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Adaptive Two-Pass Rank Order Filter to Remove
Impulse Noise in Highly Corrupted Images
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Abstract—In this paper, we present an adaptive two-pass rank
order filter to remove impulse noise in highly corrupted images.
When the noise ratio is high, rank order filters, such as the median
filter for example, can produce unsatisfactory results. Better
results can be obtained by applying the filter twice, which we call
two-pass filtering. To further improve the performance, we de-
velop an adaptive two-pass rank order filter. Between the passes of
filtering, an adaptive process is used to detect irregularities in the
spatial distribution of the estimated impulse noise. The adaptive
process then selectively replaces some pixels changed by the first
pass of filtering with their original observed pixel values. These
pixels are then kept unchanged during the second filtering. In
combination, the adaptive process and the second filter eliminate
more impulse noise and restore some pixels that are mistakenly
altered by the first filtering. As a final result, the reconstructed
image maintains a higher degree of fidelity and has a smaller
amount of noise. The idea of adaptive two-pass processing can
be applied to many rank order filters, such as a center-weighted
median filter (CWMF), adaptive CWMF, lower-upper-middle
filter, and soft-decision rank-order-mean filter. Results from
computer simulations are used to demonstrate the performance of
this type of adaptation using a number of basic rank order filters.

Index Terms—Center-weighted median filter (CWMF), error
index matrix, impulse noise, lower-upper-middle (LUM) filter,
median filter, SD-ROM filter, spatial distribution of impulse noise.

I. INTRODUCTION

I N IMAGE processing, the median filter is usually used to
remove impulse noise [1]. Compared with convolutional

filters, the median filter is more robust in that a single very unrep-
resentative pixel in the filter window will not affect the median
value significantly. Also, since the median must actually be one
of the pixels in the filter window, the median filter does not create
new pixel values when the filter crosses an edge. For this reaso,
the median filter is better at preserving sharp discontinuities than
spatial averaging filters [2]. Unfortunately, the median filter is
prone to alter pixels undisturbed by the noise [2], [3], thereby
causing a number of artifacts including edge jitter [4], [5] and
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streaking [6]. Modified forms of the median filter which still
retain the rank order structure have been proposed to overcome
these shortcomings. Basically, the task is to decide when to
apply the median filter and when to keep pixels unchanged [7].
Among those are center-weighted median filters (CWMFs)
[8]–[11], which give the current pixel a large weight and the final
output is chosen between the median and the current pixel value,
detail-preserving median filters [12], and rank-ordered mean
filter [13] which excludes the current pixel itself from the median
filter, progressive switching median filter (PSM) [14], soft-de-
cision-based filter [7], [15] and predication-based filter [16]. A
different kind of weighted median filter has been proposed by Yin
et al. [17] where a nonnegative integer weight is assigned to each
position in the filter window. Recently, impulse noise removal
based on fuzzy logic has been attracting research effort [18].

In this paper, we propose a method that improves the perfor-
mance of the median filter and other rank order filters by an-
alyzing the spatial distribution of the estimated impulse noise.
The impulse noise is estimated by subtracting the rank order
filter output from the observation. Using an underlying rank
order filter, be it a standard median filter, CWMF, soft-deci-
sion rank-order-mean filter (SD-ROM) filter or the like, our
method looks for irregularities in the spatial distribution of the
estimated impulse noise over a subset of the image. The subset
can be a column or a row. Once an irregularity is detected, some
pixels changed by the first filtering are replaced by their orig-
inal pixel values and subsequently kept unchanged during the
second pass of the filter. Irregularities are detected adaptively in
a decision-theoretic framework by scanning the image in a spe-
cific direction.

Our method aims to achieve two objectives. First, the algo-
rithm uses two-pass rank order filtering to remove more noise
than is normally the case when the noise ratio is high. Second, by
exploiting the spatial distribution of the estimated impulse noise
the algorithm corrects errors made by the first pass filtering op-
eration. By doing so, improved results are obtained in terms of
better visual appreciation and higher peak signal-to-noise ratio
(PSNR) again relative to the single-pass, nonadaptive version of
these rank order filters.

For concreteness, the details of our method are described in
the context of a median filter although: 1) where appropriate,
we indicate the minor changes required to employ the technique
using any rank order filter and 2) in the examples at the end of
the paper, we do in fact validate the performance using a number
of such filtering options.

The paper is organized as follows. Section II discusses im-
pulse noise models, the standard median filter, and presents
our adaptive, two-pass approach. Section III demonstrates the
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performance of our algorithm using a number of common test
images. We also extend the idea of adaptive two-pass filtering
to other popular rank order filters and show that improved re-
sults are obtained in each case. Finally, conclusions are given in
Section IV.

II. ALGORITHM

In this section, we start by briefly describing the impulse
noise model and the standard median filter. Then we introduce
an adaptive two-pass median filtering (ATPMF) process. And it
will be made clear that the key part of our method is independent
of the underlying impulse noise detection scheme and therefore
our method can be generalized to other rank order filters in a
straightforward manner.

A. Noise Model

We define the noise ratio as

(1)
Impulse noise can be described by a joint probability distribu-
tion describing the spatial distribution of the impulses as well as
their amplitudes. As is typically the case, these two quantities
are considered to be independent. Hence, denoting an
matrix as the impulse noise, mathematically we can write

(2)

where matrix , a matrix of size , represents the
positions of the impulse noise , a matrix of size

represents the amplitudes of the impulse noise at each pixel
position, and denotes the point-by-point multiplication. For
the noise model, we assume that the impulse noise satisfies a
binary distribution at each pixel

(3)

where . The binary distribution indicates that at
position , the probability that there is an impulse noise is
and probability is that there is no impulse noise. Intuitively,

equals the noise ratio. In typical applications, the amplitude
of impulse noise is assumed to be fixed or follow Gaussian or
uniform distribution.

B. Standard Median Filter and Types of Error

Consider an image and an observation of size

(4)

where is the impulse noise. In the above model, noise is ad-
ditive to the signal. In simulation, clipping at pixel value 255
is applied to keep the simulated corrupted pixel value within
the range from 0 to 255, for an 8-bit monochrome image. The
median filter is applied over a window surrounding the current
pixel as

(5)

where is a predetermined window. Usually, is chosen to
be 3 3, 5 5, or 7 7 [2].

In detecting and removing impulse noise, the median filter
makes can make a number of different types of mistakes. Type
I errors (also known as misses [19]) occur when there is noise
corrpting a pixel but the median filter does not detect it. False
alarms, Type II errors happen when the median filter detects
an impulse noise when there is actually no noise. For example,
assuming a signal is given by

(6)

and there is no noise, at position (3, 3), the 3 3 median filter
will generate the result (here we assume that at the boundaries,
the median filter symmetrically extends before finding the
median value in the filter window)

(7)

which is a Type II error.
Additionally, the median filter is also prone to a third type of

difficulty, which we call over-correcting and label it Type III
error. This type of error happens when there is impulse noise of
low amplitude and the median filter removes the impulse noise
and replaces it with the median value of in the filter window.
When the median value is not as close to the true pixel value
as the noisy pixel is, an over-correcting error occurs. Using the
above signal for example and assuming there is a low amplitude
impulse noise such as

(8)

then the observation will be

(9)

To find the correct value at position (3,3), the 3 3 median filter
will generate a result of

(10)

instead of the original signal. In this case, the output is incor-
rect and moreover, the output of median filter has a larger error
than the original noisy observation. Therefore, it is beneficial to
adaptively choose when to keep median filter output and when
to keep the original pixel value.
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Fig. 1. Steps of adaptive method.

Fig. 2. Adaptive processor 	 to detect impulse noise.

C. ATPMF to Detect Impulse Noise

To improve the performance of the median filter, we intro-
duce an ATPMF. The idea here is to use the first pass of the
median filter to clean up the image and obtain an estimate of the
spatial distribution and amplitude of the impulse noise. Using
the estimated impulse noise, an adaptive process is carried out
to selectively replace some pixels by the original pixel values of

. These pixels are kept unchanged in the second median fil-
tering, which is used to remove additional noise.

To facilitate the discussion, we introduce two operators. The
first operator takes a vector or matrix input and marks
nonzero elements of the input by one and assigns zeros to
other elements

if
if

(11)

For example

(12)

The second operator takes a vector , where
denotes the transpose and returns the positions of the first

smallest elements of

(13)

For example, if , then

(14)

We now describe the three steps of our algorithm—see
Fig. 1. Step 1 is the standard median filtering, (5). The matrix

, which we call the error index matrix (EIM), records pixel
positions of different from . Pixels at these positions are
supposedly contaminated by impulse noise. Step 2 analyzes
and to determine which pixels are most likely over-cor-
rected by the first median filter. The over-corrected pixels are
then replaced by their original values and kept unchanged in
the third step. Step 2 also generates the second error index ma-
trix which determines which pixels remain unchanged in
Step 3. Step 3 carries out the second pass of filtering wherever

.
Details of Step 2 are given in Fig. 2. Here, the notation

stands for the th column of a matrix . In Step 2-a,
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Fig. 3. Standard median filter to remove impulse noise: (a) original image; (b) noisy observation; (c) restored image by the 3� 3 median filter; and (d) restored
image by the ATPMF. Noise ratio is 25%. Impulse noise has a Gaussian distribution with mean 30 and standard deviation of 5.

predetermined parameter controls the threshold of detecting
a column over-corrected and controls how many pixels will
be replaced by their original values. Step 2-b and 2-c loop
over subimages to remedy over-correction. In Fig. 2, we apply
the ATPMF by column. It can be easily modified to proceed
by row. In Step 2, the columnwise noise ratio is first estimated
as

(19)

Second, we compute the mean and standard deviation of
. For an impulse noise satisfying a binary distribution, by

the De Moivre-Laplace theorem [20], as goes large, will
approximate a Gaussian distribution where

and .
Before moving on, we note that because Step 2 of our ap-

proach operates only on those pixels identified in the first step

as contaminated, it is in fact independent of the filter used in
Step 1. Therefore, we can replace the standard median filter in
Step 1 by any other rank order filter, as we will show in next
section.

Fig. 3(a)–(c) shows a true image, a noisy observation , and
the restored image by the 3 3 median filter. The impulse noise
has a Gaussian distribution in amplitude and a noise ratio of
25%. Fig. 3(d) shows the result obtained by ATPMF. It is seen
that the ATPMF produces a cleaner image than the standard me-
dian filter.

Fig. 4(a) plots using the normplot command of the
MATLAB, for a true sample of impulse noise. It is seen that the
curve matches a Gaussian distribution very well. Fig. 4(b) plots
the estimated for the example shown in Fig. 3. It is seen
that the estimated number of noisy pixels per column is close
to a Gaussian distribution. Therefore when differs too
much from , it is believed that some pixels of column are
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Fig. 4. (a) True columnwise distribution of noisy pixels. (b) Estimated columnwise distribution of noisy pixels by the 3� 3 median filter. Horizontal axis: number
of noisy pixels in a column. Vertical axis is the probability of a column of such number of noisy pixels. A straight line of “+” represents a Gaussian distribution.

over-corrected by the first median filter and should be replaced
by the original pixels. Using and , at each column we
make a one-side parameter test

(20)

or equivalently (after subtracting from the observation)

(21)

where and is unknown, to detect columns containing
unlikely large number of impulse noise. The null hypothesis in-
dicates that the number of pixels containing impulse noise in the

th column is reasonably small and most of those pixels altered
by the median filter truly contain impulse noise. The alternative
hypothesis represents the case that there is a excessively large
number of pixels altered by the median filter and therefore it
is likely some of these pixels do not contain impulse noise and
are mistakenly changed by median filtering. Although is un-
known, knowing that allows us to find a uniformly most
powerful (UMP) test [21] using the Neyman–Pearson criterion.
The Neyman–Pearson test is to decide if [19]

(22)

where is a preset threshold. Taking the logarithm of and sim-
plifying (22), we have

(23)

Since , we then have

(24)

The probability of false-alarm is

(25)

where can be decided by pre-selecting the and is
the complementary cumulative distribution function of a stan-
dard Gaussian probability density function. Then solving the
following equation gives :

(26)

which is independent of . After finding from (26), the prob-
ability of detection is given by

(27)

The above test is UMP in the sense that for a fixed , it
yields the highest among all the tests [21]. As expected,
increasing (or ) reduces both and , and vice versa.
In Section III, we investigate the effect of different on the
performance of the ATPMF.

D. Choice of and in Step-2

In Step-2, and can be chosen based on how tight the
Gaussian distribution in columnwise noise ratio shall be. In
other words, we can choose how much deviation is acceptable
between the and before we declare there is over-cor-
rection in column . For example, we can choose so
that if a columnwise noise ratio deviates from the mean value
by one standard deviation, we will consider that column being
over-corrected by the first filtering. Similarly, we can set
to correct that many pixels in the column.

E. Different Implementations

In the above algorithm, the adaptive process is carried out
column by column. On the other hand, the adaptive process can
be implemented by rows. Fig. 5 shows the restored images of
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Fig. 5. Different implementation. (a) Noisy observation of “Lena,” noise ratio is 35%. (b) Restored image by a standard 5 � 5 filter, PSNR = 20:8517 (dB).
(c) Restored image by ATPMF implemented in columns,PSNR = 22:8672 (dB). (d) Restored image by ATPMF implemented in rows,PSNR = 22:7692 (dB).

“Lena” by the 5 5 median filter and by an ATPMF imple-
mented in columns and in rows. For the adaptive two-pass filter,
we set and . Comparing the two images of ATPMF,
we see there is little difference between them, yet they both are
much better than the standard median filter output.

F. Computational Issue

Because of the increased steps of computation, the computa-
tional time of applying adaptive two-pass filtering is longer than
one-pass filtering. The most time-consuming part of our method
is to run the underlying rank order based filter. The adaptive part
of our method, i.e., Step 2 in Fig. 1, takes much less time to
complete. Depending on the underlying filter used, step 2 takes
about 3% to 5% of the total computational time.

III. EXAMPLES

In this section, we use some examples to demonstrate the
performance of our algorithm and generalize the idea of our

Fig. 6. PSNR of “Lena.” Dashed line: 3� 3 median filter. Dashed-dotted line:
two-pass 3� 3 median filter. Solid line: ATPMF. For the ATPMF, the underlying
median filter window is 3 � 3 and a = 1, b = 1.



244 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 2, FEBRUARY 2004

Fig. 7. Median filter to remove impulse noise. (a) Original image. (b) Noisy observation, noise ratio is 30%. (c) Restored image by the 3 � 3 median filter,
PSNR = 24:3833 (dB). (d) Restored image by the ATPMF, PSNR = 25:8376 (dB). Adaptive process is implemented in columns with a = 1, b = 1.

method to other rank-order-based filters such as CWMF, adap-
tive weighted median filter, lower-upper-middle (LUM) filter,
and SD-ROM filter. Quantitatively, we use PSNR to compare
the restored images with and without using the adaptive process.
For a final output image , the PSNR is defined as

A. Detect Impulse Noise Based on Median Filter

Fig. 6 compares the PSNR of the standard median filter, the
two-pass median filter and the ATPMF obtained in processing
the “Lena” image. At high noise ratios, the ATPMF results have
much higher PSNR than those of the standard median filter.
It is interesting to observe that by simple two-pass median fil-
tering, results become modestly better. By introducing the adap-
tive process between two median filters, much improved PSNRs

are obtained at all noise ratios, especially above 30%. In the
ATPMF, and are set to 1. For the second example, we use
the “boat” image. Fig. 7 shows the original image, a noisy ob-
servation at a ratio noise of 30%, restored images by the 3
3 median filter and the ATPMF. Fig. 8 shows the result of pro-
cessing the “boat” image contaminated by impulse noise with a
uniform distribution in amplitude.

B. Effect of on the ATPMF Performance

In the above section, we showed that by modeling the
detection problem as a one side parameter hypothesis testing,
we can find a UMP test based on Neyman–Pearson criterion.
Here, we investigate the effect of on the performance of the
ATPMF. Fig. 9 plots the PSNR of the “Lena” image restored
by a two-pass median filter and the ATPMF for different . As

increases, PSNR increases at first and then decreases. As a
threshold, controls how many “abnormal” noisy pixels will
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Fig. 8. Restored “boat” image by: (a) the 3 � 3 median filter, PSNR = 25:0612 (dB) and (b) an ATPMF implemented in rows, a = 1, b = 1, PSNR =
27:7221 (dB). Noise ratio is 20%. Noise has a uniform distribution between 0 and 80.

Fig. 9. PSNR of “Lena” for different �. Dashed line: standard median filter.
Dashed-dotted line: two-pass median filter. Solid line: ATPMF. Note that the
standard median filter is not affected by the choice of �, and therefore its plot is
a straight line. The noise ratio is 25% and noise has a Gaussian distribution for
the amplitude.

be detected. An too small will declare too many noisy pixels
“abnormal” and have the risk of over-correcting the results fol-
lowing the first pass of the filter. A large raises the threshold
and detects a small number of “abnormal” noisy pixels and
therefore have reduced improvement in performance. While a
proper can be chosen based on prior information about the
hardware, the noise ratio, and the type of image to be processed,
we note that for this example at least, the performance of the
ATPMF for any reasonable is significantly better than a
standard median filter.

C. Generalization to Other Rank Order Filters

In recent years, many algorithms have been proposed to re-
duce impulse noise. Some of them are CWMF [10], [11], [17],

adaptive center weighted median filter (ACWMF) [13], LUM
filter [22], and SD-ROM filter [15]. In this section, we apply
our algorithm to these filters and show that improved results are
obtained in each case, respectively.

Table I shows the results of removing impulse noise with
a random amplitude satisfying a Gaussian distribution. In the
table, the second row shows the PSNR of using the standard 3

3 median filter (MF), CWMF with a filter window of 3 3
and a center weight of 5, ACWMF, LUM filter of (5, 5, 13) [22],
and SD-ROM. The third row shows the results of applying our
algorithm based on the corresponding filter. For all the exam-
ples, we set and in the adaptive process. It is seen
that our algorithm improves the result of each filter, respectively.
As expected, the better the performance of the underlying rank
order filter, the better the results of the adaptive two-pass coun-
terpart.

Table II shows the results of processing for an impulse noise
with a uniform distribution between 0 and 120 while Table III
summarizes the performance when the amplitude value is fixed
at 100. From both tables we can see that our algorithm improves
the performance of the underlying rank order filters.

D. Processing Salt and Pepper Noise

Rank order filters are very effective in removing salt and
pepper noise. In our algorithm, the adaptive part can be easily
modified to remove salt and pepper noise by change (18) in
Step-2 to

(28)

Table IV shows the result of removing salt and pepper
noise from the image of “Lena” using different rank order
filters. As in the previous example, the addition of a second
pass and adaptivity in the filtering leads to improvements in
performance.



246 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 2, FEBRUARY 2004

TABLE I
IMAGE OF “LENA,” NOISE RATIO IS 30%, GAUSSIAN DISTRIBUTION IN AMPLITUDE

TABLE II
IMAGE OF “LENA,” NOISE RATIO IS 30%, UNIFORM DISTRIBUTION IN AMPLITUDE BETWEEN 0 AND 120

TABLE III
IMAGE OF “LENA,” NOISE RATIO IS 30%, IMPULSE NOISE WITH FIXED VALUE OF 100

TABLE IV
IMAGE OF “LENA,” NOISE RATIO IS 30%, SALT & PEPPER NOISE, GAUSSIAN DISTRIBUTION IN AMPLITUDE

IV. CONCLUSION

We presented an adaptive rank order filtering process to
remove impulse noise in highly corrupted images. The adaptive
filter is based on an underlying rank order filter such as the
standard median filter, CWMF, adaptive weighted median filter,
LUM filter, and SD-ROM filter. The adaptive process detects
irregularities in the spatial distribution of the estimated impulse
noise. By analyzing the first error index matrix, detection is
accomplished using tools fro hypothesis testing theory. The
method is able to correct some false alarms caused by the first
filtering and remove remaining noise. We have shown that the
adaptive filter performs better than using the underlying filter
alone in removing impulse noise and reducing false alarms.
Using test images and comparing the PSNR of the adaptive
filter with those of the underlying filter, we demonstrated the
improved performance of our method, especially at high noise
ratios, on simulated images.
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