. This point is then moved over the entire domain. The local
approximating function is obtained here from f ∈ PD

M being polynomials of degree M in D
dimensions and it reads as

f(x) = a · b(x) , (K.1)

where a = (a1, . . . , ak)
T contains the coefficients to be determined locally and b = (b1, . . . , bk)

T

holds the polynomial basis, e.g. b = (1, x, y, z)T is a linear basis in three dimensions, i.e.
M = 1, D = 3.
The coefficients are obtained minimizing the error functional J in the weighted least squares
formulation with

J(a) =
N
∑

i

w(‖xi − x‖) ‖a · b(xi)− fi‖2 +
NC
∑

j

wC [C(a,b(xj))]
2 . (K.2)
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Herein, the first term relates to the approximation of the N data points with the weighting
function w(‖xi − x‖) , w ≥ 0. The weighting function needs to be continuously differentiable
and decreasing away from xi. Suitable choices are, e.g. cubic splines [12] or the Gaussian

w (‖xi − x‖) = exp

(

−‖xi − x‖2
r2G

)

, (K.3)

where rG is a spacing parameter [193].
The second term in (K.2) relates to additional constraints C, weighted with wC, to be fulfilled
in a least squares sense at NC locations xj. These constraints are expressed in terms of a and
b(xj) (or its derivatives) and e.g. comprise a vanishing surface normal pressure derivative
or a divergence free velocity field [12].
The second term is not considered from here on, i.e. wC = 0, as the further notation depends
on the nature of C.
The minimum in the error functional J is obtained from

∇ (J(a)) = 0 , where ∇ =

(

∂

∂a1
, . . . ,

∂

∂ak

)T

, (K.4)

yielding a linear system of equations to solve for the coefficients

a =

[

N
∑

i

wi b(xi)b(xi)
T

]−1 N
∑

i

wi b(xi) fi . (K.5)

The involved matrix inversion is performed using LAPACK [5].
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Nomenclature

Latin symbols
A surface area
A rotation matrix
a, b, c semi-axes of ellipsoid
anm coefficients in spherical harmonic expansion
a0nm, a

e
nm shape coefficients at the beginning and end of coalescence modeling

B magnetic field
c absolute value of velocity
CAM added mass coefficient
CD, FD drag coefficient and force, respectively
CL, FL lift coefficient and force, respectively
Cv virtual mass coefficient
d12, r12 equivalent diameter and radius of two interacting bubbles
deq, req sphere volume-equivalent diameter and radius, respectively
dp, rp particle diameter and radius, respectively
E ellipsoid function, exponent in collision model
e unit vector
en restitution coefficient
eu, eΦ electric field contributed to velocity and electric potential
Euu, Evv energy spectra of u and v, respectively
E2D

uu two-dimensional energy spectrum of u
f volumetric force
FAM added mass force
FB buoyancy force
fb bubble detachment frequency
Fcol, Mcol collision force and collision torque acting on the particle
fL Lorentz force density
Fp, Mp force and torque acting on the particle
fref reference frequency
fv specific virtual mass force
Fv, Mv virtual mass force and torque
g gravitational acceleration
H channel half-width, height of container, mean curvature
h spacing of the equidistant Cartesian grid
Ip particle tensor of inertia
j electric current density
j0 free stream current density
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kcol, dcol spring stiffness and damping coefficient in collision model
kx, kz wave number in x and z, respectively
L domain size L = (Lx, Ly, Lz)
Lref reference length
lτ viscous length scale in turbulent channel flow
mp particle mass
N Cartesian grid size N = (Nx, Ny, Nz)
nf viscous forcing loops of IBM
NL number of Lagrangian forcing points
Np number of particles
Nproc number of processes
NSH number of modes in axisymmetric spherical harmonic expansion
nτ number of pseudo-time loops in pseudo-compressibility approach
nθ number of quadrature points in θ-direction
Ntri number of surface triangles
nS normal vector of bubble surface
Pn polynomial in series expansion (Lagrange in vm and Legendre in SH)
p pressure
po, pi inner and outer pressure, respectively
q quaternion
qn coefficients of series expansion
r point on particle surface with respect to particle center xp

rs saddle point radius
s shear parameter
S particle surface
T period
t time
tcol collision time
tref reference time
u fluid velocity, u = (u, v, w)
ud, ui desired and interpolated velocity at particle surface, respectively
u0 centerline velocity
ub bulk velocity
ug gravitational velocity scale
up velocity of particle center, up = (up, vp, wp)
uref reference velocity
urel relative velocity
uS local velocity of particle surface
ush local velocity of particle surface originating from shape deformation
ut tangential velocity
uτ wall shear velocity in turbulent channel flow
Vp particle volume
W potential displacement energy
x Cartesian coordinates x = (x, y, z)
xp position of particle center, xp = (xp, yp, zp))
xsub,A sub-contact point on surface of particle A for distance calculation
Y m
n associated Legendre polynomial in spherical harmonic expansion
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Greek symbols
α phase indicator, color function
αk, γk, ζk coefficients of low-storage Runge-Kutta scheme
βτ constant for pseudo-compressibility concept
Γ circulation
Γy average contribution of ωy to absolute value of vorticity
∆t size of time step
∆Te time interval of coalescence modeling
∆tsh size of time step for shape adaptation
∆VL, ∆VE Lagrangian (forcing point) volume, Eulerian (cell) volume
∆x, ∆y, ∆z grid spacing
δh regularized delta function
δp correction of pseudo-pressure
δΦ correction of electric potential
ε local residuum, dissipation rate of turbulent kinetic energy
εe ellipticity
ǫ error
ζA,B, ζA,w inter-particle distance, particle-wall distance
ζcol range of collision model
η, ξ surface parameters for ellipsoid
θ, φ angles of spherical coordinates
κ twice the mean curvature
λ curve parameter
λ12 coalescence efficiency
λpor average porosity
µ dynamic viscosity
ν kinematic viscosity
νt turbulent (eddy) viscosity
ρf density of the continuous fluid phase
ρp density of the dispersed particle phase
σ surface tension
σe electric conductivity
σRe standard deviation in oscillation of Re(t)
τ hydrodynamic stress tensor, including pressure, divided by ρf
τW wall shear stress
Φ electric potential
φ signed-distance level set function
φRoma, φPeskin continuous function for δh of Roma and Peskin
φp particle orientation, list of Euler angles
Ψ, Ψn sphericity, crosswise sphericity
ψp increment function
ωp particle angular velocity
ω fluid vorticity
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Dimensionless groups
Ca capillary number
CFL Courant-Friedrichs-Lewy number
CD drag coefficient
CL lift coefficient
Cp pressure coefficient
Eo Eötvös number
G Galilei number
Ha Hartmann number
I∗ dimensionless moment of inertia, disks
M Morton number
N magnetic interaction parameter
Oh Ohnesorg number
πρ density ratio
Rm magnetic Reynolds number
Re Reynolds number
Sr Strouhal number
St Stokes number
We Weber number
X particle aspect ratio, shape parameter

Miscellaneous
〈a〉 average of a
a+ inner scaling of a in turbulent channel flow
a′ fluctuation of a, representation of a in body-fixed system
ȧ temporal derivative of a
ai,j,k discrete representation of a on Cartesian grid with indices i, j, k
afp discrete representation of a at Lagrangian forcing points
atri discrete representation of a for surface triangle

Abbreviations
ACM adaptive collision model
BC boundary condition
DFT discrete Fourier transform
DNS direct numerical simulation
FFT fast Fourier transform
HPLS hybrid particle level set
IBM immersed boundary method
LES large eddy simulation
MHD magnetohydrodynamic
MLS moving least squares
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PRIME phase-resolving simulation environment
PIV particle image velocimetry
RANS Reynolds-averaged Navier-Stokes
RMS root mean square
SEF shape evolution function
SH spherical harmonics
TKE turbulent kinetic energy
UDV ultrasound Doppler velocimetry
UTTT ultrasound transit time technique
VOF volume of fluid
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