2,310 research outputs found

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    Comparative overview of brain perfusion imaging techniques Epub

    Get PDF
    Background and Purpose - Numerous imaging techniques have been developed and applied to evaluate brain hemodynamics. Among these are positron emission tomography, single photon emission computed tomography, Xenon-enhanced computed tomography, dynamic perfusion computed tomography, MRI dynamic susceptibility contrast, arterial spin labeling, and Doppler ultrasound. These techniques give similar information about brain hemodynamics in the form of parameters such as cerebral blood flow or cerebral blood volume. All of them are used to characterize the same types of pathological conditions. However, each technique has its own advantages and drawbacks. Summary of Review - This article addresses the main imaging techniques dedicated to brain hemodynamics. It represents a comparative overview established by consensus among specialists of the various techniques. Conclusions - For clinicians, this article should offer a clearer picture of the pros and cons of currently available brain perfusion imaging techniques and assist them in choosing the proper method for every specific clinical setting

    Cerebral Hemodynamic Disturbances in Motor Neuron Disease

    Get PDF
    An association between motor neuron disease (MND) and dementia was first realized in the late 1800s, yet substantiating research and a description of dementia as part of the clinical syndrome would not appear until the 1990s. In the last two decades, medical imaging has investigated cerebral blood flow changes in the motor and nonmotor cortex to correlate with motor dysfunction and clinical dementia, respectively. The aim of this thesis is to describe early cerebral hemodynamic disturbances with the goal to determine a marker for cognitive decline in MND. Chapter 2 describes the relationship between changes in cerebral hemodynamics and cognition in primary lateral sclerosis (PLS) patients compared to normal controls. Neuropsychological testing revealed subtle frontotemporal changes characterized by executive dysfunction that were associated with global increases in mean transit time (MTT) in grey and white matter, and increased cerebral blood volume (CBV) in the frontotemporal grey matter. Chapter 3 presents a longitudinal clinical study of early cerebral hemodynamic changes in amyotrophic lateral sclerosis (ALS) patients without evidence of cognitive impairment at study onset. This Chapter characterized the relationship between duration of disease and MTT in the cortical grey matter. MTT was found to be the most sensitive indicator of early cerebral hemodynamic change accompanying disease progression in ALS. Furthermore, these findings corroborate the trend of increased MTT in the absence of cognitive impairment found in PLS patients in Chapter 2, and may further indicate that hemodynamic changes may occur before the onset of cognitive impairment. in The aim of Chapter 4 was to elucidate a biological mechanism for increased MTT described in the previous Chapters 2 and 3. A rabbit model of global hypotension was used to demonstrate that MTT is an indicator of cerebral perfusion pressure (CPP). A spectrum of cognitive dysfunction has now been described in MND. The use of sensitive neuropsychological testing has enabled us to identify patients with mild changes in cognitive function from those who are cognitively intact. With the help of this stratification, we were able to show that changes in MTT was associated with disease progression and cognitive impairment. The experimental data presented in this thesis suggest that vascular factors may contribute to cognitive dysfunction in MND

    Analysis of contrast-enhanced medical images.

    Get PDF
    Early detection of human organ diseases is of great importance for the accurate diagnosis and institution of appropriate therapies. This can potentially prevent progression to end-stage disease by detecting precursors that evaluate organ functionality. In addition, it also assists the clinicians for therapy evaluation, tracking diseases progression, and surgery operations. Advances in functional and contrast-enhanced (CE) medical images enabled accurate noninvasive evaluation of organ functionality due to their ability to provide superior anatomical and functional information about the tissue-of-interest. The main objective of this dissertation is to develop a computer-aided diagnostic (CAD) system for analyzing complex data from CE magnetic resonance imaging (MRI). The developed CAD system has been tested in three case studies: (i) early detection of acute renal transplant rejection, (ii) evaluation of myocardial perfusion in patients with ischemic heart disease after heart attack; and (iii), early detection of prostate cancer. However, developing a noninvasive CAD system for the analysis of CE medical images is subject to multiple challenges, including, but are not limited to, image noise and inhomogeneity, nonlinear signal intensity changes of the images over the time course of data acquisition, appearances and shape changes (deformations) of the organ-of-interest during data acquisition, determination of the best features (indexes) that describe the perfusion of a contrast agent (CA) into the tissue. To address these challenges, this dissertation focuses on building new mathematical models and learning techniques that facilitate accurate analysis of CAs perfusion in living organs and include: (i) accurate mathematical models for the segmentation of the object-of-interest, which integrate object shape and appearance features in terms of pixel/voxel-wise image intensities and their spatial interactions; (ii) motion correction techniques that combine both global and local models, which exploit geometric features, rather than image intensities to avoid problems associated with nonlinear intensity variations of the CE images; (iii) fusion of multiple features using the genetic algorithm. The proposed techniques have been integrated into CAD systems that have been tested in, but not limited to, three clinical studies. First, a noninvasive CAD system is proposed for the early and accurate diagnosis of acute renal transplant rejection using dynamic contrast-enhanced MRI (DCE-MRI). Acute rejection–the immunological response of the human immune system to a foreign kidney–is the most sever cause of renal dysfunction among other diagnostic possibilities, including acute tubular necrosis and immune drug toxicity. In the U.S., approximately 17,736 renal transplants are performed annually, and given the limited number of donors, transplanted kidney salvage is an important medical concern. Thus far, biopsy remains the gold standard for the assessment of renal transplant dysfunction, but only as the last resort because of its invasive nature, high cost, and potential morbidity rates. The diagnostic results of the proposed CAD system, based on the analysis of 50 independent in-vivo cases were 96% with a 95% confidence interval. These results clearly demonstrate the promise of the proposed image-based diagnostic CAD system as a supplement to the current technologies, such as nuclear imaging and ultrasonography, to determine the type of kidney dysfunction. Second, a comprehensive CAD system is developed for the characterization of myocardial perfusion and clinical status in heart failure and novel myoregeneration therapy using cardiac first-pass MRI (FP-MRI). Heart failure is considered the most important cause of morbidity and mortality in cardiovascular disease, which affects approximately 6 million U.S. patients annually. Ischemic heart disease is considered the most common underlying cause of heart failure. Therefore, the detection of the heart failure in its earliest forms is essential to prevent its relentless progression to premature death. While current medical studies focus on detecting pathological tissue and assessing contractile function of the diseased heart, this dissertation address the key issue of the effects of the myoregeneration therapy on the associated blood nutrient supply. Quantitative and qualitative assessment in a cohort of 24 perfusion data sets demonstrated the ability of the proposed framework to reveal regional perfusion improvements with therapy, and transmural perfusion differences across the myocardial wall; thus, it can aid in follow-up on treatment for patients undergoing the myoregeneration therapy. Finally, an image-based CAD system for early detection of prostate cancer using DCE-MRI is introduced. Prostate cancer is the most frequently diagnosed malignancy among men and remains the second leading cause of cancer-related death in the USA with more than 238,000 new cases and a mortality rate of about 30,000 in 2013. Therefore, early diagnosis of prostate cancer can improve the effectiveness of treatment and increase the patient’s chance of survival. Currently, needle biopsy is the gold standard for the diagnosis of prostate cancer. However, it is an invasive procedure with high costs and potential morbidity rates. Additionally, it has a higher possibility of producing false positive diagnosis due to relatively small needle biopsy samples. Application of the proposed CAD yield promising results in a cohort of 30 patients that would, in the near future, represent a supplement of the current technologies to determine prostate cancer type. The developed techniques have been compared to the state-of-the-art methods and demonstrated higher accuracy as shown in this dissertation. The proposed models (higher-order spatial interaction models, shape models, motion correction models, and perfusion analysis models) can be used in many of today’s CAD applications for early detection of a variety of diseases and medical conditions, and are expected to notably amplify the accuracy of CAD decisions based on the automated analysis of CE images

    Advanced perfusion quantification methods for dynamic PET and MRI data modelling

    Get PDF
    The functionality of tissues is guaranteed by the capillaries, which supply the microvascular network providing a considerable surface area for exchanges between blood and tissues. Microcirculation is affected by any pathological condition and any change in the blood supply can be used as a biomarker for the diagnosis of lesions and the optimization of the treatment. Nowadays, a number of techniques for the study of perfusion in vivo and in vitro are available. Among the several imaging modalities developed for the study of microcirculation, the analysis of the tissue kinetics of intravenously injected contrast agents or tracers is the most widely used technique. Tissue kinetics can be studied using different modalities: the positive enhancement of the signal in the computed tomography and in the ultrasound dynamic contrast enhancement imaging; T1-weighted MRI or the negative enhancement of T2* weighted MRI signal for the dynamic susceptibility contrast imaging or, finally, the uptake of radiolabelled tracers in dynamic PET imaging. Here we will focus on the perfusion quantification of dynamic PET and MRI data. The kinetics of the contrast agent (or the tracer) can be analysed visually, to define qualitative criteria but, traditionally, quantitative physiological parameters are extracted with the implementation of mathematical models. Serial measurements of the concentration of the tracer (or of the contrast agent) in the tissue of interest, together with the knowledge of an arterial input function, are necessary for the calculation of blood flow or perfusion rates from the wash-in and/or wash-out kinetic rate constants. The results depend on the acquisition conditions (type of imaging device, imaging mode, frequency and total duration of the acquisition), the type of contrast agent or tracer used, the data pre-processing (motion correction, attenuation correction, correction of the signal into concentration) and the data analysis method. As for the MRI, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a non-invasive imaging technique that can be used to measure properties of tissue microvasculature. It is sensitive to differences in blood volume and vascular permeability that can be associated with tumour angiogenesis. DCE-MRI has been investigated for a range of clinical oncologic applications (breast, prostate, cervix, liver, lung, and rectum) including cancer detection, diagnosis, staging, and assessment of treatment response. Tumour microvascular measurements by DCE-MRI have been found to correlate with prognostic factors (such as tumour grade, microvessel density, and vascular endothelial growth factor expression) and with recurrence and survival outcomes. Furthermore, DCE-MRI changes measured during treatment have been shown to correlate with outcome, suggesting a role as a predictive marker. The accuracy of DCE-MRI relies on the ability to model the pharmacokinetics of an injected contrast agent using the signal intensity changes on sequential magnetic resonance images. DCE-MRI data are usually quantified with the application of the pharmacokinetic two-compartment Tofts model (also known as the standard model), which represents the system with the plasma and tissue (extravascular extracellular space) compartments and with the contrast reagent exchange rates between them. This model assumes a negligible contribution from the vascular space and considers the system in, what-is-known as, the fast exchange limit, assuming infinitely fast transcytolemmal water exchange kinetics. In general, the number, as well as any assumption about the compartments, depends on the properties of the contrast agent used (mainly gadolinium) together with the tissue physiology or pathology studied. For this reason, the choice of the model is crucial in the analysis of DCE-MRI data. The value of PET in clinical oncology has been demonstrated with studies in a variety of cancers including colorectal carcinomas, lung tumours, head and neck tumours, primary and metastatic brain tumours, breast carcinoma, lymphoma, melanoma, bone cancers, and other soft-tissue cancers. PET studies of tumours can be performed for several reasons including the quantification of tumour perfusion, the evaluation of tumour metabolism, the tracing of radiolabelled cytostatic agents. In particular, the kinetic analysis of PET imaging has showed, in the past few years, an increasing value in tumour diagnosis, as well as in tumour therapy, through providing additional indicative parameters. Many authors have showed the benefit of kinetic analysis of anticancer drugs after labelling with radionuclide in measuring the specific therapeutic effect bringing to light the feasibility of applying the kinetic analysis to the dynamic acquisition. Quantification methods can involve visual analysis together with compartmental modelling and can be applied to a wide range of different tracers. The increased glycolysis in the most malignancies makes 18F-FDG-PET the most common diagnostic method used in tumour imaging. But, PET metabolic alteration in the target tissue can depend by many other factors. For example, most types of cancer are characterized by increased choline transport and by the overexpression of choline kinase in highly proliferating cells in response to enhanced demand of phosphatidylcholine (prostate, breast, lung, ovarian and colon cancers). This effect can be diagnosed with choline-based tracers as the 18Ffluoromethylcholine (18F-FCH), or the even more stable 18F-D4-Choline. Cellular proliferation is also imaged with 18F-fluorothymidine (FLT), which is trapped within the cytosol after being mono phosphorylated by thymidine kinase-1 (TK1), a principal enzyme in the salvage pathway of DNA synthesis. 18F-FLT has been found to be useful for noninvasive assessment of the proliferation rate of several types of cancer and showed high reproducibility and accuracy in breast and lung cancer tumours. The aim of this thesis is the perfusion quantification of dynamic PET and MRI data of patients with lung, brain, liver, prostate and breast lesions with the application of advanced models. This study covers a wide range of imaging methods and applications, presenting a novel combination of MRI-based perfusion measures with PET kinetic modelling parameters in oncology. It assesses the applicability and stability of perfusion quantification methods, which are not currently used in the routine clinical practice. The main achievements of this work include: 1) the assessment of the stability of perfusion quantification of D4-Choline and 18F-FLT dynamic PET data in lung and liver lesions, respectively (first applications in the literature); 2) the development of a model selection in the analysis of DCE-MRI data of primary brain tumours (first application of the extended shutter speed model); 3) the multiparametric analysis of PET and MRI derived perfusion measurements of primary brain tumour and breast cancer together with the integration of immuohistochemical markers in the prediction of breast cancer subtype (analysis of data acquired on the hybrid PET/MRI scanner). The thesis is structured as follows: - Chapter 1 is an introductive chapter on cancer biology. Basic concepts, including the causes of cancer, cancer hallmarks, available cancer treatments, are described in this first chapter. Furthermore, there are basic concepts of brain, breast, prostate and lung cancers (which are the lesions that have been analysed in this work). - Chapter 2 is about Positron Emission Tomography. After a brief introduction on the basics of PET imaging, together with data acquisition and reconstruction methods, the chapter focuses on PET in the clinical settings. In particular, it shows the quantification techniques of static and dynamic PET data and my results of the application of graphical methods, spectral analysis and compartmental models on dynamic 18F-FDG, 18F-FLT and 18F-D4- Choline PET data of patients with breast, lung cancer and hepatocellular carcinoma. - Chapter 3 is about Magnetic Resonance Imaging. After a brief introduction on the basics of MRI, the chapter focuses on the quantification of perfusion weighted MRI data. In particular, it shows the pharmacokinetic models for the quantification of dynamic contrast enhanced MRI data and my results of the application of the Tofts, the extended Tofts, the shutter speed and the extended shutter speed models on a dataset of patients with brain glioma. - Chapter 4 introduces the multiparametric imaging techniques, in particular the combined PET/CT and the hybrid PET/MRI systems. The last part of the chapter shows the applications of perfusion quantification techniques on a multiparametric study of breast tumour patients, who simultaneously underwent DCE-MRI and 18F-FDG PET on a hybrid PET/MRI scanner. Then the results of a predictive study on the same dataset of breast tumour patients integrated with immunohistochemical markers. Furthermore, the results of a multiparametric study on DCE-MRI and 18F-FCM brain data acquired both on a PET/CT scanner and on an MR scanner, separately. Finally, it will show the application of kinetic analysis in a radiomic study of patients with prostate cancer

    Dynamic Thermal Imaging for Intraoperative Monitoring of Neuronal Activity and Cortical Perfusion

    Get PDF
    Neurosurgery is a demanding medical discipline that requires a complex interplay of several neuroimaging techniques. This allows structural as well as functional information to be recovered and then visualized to the surgeon. In the case of tumor resections this approach allows more fine-grained differentiation of healthy and pathological tissue which positively influences the postoperative outcome as well as the patient's quality of life. In this work, we will discuss several approaches to establish thermal imaging as a novel neuroimaging technique to primarily visualize neural activity and perfusion state in case of ischaemic stroke. Both applications require novel methods for data-preprocessing, visualization, pattern recognition as well as regression analysis of intraoperative thermal imaging. Online multimodal integration of preoperative and intraoperative data is accomplished by a 2D-3D image registration and image fusion framework with an average accuracy of 2.46 mm. In navigated surgeries, the proposed framework generally provides all necessary tools to project intraoperative 2D imaging data onto preoperative 3D volumetric datasets like 3D MR or CT imaging. Additionally, a fast machine learning framework for the recognition of cortical NaCl rinsings will be discussed throughout this thesis. Hereby, the standardized quantification of tissue perfusion by means of an approximated heating model can be achieved. Classifying the parameters of these models yields a map of connected areas, for which we have shown that these areas correlate with the demarcation caused by an ischaemic stroke segmented in postoperative CT datasets. Finally, a semiparametric regression model has been developed for intraoperative neural activity monitoring of the somatosensory cortex by somatosensory evoked potentials. These results were correlated with neural activity of optical imaging. We found that thermal imaging yields comparable results, yet doesn't share the limitations of optical imaging. In this thesis we would like to emphasize that thermal imaging depicts a novel and valid tool for both intraoperative functional and structural neuroimaging

    Radiologic Imaging in Psychiatric Disorders in the Light of Recent Developments

    Get PDF

    A Review on Computer Aided Diagnosis of Acute Brain Stroke.

    Full text link
    Amongst the most common causes of death globally, stroke is one of top three affecting over 100 million people worldwide annually. There are two classes of stroke, namely ischemic stroke (due to impairment of blood supply, accounting for ~70% of all strokes) and hemorrhagic stroke (due to bleeding), both of which can result, if untreated, in permanently damaged brain tissue. The discovery that the affected brain tissue (i.e., 'ischemic penumbra') can be salvaged from permanent damage and the bourgeoning growth in computer aided diagnosis has led to major advances in stroke management. Abiding to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines, we have surveyed a total of 177 research papers published between 2010 and 2021 to highlight the current status and challenges faced by computer aided diagnosis (CAD), machine learning (ML) and deep learning (DL) based techniques for CT and MRI as prime modalities for stroke detection and lesion region segmentation. This work concludes by showcasing the current requirement of this domain, the preferred modality, and prospective research areas
    • 

    corecore