3,696 research outputs found

    Quadratic Multi-Dimensional Signaling Games and Affine Equilibria

    Full text link
    This paper studies the decentralized quadratic cheap talk and signaling game problems when an encoder and a decoder, viewed as two decision makers, have misaligned objective functions. The main contributions of this study are the extension of Crawford and Sobel's cheap talk formulation to multi-dimensional sources and to noisy channel setups. We consider both (simultaneous) Nash equilibria and (sequential) Stackelberg equilibria. We show that for arbitrary scalar sources, in the presence of misalignment, the quantized nature of all equilibrium policies holds for Nash equilibria in the sense that all Nash equilibria are equivalent to those achieved by quantized encoder policies. On the other hand, all Stackelberg equilibria policies are fully informative. For multi-dimensional setups, unlike the scalar case, Nash equilibrium policies may be of non-quantized nature, and even linear. In the noisy setup, a Gaussian source is to be transmitted over an additive Gaussian channel. The goals of the encoder and the decoder are misaligned by a bias term and encoder's cost also includes a penalty term on signal power. Conditions for the existence of affine Nash equilibria as well as general informative equilibria are presented. For the noisy setup, the only Stackelberg equilibrium is the linear equilibrium when the variables are scalar. Our findings provide further conditions on when affine policies may be optimal in decentralized multi-criteria control problems and lead to conditions for the presence of active information transmission in strategic environments.Comment: 15 pages, 4 figure

    Some notions of decentralization and coordination in large-scale dynamic systems

    Get PDF
    Some notions of decentralization and coordination in the control of large-scale dynamic systems are discussed. Decentralization and coordination have always been important concepts in the study of large systems. Roughly speaking decentralization is the process of dividing a large problem into subproblems so that it can be handled more easily. Coordination is the manipulation of the subproblem so that the original problem is solved. The various types of decentralization and coordination that have been used to control dynamic systems are discussed. The emphasis was to distinguish between on-line and off-line operations to understand the results available by indicating the aspects of the problem which are decentralized

    Optimal Control for LQG Systems on Graphs---Part I: Structural Results

    Full text link
    In this two-part paper, we identify a broad class of decentralized output-feedback LQG systems for which the optimal control strategies have a simple intuitive estimation structure and can be computed efficiently. Roughly, we consider the class of systems for which the coupling of dynamics among subsystems and the inter-controller communication is characterized by the same directed graph. Furthermore, this graph is assumed to be a multitree, that is, its transitive reduction can have at most one directed path connecting each pair of nodes. In this first part, we derive sufficient statistics that may be used to aggregate each controller's growing available information. Each controller must estimate the states of the subsystems that it affects (its descendants) as well as the subsystems that it observes (its ancestors). The optimal control action for a controller is a linear function of the estimate it computes as well as the estimates computed by all of its ancestors. Moreover, these state estimates may be updated recursively, much like a Kalman filter
    corecore