2,056 research outputs found

    ????????? ????????? ????????? ????????? ????????? ????????? ?????? ????????? ??????

    Get PDF
    Department of Computer Science and EngineeringMany visualization systems have provided multiple coordinated views (MCVs) with a belief that using MCVs brings benefits during visual analysis. However, if a tool requires tedious or repeated interactions to create one view, users may feel difficulty in utilizing the MCV tools due to perceived expensive interaction costs. To reduce such interaction costs, a number of visual tools have started providing a method, called visualization duplication to allow users to copy an existing visualization with one click. In spite of the importance of such easy view creation method, very little empirical work exists on measuring impacts of the method. In this work, we aim to investigate the impacts of visualization duplication on visual analysis strategies, interaction behaviors, and analysis performance. To achieve the goals, we designed a prototype visual tool, equipped with the easy view creation method and conducted a human-subjects study. In the experiment, 44 participants completed five analytic tasks using a visualization system. Through quantitative and qualitative analysis, we discovered that visualization duplication is related to the number of views and generated insights and accuracy of visual analysis. The results also revealed visualization duplication effects on deciding analytical strategies and interaction patterns.clos

    EXPLORATORY VISUALIZATION OF GRAPHS BASED ON COMMUNITY STRUCTURE

    Get PDF
    Communities, also called clusters or modules, are groups of nodes which probably share common properties and/or play similar roles within a graph. They widely exist in real networks such as biological, social, and information networks. Allowing users to interactively browse and explore the community structure, which is essential for understanding complex systems, is a challenging yet important research topic. My work has been focused on visualization approaches to exploring the community structure in graphs based on automatic community detection results. In this dissertation, we first report a formal user study that investigated the essen- tial influence factors, benefits, and constraints of a community based graph visual- ization system in a background application of seeking information from text corpora. A general evaluation methodology for exploratory visualization systems has been proposed and practiced. The evaluation methodology integrates detailed cognitive load analysis and users’ prior knowledge evaluation with quantitative and qualitative measures, so that in-depth insights can be gained. The study revealed that visual exploration based on the community structure benefits the understanding of real net- works. A literature review and a set of interviews were then conducted to learn tasks facing such graph exploration and the state-of-the-arts. This work led to commu- nity related graph visualization task taxonomy. Our examination of existing graph visualization systems revealed that a large number of community related graph visualization tasks are poorly supported in existing approaches. To bridge the gap, several novel visualization techniques are proposed. In these approaches, graph topology information is mapped to a multidimensional space where the relationships between the communities and the nodes can be explicitly explored. Several user studies and case studies have been conducted to demonstrate the usefulness of these systems in real-world applications

    Supporting Web-based and Crowdsourced Evaluations of Data Visualizations

    Get PDF
    User studies play a vital role in data visualization research because they help measure the strengths and weaknesses of different visualization techniques quantitatively. In addition, they provide insight into what makes one technique more effective than another; and they are used to validate research contributions in the field of information visualization. For example, a new algorithm, visual encoding, or interaction technique is not considered a contribution unless it has been validated to be better than the state of the art and its competing alternatives or has been validated to be useful to intended users. However, conducting user studies is challenging, time consuming, and expensive. User studies generally requires careful experimental designs, iterative refinement, recruitment of study participants, careful management of participants during the run of the studies, accurately collecting user responses, and expertise in statistical analysis of study results. There are several variables that are taken into consideration which can impact user study outcome if not carefully managed. Hence the process of conducting user studies successfully can take several weeks to months. In this dissertation, we investigated how to design an online framework that can reduce the overhead involved in conducting controlled user studies involving web-based visualizations. Our main goal in this research was to lower the overhead of evaluating data visualizations quantitatively through user studies. To this end, we leveraged current research opportunities to provide a framework design that reduces the overhead involved in designing and running controlled user studies of data visualizations. Specifically, we explored the design and implementation of an open-source framework and an online service (VisUnit) that allows visualization designers to easily configure user studies for their web-based data visualizations, deploy user studies online, collect user responses, and analyze incoming results automatically. This allows evaluations to be done more easily, cheaply, and frequently to rapidly test hypotheses about visualization designs. We evaluated the effectiveness of our framework (VisUnit) by showing that it can be used to replicate 84% of 101 controlled user studies published in IEEE Information Visualization conferences between 1995 and 2015. We evaluated the efficiency of VisUnit by showing that graduate students can use it to design sample user studies in less than an hour. Our contributions are two-fold: first, we contribute a flexible design and implementation that facilitates the creation of a wide range of user studies with limited effort; second, we provide an evaluation of our design that shows that it can be used to replicate a wide range of user studies, can be used to reduce the time evaluators spend on user studies, and can be used to support new research

    Visual interaction with dimensionality reduction: a structured literature analysis

    Get PDF
    Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations. Nevertheless, a general, structured understanding of this integration is missing. To address this, we systematically studied the visual analytics and visualization literature to investigate how analysts interact with automatic DR techniques. The results reveal seven common interaction scenarios that are amenable to interactive control such as specifying algorithmic constraints, selecting relevant features, or choosing among several DR algorithms. We investigate specific implementations of visual analysis systems integrating DR, and analyze ways that other machine learning methods have been combined with DR. Summarizing the results in a “human in the loop” process model provides a general lens for the evaluation of visual interactive DR systems. We apply the proposed model to study and classify several systems previously described in the literature, and to derive future research opportunities

    Visual interaction with dimensionality reduction: a structured literature analysis

    Get PDF
    Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations. Nevertheless, a general, structured understanding of this integration is missing. To address this, we systematically studied the visual analytics and visualization literature to investigate how analysts interact with automatic DR techniques. The results reveal seven common interaction scenarios that are amenable to interactive control such as specifying algorithmic constraints, selecting relevant features, or choosing among several DR algorithms. We investigate specific implementations of visual analysis systems integrating DR, and analyze ways that other machine learning methods have been combined with DR. Summarizing the results in a “human in the loop” process model provides a general lens for the evaluation of visual interactive DR systems. We apply the proposed model to study and classify several systems previously described in the literature, and to derive future research opportunities
    corecore