26,629 research outputs found

    Dynamic Detection of Software Defects Using Supervised Learning Techniques

    Get PDF
    Software testing is the main step of detecting the faults in Software through executing it. Therefore, it is substantial to predict the faults that may happen while executing the software to maintain the existence of the software. There are different techniques of artificial intelligence that are utilized to predict future defects. The Machine learning is one of the most significant technique that used to build predicting models. In this paper, conducted a systematic review of the supervised machine learning techniques which are used for software defect prediction and evaluated the performance. Thus, using five state-of-the-art supervised machine learning (classifiers), for the evaluation, several of the data are used to predict software fault. In addition to, compared the performance of these classifiers with various parameters. After that, proceeds many experiments to improve the efficiency of the prediction of the defect through modifying the default parameters of the classifier. The results showed the ability of supervised machine learning algorithms to classify classes as bugs or not bugs. Thus, using supervised machine learning models for predicting software bugs is better than the traditional statistical models. Additionally, using PCA never noticeable impact on prediction systems performance while modifying the default parameters positively impact classifier values, especially with Artificial Neural Network (ANN).The main finding of this paper is gained through the application of Ensemble Learning methods, whereas Bagging achieves 95.1% accuracy with Mozilla dataset and Voting achieves 93.79% accuracy with kc1 dataset

    Software defect prediction: do different classifiers find the same defects?

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio

    The scientific basis for prediction research

    Get PDF
    Copyright @ 2012 ACMIn recent years there has been a huge growth in using statistical and machine learning methods to find useful prediction systems for software engineers. Of particular interest is predicting project effort and duration and defect behaviour. Unfortunately though results are often promising no single technique dominates and there are clearly complex interactions between technique, training methods and the problem domain. Since we lack deep theory our research is of necessity experimental. Minimally, as scientists, we need reproducible studies. We also need comparable studies. I will show through a meta-analysis of many primary studies that we are not presently in that situation and so the scientific basis for our collective research remains in doubt. By way of remedy I will argue that we need to address these issues of reporting protocols and expertise plus ensure blind analysis is routine

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201

    Is "Better Data" Better than "Better Data Miners"? (On the Benefits of Tuning SMOTE for Defect Prediction)

    Full text link
    We report and fix an important systematic error in prior studies that ranked classifiers for software analytics. Those studies did not (a) assess classifiers on multiple criteria and they did not (b) study how variations in the data affect the results. Hence, this paper applies (a) multi-criteria tests while (b) fixing the weaker regions of the training data (using SMOTUNED, which is a self-tuning version of SMOTE). This approach leads to dramatically large increases in software defect predictions. When applied in a 5*5 cross-validation study for 3,681 JAVA classes (containing over a million lines of code) from open source systems, SMOTUNED increased AUC and recall by 60% and 20% respectively. These improvements are independent of the classifier used to predict for quality. Same kind of pattern (improvement) was observed when a comparative analysis of SMOTE and SMOTUNED was done against the most recent class imbalance technique. In conclusion, for software analytic tasks like defect prediction, (1) data pre-processing can be more important than classifier choice, (2) ranking studies are incomplete without such pre-processing, and (3) SMOTUNED is a promising candidate for pre-processing.Comment: 10 pages + 2 references. Accepted to International Conference of Software Engineering (ICSE), 201
    • …
    corecore