8,892 research outputs found

    The Malware Analysis Body of Knowledge (MABOK)

    Get PDF
    The ability to forensically analyse malicious software (malware) is becoming an increasingly important discipline in the field of Digital Forensics. This is because malware is becoming stealthier, targeted, profit driven, managed by criminal organizations, harder to detect and much harder to analyse. Malware analysis requires a considerable skill set to delve deep into malware internals when it is designed specifically to detect and hinder such attempts. This paper presents a foundation for a Malware Analysis Body of Knowledge (MABOK) that is required to successfully forensically analyse malware. This body of knowledge has been the result of several years of research into malware dissection

    A taxonomy of malicious traffic for intrusion detection systems

    Get PDF
    With the increasing number of network threats it is essential to have a knowledge of existing and new network threats to design better intrusion detection systems. In this paper we propose a taxonomy for classifying network attacks in a consistent way, allowing security researchers to focus their efforts on creating accurate intrusion detection systems and targeted datasets

    Crassicauda boopis in a fin whale (Balaenoptera physalus) ship-struck in the eastern North Atlantic Ocean

    Get PDF
    On 9 November 2015, a juvenile male fin whale of 11·60 m length was observed on the bulb of a merchant vessel in the Channel Terneuzen – Ghent (The Netherlands – Belgium). A severe parasitosis was present in the right heart ventricle and caudal caval vein. Parasites were identified as Crassicauda boopis based on macroscopic and microscopic observations. The sequence of the 18S rRNA gene obtained from the parasite samples was 100% similar to the sequence of the 18S rRNA gene from Crassicauda magna available on GenBank. While adults of C. boopis and C. magna are morphologically distinct and found at different locations in the body, the molecular analysis of the 18S rRNA gene seems insufficient for reliable species identification. Although numerous C. boopis were found, the cause of death was identified as due to the collision with the ship, as suggested by the presence of a large haematoma, and the absence of evidence of renal failure. The young age of this whale and the absence of severe chronic reaction may suggest that the infestation was not yet at an advanced chronic stage

    The Parasite that Causes Whirling Disease, \u3cem\u3eMyxobolus cerebralis\u3c/em\u3e, is Genetically Variable Within and Across Spatial Scales

    Get PDF
    Understanding the genetic structure of parasite populations on the natural landscape can reveal important aspects of disease ecology and epidemiology and can indicate parasite dispersal across the landscape. Myxobolus cerebralis (Myxozoa: Myxosporea), the causative agent of whirling disease in the definitive host Tubifex tubifex, is native to Eurasia and has spread to more than 25 states in the USA. The small amounts of data available to date suggest that M. cerebralis has little genetic variability. We examined the genetic variability of parasites infecting the definitive host T. tubifex in the Madison River, MT, and also from other parts of North America and Europe. We cloned and sequenced 18S ribosomal DNA and the internal transcribed spacer-1 (ITS-1) gene. Five oligochaetes were examined for 18S and five for ITS-1, only one individual was examined for both genes. We found two different 18S rRNA haplotypes of M. cerebralis from five worms and both intra- and interworm genetic variation for ITS-1, which showed 16 different haplotypes from among 20 clones. Comparison of our sequences with those from other studies revealed M. cerebralis from MT was similar to the parasite collected from Alaska, Oregon, California, and Virginia in the USA and from Munich, Germany, based on 18S, whereas parasite sequences from West Virginia were very different. Combined with the high haplotype diversity of ITS-1 and uniqueness of ITS-1 haplotypes, our results show that M. cerebralis is more variable than previously thought and raises the possibility of multiple introductions of the parasite into North America

    Reducing risky security behaviours:utilising affective feedback to educate users

    Get PDF
    Despite the number of tools created to help end-users reduce risky security behaviours, users are still falling victim to online attacks. This paper proposes a browser extension utilising affective feedback to provide warnings on detection of risky behaviour. The paper provides an overview of behaviour considered to be risky, explaining potential threats users may face online. Existing tools developed to reduce risky security behaviours in end-users have been compared, discussing the success rate of various methodologies. Ongoing research is described which attempts to educate users regarding the risks and consequences of poor security behaviour by providing the appropriate feedback on the automatic recognition of risky behaviour. The paper concludes that a solution utilising a browser extension is a suitable method of monitoring potentially risky security behaviour. Ultimately, future work seeks to implement an affective feedback mechanism within the browser extension with the aim of improving security awareness

    Assessing the impact of affective feedback on end-user security awareness

    Get PDF
    A lack of awareness regarding online security behaviour can leave users and their devices vulnerable to compromise. This paper highlights potential areas where users may fall victim to online attacks, and reviews existing tools developed to raise users’ awareness of security behaviour. An ongoing research project is described, which provides a combined monitoring solution and affective feedback system, designed to provide affective feedback on automatic detection of risky security behaviour within a web browser. Results gained from the research conclude an affective feedback mechanism in a browser-based environment, can promote general awareness of online security

    Sequence variation in mitochondrial cox1 and nad1 genes of ascaridoid nematodes in cats and dogs from Iran

    Get PDF
    The study was conducted to determine the sequence variation in two mitochondrial genes, namely cytochrome c oxidase 1 (pcox1) and NADH dehydrogenase 1 (pnad1) within and among isolates of Toxocara cati, Toxocara canis and Toxascaris leonina. Genomic DNA was extracted from 32 isolates of T. cati, 9 isolates of T. canis and 19 isolates of T. leonina collected from cats and dogs in different geographical areas of Iran. Mitochondrial genes were amplified by polymerase chain reaction (PCR) and sequenced. Sequence data were aligned using the BioEdit software and compared with published sequences in GenBank. Phylogenetic analysis was performed using Bayesian inference and maximum likelihood methods. Based on pairwise comparison, intra-species genetic diversity within Iranian isolates of T. cati, T. canis and T. leonina amounted to 0-2.3, 0-1.3 and 0-1.0 for pcox1 and 0-2.0, 0-1.7 and 0-2.6 for pnad1, respectively. Inter-species sequence variation among the three ascaridoid nematodes was significantly higher, being 9.5-16.6 for pcox1 and 11.9-26.7 for pnad1. Sequence and phylogenetic analysis of the pcox1 and pnad1 genes indicated that there is significant genetic diversity within and among isolates of T. cati, T. canis and T. leonina from different areas of Iran, and these genes can be used for studying genetic variation of ascaridoid nematodes. © Cambridge University Press 2014

    Phish Phinder: A Game Design Approach to Enhance User Confidence in Mitigating Phishing Attacks

    Full text link
    Phishing is an especially challenging cyber security threat as it does not attack computer systems, but targets the user who works on that system by relying on the vulnerability of their decision-making ability. Phishing attacks can be used to gather sensitive information from victims and can have devastating impact if they are successful in deceiving the user. Several anti-phishing tools have been designed and implemented but they have been unable to solve the problem adequately. This failure is often due to security experts overlooking the human element and ignoring their fallibility in making trust decisions online. In this paper, we present Phish Phinder, a serious game designed to enhance the user's confidence in mitigating phishing attacks by providing them with both conceptual and procedural knowledge about phishing. The user is trained through a series of gamified challenges, designed to educate them about important phishing related concepts, through an interactive user interface. Key elements of the game interface were identified through an empirical study with the aim of enhancing user interaction with the game. We also adopted several persuasive design principles while designing Phish Phinder to enhance phishing avoidance behaviour among users.Comment: 1
    • …
    corecore