948 research outputs found

    Ultra-low Power Circuits for Internet of Things (IOT)

    Full text link
    Miniaturized sensor nodes offer an unprecedented opportunity for the semiconductor industry which led to a rapid development of the application space: the Internet of Things (IoT). IoT is a global infrastructure that interconnects physical and virtual things which have the potential to dramatically improve people's daily lives. One of key aspect that makes IoT special is that the internet is expanding into places that has been ever reachable as device form factor continue to decreases. Extremely small sensors can be placed on plants, animals, humans, and geologic features, and connected to the Internet. Several challenges, however, exist that could possibly slow the development of IoT. In this thesis, several circuit techniques as well as system level optimizations to meet the challenging power/energy requirement for the IoT design space are described. First, a fully-integrated temperature sensor for battery-operated, ultra-low power microsystems is presented. Sensor operation is based on temperature independent/dependent current sources that are used with oscillators and counters to generate a digital temperature code. Second, an ultra-low power oscillator designed for wake-up timers in compact wireless sensors is presented. The proposed topology separates the continuous comparator from the oscillation path and activates it only for short period when it is required. As a result, both low power tracking and generation of precise wake-up signal is made possible. Third, an 8-bit sub-ranging SAR ADC for biomedical applications is discussed that takes an advantage of signal characteristics. ADC uses a moving window and stores the previous MSBs voltage value on a series capacitor to achieve energy saving compared to a conventional approach while maintaining its accuracy. Finally, an ultra-low power acoustic sensing and object recognition microsystem that uses frequency domain feature extraction and classification is presented. By introducing ultra-low 8-bit SAR-ADC with 50fF input capacitance, power consumption of the frontend amplifier has been reduced to single digit nW-level. Also, serialized discrete Fourier transform (DFT) feature extraction is proposed in a digital back-end, replacing a high-power/area-consuming conventional FFT.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137157/1/seojeong_1.pd

    Wearable, low-power CMOS ISFETs and compensation circuits for on-body sweat analysis

    Get PDF
    Complementary metal-oxide-semiconductor (CMOS) technology has been a key driver behind the trend of reduced power consumption and increased integration of electronics in consumer devices and sensors. In the late 1990s, the integration of ion-sensitive field-effect transistors (ISFETs) into unmodified CMOS helped to create advancements in lab-on-chip technology through highly parallelised and low-cost designs. Using CMOS techniques to reduce power and size in chemical sensing applications has already aided the realisation of portable, battery-powered analysis platforms, however the possibility of integrating these sensors into wearable devices has until recently remained unexplored. This thesis investigates the use of CMOS ISFETs as wearable electrochemical sensors, specifically for on-body sweat analysis. The investigation begins by evaluating the ISFET sensor for wearable applications, identifying the key advantages and challenges that arise in this pursuit. A key requirement for wearable devices is a low power consumption, to enable a suitable operational life and small form factor. From this perspective, ISFETs are investigated for low power operation, to determine the limitations when trying to push down the consumption of individual sensors. Batteryless ISFET operation is explored through the design and implementation of a 0.35 \si{\micro\metre} CMOS ISFET sensing array, operating in weak-inversion and consuming 6 \si{\micro\watt}. Using this application-specific integrated circuit (ASIC), the first ISFET array powered by body heat is demonstrated and the feasibility of using near-field communication (NFC) for wireless powering and data transfer is shown. The thesis also presents circuits and systems for combatting three key non-ideal effects experienced by CMOS ISFETs, namely temperature variation, threshold voltage offset and drift. An improvement in temperature sensitivity by a factor of three compared to an uncompensated design is shown through measured results, while adding less than 70 \si{\nano\watt} to the design. A method of automatically biasing the sensors is presented and an approach to using spatial separation of sensors in arrays in applications with flowing fluids is proposed for distinguishing between signal and sensor drift. A wearable device using the ISFET-based system is designed and tested with both artificial and natural sweat, identifying the remaining challenges that exist with both the sensors themselves and accompanying components such as microfluidics and reference electrode. A new ASIC is designed based on the discoveries of this work and aimed at detecting multiple analytes on a single chip. %Removed In the latter half of the thesis, Finally, the future directions of wearable electrochemical sensors is discussed with a look towards embedded machine learning to aid the interpretation of complex fluid with time-domain sensor arrays. The contributions of this thesis aim to form a foundation for the use of ISFETs in wearable devices to enable non-invasive physiological monitoring.Open Acces

    Ultra-Low-Power Wake-up Clock Design for SoC Applications

    Get PDF
    This thesis studies how to design an ultra-low-power wake-up clock circuit for SoCapplications that essentially consists of a resistor based reference circuit, switched-capacitor branch, an ultra-low-power amplifier, a VCO and a non-overlapping clockphase generator circuit. The circuit is designed in 180-nm CMOS technology usingCAD software for circuit design, layout design, pre and post-layout simulations.At first, a brief study of different clock-generation circuit architectures is made,wherein their merits and de-merits are discussed. This is followed by a study ofan ultra-low-power amplifier, ring-oscillator-based VCO, non-overlapping clockcircuits, the bias generation circuit and the current reference circuit. Additionally,a reference current chopping technique that further improves temperature stabilityis also described. Later, the report discusses the design and simulations of theactual implementation. Analysis of the design with regards to power consumption,temperature stability and layout area are carried out. The circuit operates at8.254kHz consuming 70.4nW with a temperature stability of 7.35ppm/◦C in thetemperature range of -40◦C to 75◦C. The final layout takes an area of 0.153mm2.The final design is analysed for its functionality at various process, voltage andtemperature corners. Future improvements in the current design are also discussedat the end of this report

    Process and Temperature Compensated Wideband Injection Locked Frequency Dividers and their Application to Low-Power 2.4-GHz Frequency Synthesizers

    Get PDF
    There has been a dramatic increase in wireless awareness among the user community in the past five years. The 2.4-GHz Industrial, Scientific and Medical (ISM) band is being used for a diverse range of applications due to the following reasons. It is the only unlicensed band approved worldwide and it offers more bandwidth and supports higher data rates compared to the 915-MHz ISM band. The power consumption of devices utilizing the 2.4-GHz band is much lower compared to the 5.2-GHz ISM band. Protocols like Bluetooth and Zigbee that utilize the 2.4-GHz ISM band are becoming extremely popular. Bluetooth is an economic wireless solution for short range connectivity between PC, cell phones, PDAs, Laptops etc. The Zigbee protocol is a wireless technology that was developed as an open global standard to address the unique needs of low-cost, lowpower, wireless sensor networks. Wireless sensor networks are becoming ubiquitous, especially after the recent terrorist activities. Sensors are employed in strategic locations for real-time environmental monitoring, where they collect and transmit data frequently to a nearby terminal. The devices operating in this band are usually compact and battery powered. To enhance battery life and avoid the cumbersome task of battery replacement, the devices used should consume extremely low power. Also, to meet the growing demands cost and sized has to be kept low which mandates fully monolithic implementation using low cost process. CMOS process is extremely attractive for such applications because of its low cost and the possibility to integrate baseband and high frequency circuits on the same chip. A fully integrated solution is attractive for low power consumption as it avoids the need for power hungry drivers for driving off-chip components. The transceiver is often the most power hungry block in a wireless communication system. The frequency divider (prescaler) and the voltage controlled oscillator in the transmitter’s frequency synthesizer are among the major sources of power consumption. There have been a number of publications in the past few decades on low-power high-performance VCOs. Therefore this work focuses on prescalers. A class of analog frequency dividers called as Injection-Locked Frequency Dividers (ILFD) was introduced in the recent past as low power frequency division. ILFDs can consume an order of magnitude lower power when compared to conventional flip-flop based dividers. However the range of operation frequency also knows as the locking range is limited. ILFDs can be classified as LC based and Ring based. Though LC based are insensitive to process and temperature variation, they cannot be used for the 2.4-GHz ISM band because of the large size of on-chip inductors at these frequencies. This causes a lot of valuable chip area to be wasted. Ring based ILFDs are compact and provide a low power solution but are extremely sensitive to process and temperature variations. Process and temperature variation can cause ring based ILFD to loose lock in the desired operating band. The goal of this work is to make the ring based ILFDs useful for practical applications. Techniques to extend the locking range of the ILFDs are discussed. A novel and simple compensation technique is devised to compensate the ILFD and keep the locking range tight with process and temperature variations. The proposed ILFD is used in a 2.4-GHz frequency synthesizer that is optimized for fractional-N synthesis. Measurement results supporting the theory are provided

    Ultra-Low Power Circuit Design for Miniaturized IoT Platform

    Full text link
    This thesis examines the ultra-low power circuit techniques for mm-scale Internet of Things (IoT) platforms. The IoT devices are known for their small form factors and limited battery capacity and lifespan. So, ultra-low power consumption of always-on blocks is required for the IoT devices that adopt aggressive duty-cycling for high power efficiency and long lifespan. Several problems need to be addressed regarding IoT device designs, such as ultra-low power circuit design techniques for sleep mode and energy-efficient and fast data rate transmission for active mode communication. Therefore, this thesis highlights the ultra-low power always-on systems, focusing on energy efficient optical transmission in order to miniaturize the IoT systems. First, this thesis presents a battery-less sub-nW micro-controller for an always-operating system implemented with a newly proposed logic family. Second, it proposes an always-operating sub-nW light-to-digital converter to measure instant light intensity and cumulative light exposure, which employs the characteristics of this proposed logic family. Third, it presents an ultra-low standby power optical wake-up receiver with ambient light canceling using dual-mode operation. Finally, an energy-efficient low power optical transmitter for an implantable IoT device is suggested. Implications for future research are also provided.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/145862/1/imhotep_1.pd

    A programmable microsystem using system-on-chip for real-time biotelemetry

    Get PDF
    A telemetry microsystem, including multiple sensors, integrated instrumentation and a wireless interface has been implemented. We have employed a methodology akin to that for System-on-Chip microelectronics to design an integrated circuit instrument containing several "intellectual property" blocks that will enable convenient reuse of modules in future projects. The present system was optimized for low-power and included mixed-signal sensor circuits, a programmable digital system, a feedback clock control loop and RF circuits integrated on a 5 mm × 5 mm silicon chip using a 0.6 μm, 3.3 V CMOS process. Undesirable signal coupling between circuit components has been investigated and current injection into sensitive instrumentation nodes was minimized by careful floor-planning. The chip, the sensors, a magnetic induction-based transmitter and two silver oxide cells were packaged into a 36 mm × 12 mm capsule format. A base station was built in order to retrieve the data from the microsystem in real-time. The base station was designed to be adaptive and timing tolerant since the microsystem design was simplified to reduce power consumption and size. The telemetry system was found to have a packet error rate of 10<sup>-</sup><sup>3</sup> using an asynchronous simplex link. Trials in animal carcasses were carried out to show that the transmitter was as effective as a conventional RF device whilst consuming less power

    Ultra Low Power Circuits for Internet of Things and Deep Learning Accelerator Design with In-Memory Computing

    Full text link
    Collecting data from environment and converting gathered data into information is the key idea of Internet of Things (IoT). Miniaturized sensing devices enable the idea for many applications including health monitoring, industrial sensing, and so on. Sensing devices typically have small form factor and thus, low battery capacity, but at the same time, require long life time for continuous monitoring and least frequent battery replacement. This thesis introduces three analog circuit design techniques featuring ultra-low power consumption for such requirements: (1) An ultra-low power resistor-less current reference circuit, (2) A 110nW resistive frequency locked on-chip oscillator as a timing reference, (3) A resonant current-mode wireless power receiver and battery charger for implantable systems. Raw data can be efficiently transformed into useful information using deep learning. However deep learning requires tremendous amount of computation by its nature, and thus, an energy efficient deep learning hardware is highly demanded to fully utilize this algorithm in various applications. This thesis also presents a pulse-width based computation concept which utilizes in-memory computing of SRAM.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144173/1/myungjun_1.pd

    Chip Implementation with a Combined Wireless Temperature Sensor and Reference Devices Based on the DZTC Principle

    Get PDF
    This paper presents a novel CMOS wireless temperature sensor design in order to improve the sensitivity and linearity of our previous work on such devices. Based on the principle of CMOS double zero temperature coefficient (DZTC) points, a combined device is first created at the chip level with two voltage references, one current reference, and one temperature sensor. It was successfully fabricated using the 0.35 μm CMOS process. According to the chip results in a wide temperature range from −20 °C to 120 °C, two voltage references can provide temperature-stable outputs of 823 mV and 1,265 mV with maximum deviations of 0.2 mV and 8.9 mV, respectively. The result for the current reference gives a measurement of 23.5 μA, with a maximum deviation of 1.2 μA. The measurements also show that the wireless temperature sensor has good sensitivity of 9.55 mV/°C and high linearity of 97%. The proposed temperature sensor has 4.15-times better sensitivity than the previous design. Moreover, to facilitate temperature data collection, standard wireless data transmission is chosen; therefore, an 8-bit successive-approximation-register (SAR) analog-to-digital converter (ADC) and a 433 MHz wireless transmitter are also integrated in this chip. Sensing data from different places can be collected remotely avoiding the need for complex wire lines

    Doctor of Philosophy

    Get PDF
    dissertationSince the late 1950s, scientists have been working toward realizing implantable devices that would directly monitor or even control the human body's internal activities. Sophisticated microsystems are used to improve our understanding of internal biological processes in animals and humans. The diversity of biomedical research dictates that microsystems must be developed and customized specifically for each new application. For advanced long-term experiments, a custom designed system-on-chip (SoC) is usually necessary to meet desired specifications. Custom SoCs, however, are often prohibitively expensive, preventing many new ideas from being explored. In this work, we have identified a set of sensors that are frequently used in biomedical research and developed a single-chip integrated microsystem that offers the most commonly used sensor interfaces, high computational power, and which requires minimum external components to operate. Included peripherals can also drive chemical reactions by setting the appropriate voltages or currents across electrodes. The SoC is highly modular and well suited for prototyping in and ex vivo experimental devices. The system runs from a primary or secondary battery that can be recharged via two inductively coupled coils. The SoC includes a 16-bit microprocessor with 32 kB of on chip SRAM. The digital core consumes 350 μW at 10 MHz and is capable of running at frequencies up to 200 MHz. The integrated microsystem has been fabricated in a 65 nm CMOS technology and the silicon has been fully tested. Integrated peripherals include two sigma-delta analog-to-digital converters, two 10-bit digital-to-analog converters, and a sleep mode timer. The system also includes a wireless ultra-wideband (UWB) transmitter. The fullydigital transmitter implementation occupies 68 x 68 μm2 of silicon area, consumes 0.72 μW static power, and achieves an energy efficiency of 19 pJ/pulse at 200 MHz pulse repetition frequency. An investigation of the suitability of the UWB technology for neural recording systems is also presented. Experimental data capturing the UWB signal transmission through an animal head are presented and a statistical model for large-scale signal fading is developed
    corecore