9,580 research outputs found

    Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images

    Get PDF
    This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. © 2004 IEEE.In this paper, we present an adaptive two-pass rank order filter to remove impulse noise in highly corrupted images. When the noise ratio is high, rank order filters, such as the median filter for example, can produce unsatisfactory results. Better results can be obtained by applying the filter twice, which we call two-pass filtering. To further improve the performance, we develop an adaptive two-pass rank order filter. Between the passes of filtering, an adaptive process is used to detect irregularities in the spatial distribution of the estimated impulse noise. The adaptive process then selectively replaces some pixels changed by the first pass of filtering with their original observed pixel values. These pixels are then kept unchanged during the second filtering. In combination, the adaptive process and the sec ond filter eliminate more impulse noise and restore some pixels that are mistakenly altered by the first filtering. As a final result, the reconstructed image maintains a higher degree of fidelity and has a smaller amount of noise. The idea of adaptive two-pass processing can be applied to many rank order filters, such as a center-weighted median filter (CWMF), adaptive CWMF, lower-upper-middle filter, and soft-decision rank-order-mean filter. Results from computer simulations are used to demonstrate the performance of this type of adaptation using a number of basic rank order filters.This work was supported in part by CenSSIS, the Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (NSF) under Award EEC-9986821, by an ARO MURI on Demining under Grant DAAG55-97-1-0013, and by the NSF under Award 0208548

    Adaptive geometric features based filtering impulse noise in colour images

    Get PDF
    An adaptive geometric features based filtering (AGFF) technique with a low computational complexity is proposed for removal of impulse noise in corrupted color images. The effective and efficient detection is based on geometric characteristics and features of the corrupted pixel and/or the pixel region. A progressive restoration mechanism is devised using multi-pass non-linear operations. Through extensive experiments conducted using a wide range of test color images, the proposed filtering technique has demonstrated superior performance to that of well-known benchmark techniques, in terms of objective measurements, the visual image quality and the computational complexity

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level

    Improvement Of Quantized Adaptive Switching Median Filter For Impulse Noise Reduction In Grayscale Digital Image

    Get PDF
    In this dissertation, an improvement to Quantized Adaptive Switching Median filter (QSAM) has been done, to make it more efficient in reducing high density fixedvalued impulse noise from grayscale digital images. QSAM uses the switching approach, where it has noise detection and noise cancellation blocks. This approach minimizes unwanted changes from the filtering process. QSAM also uses adaptive approach, where the filter size is adaptable to the local noise content. QSAM has two main stages. In the first stage, the image is filtered using the filtering window with quantized size. In the second stage, the image is filtered using adaptive window size. Improvement to QSAM has been carried out by replacing the formula used to restore the corrupted pixel. Instead of using the local median value, this proposed method uses the average of the local mean and local median values. Experimental results using three standard grayscale images of size 512 512 pixels show that the proposed method has the ability to restore the corrupted images even up to 95% of corruption. As compared to other thirteen median filters, the proposed method had the lowest Mean Square Error (MSE) and produce outputs with the best visual appearance

    Optimum Median Filter Based on Crow Optimization Algorithm

    Get PDF
    يُقترح مرشح متوسط ​​جديد يعتمد على خوارزميات تحسين الغراب (OMF) لتقليل ضوضاء الملح والفلفل العشوائية وتحسين جودة الصور ذات اللون الرمادي والملونة . الفكرة الرئيسية لهذا النهج هي أن أولاً ، تقوم خوارزمية تحسين الأداء بالكشف عن وحدات البكسل الخاصة بالضوضاء ، واستبدالها بقيمة وسيطة مثالية تبعًا لدالة الأداء. أخيرًا ، تم استخدام نسبة القياس القصوى لنسبة الإشارة إلى الضوضاء (PSNR) ، والتشابه الهيكلي والخطأ المربع المطلق والخطأ التربيعي المتوسط ​​لاختبار أداء المرشحات المقترحة (المرشح الوسيط الأصلي والمحسّن) المستخدمة في الكشف عن الضوضاء وإزالتها من الصور. يحقق المحاكاة استنادًا إلى MATLAB R2019b والنتائج الحالية التي تفيد بأن المرشح المتوسط ​​المحسّن مع خوارزمية تحسين الغراب أكثر فعالية من خوارزمية المرشح المتوسط ​​الأصلية ومرشحات لطرق حديثة ؛ أنها تبين أن العملية المقترحة قوية للحد من مشكلة الخطأ وإزالة الضوضاء بسبب مرشح عامل التصفية المتوسط ​​؛ ستظهر النتائج عن طريق تقليل الخطأ التربيعي المتوسط ​​إلى أدنى أو أقل من (1.5) ، والخطأ المطلق للتساوي (0.22) ,والتشابه الهيكلي اكثر من ( 95%) والحصول على PSNR أكثر من 45dB).) وبنسبة تحسين ( 25%) .          A novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the results present that the improved median filter with crow optimization algorithm is more effective than the original median filter algorithm and some recently methods; they show that the suggested process is robust to reduce the error problem and remove noise because of a candidate of the median filter; the results will show by the minimized mean square error to equal or less than (1.38), absolute error to equal or less than (0.22) ,Structural Similarity (SSIM) to equal (0.9856) and getting PSNR more than (46 dB). Thus, the percentage of improvement in work is (25%)
    corecore