5,069 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Vehicle to Vehicle (V2V) Communication for Collision Avoidance for Multi-Copters Flying in UTM -TCL4

    Get PDF
    NASAs UAS Traffic management (UTM) research initiative is aimed at identifying requirements for safe autonomous operations of UAS operating in dense urban environments. For complete autonomous operations vehicle to vehicle (V2V) communications has been identified as an essential tool. In this paper we simulate a complete urban operations in an high fidelity simulation environment. We design a V2V communication protocol and all the vehicles participating communicate over this system. We show how V2V communication can be used for finding feasible, collision-free paths for multi agent systems. Different collision avoidance schemes are explored and an end to end simulation study shows the use of V2V communication for UTM TCL4 deployment

    Testing Enabling Technologies for Safe UAS Urban Operations

    Get PDF
    A set of more than 100 flight operations were conducted at NASA Langley Research Center using small UAS (sUAS) to demonstrate, test, and evaluate a set of technologies and an overarching air-ground system concept aimed at enabling safety. The research vehicle was tracked continuously during nominal traversal of planned flight paths while autonomously operating over moderately populated land. For selected flights, off-nominal risks were introduced, including vehicle-to-vehicle (V2V) encounters. Three contingency maneuvers were demonstrated that provide safe responses. These maneuvers made use of an integrated air/ground platform and two on-board autonomous capabilities. Flight data was monitored and recorded with multiple ground systems and was forwarded in real time to a UAS traffic management (UTM) server for airspace coordination and supervision

    Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments

    Get PDF
    The use of multiple aerial vehicles for autonomous missions is turning into commonplace. In many of these applications, the Unmanned Aerial Vehicles (UAVs) have to cooperate and navigate in a shared airspace, becoming 3D collision avoidance a relevant issue. Outdoor scenarios impose additional challenges: (i) accurate positioning systems are costly; (ii) communication can be unreliable or delayed; and (iii) external conditions like wind gusts affect UAVs’ maneuverability. In this paper, we present 3D-SWAP, a decentralized algorithm for 3D collision avoidance with multiple UAVs. 3D-SWAP operates reactively without high computational requirements and allows UAVs to integrate measurements from their local sensors with positions of other teammates within communication range. We tested 3D-SWAP with our team of custom-designed UAVs. First, we used a Software-In-The-Loop simulator for system integration and evaluation. Second, we run field experiments with up to three UAVs in an outdoor scenario with uncontrolled conditions (i.e., noisy positioning systems, wind gusts, etc). We report our results and our procedures for this field experimentation.European Union’s Horizon 2020 research and innovation programme No 731667 (MULTIDRONE
    corecore