58 research outputs found

    A Configurable Validation Environment for Refactored Embedded Software : an Application to the Vertical Transport Domain

    Get PDF
    As systems evolve, their embedded software needs constantly to be refactored. Moreover, given the different needs of different customers, embedded systems require to be customizable. The variability of these systems is large, and requires automated testing solutions. In this paper we propose a methodology that automatically generates validation environments for highly configurable embedded software that is being refactored. The method has allowed for systematically testing a real-world industrial case study involving the software in charge of controlling the doors of an elevator. Finally, we extract the lessons learned from its application

    A multi-level approach for supporting configurations: A new perspective on software product line engineering

    Get PDF
    Configuration is a common way in many markets to cope with reduc- ing costs and improving customer satisfaction. There are various approaches to represent product configurations, the most common of which is feature model- ing. However, feature models suffer from principal limitations, including ambi- guity and lack of abstraction, increasing maintainability effort and limiting lifecycle support. In this paper, we suggest using a multi-level modeling ap- proach to improve flexibility, reuse, and integrity and demonstrate the ad- vantages of the approach over feature modeling

    A Generic System for Automotive Software Over the Air (SOTA) Updates Allowing Efficient Variant and Release Management

    Get PDF
    The introduction of Software Over The Air (SOTA) Updates in the automotive industry offers both the Original Equipment Manufacturer and the driver many advantages such as cost savings through inexpensive over the air bug fixes. Furthermore, it enables enhancing the capabilities of future vehicles throughout their life-cycle. However, before making SOTA a reality for safety-critical automotive functions, major challenges must be deeply studied and resolved: namely the related security risks and the required high system safety. The security concerns are primarily related to the attack and manipulation threats of wireless connected and update-capable cars. The functional safety requirements must be fulfilled despite the agility needed by some software updates and the typically high variants numbers. We studied the state of the art and developed a generic SOTA updates system based on a Server-Client architecture and covering main security and safety aspects including a rollback capability. The proposed system offers release and variant management, which is the main novelty of this work. The proof of concept implementation with a server running on a host PC and an exemplary Electric/Electronic network showed the feasibility and the benefits of SOTA updates

    Variability analysis for robot operating system applications

    Get PDF
    Robotic applications are often designed to be reusable and configurable. Sometimes, due to the different supported software and hardware components, as well as the different implemented robot capabilities, the total number of possible configurations for a single system can be extremely large. In these scenarios, understanding how different configurations coexist and which components and capabilities are compatible with each other is a significant time sink both for developers and end users alike. In this paper, we present a static analysis tool, specifically designed for robotic software developed for the Robot Operating System (ROS), that is capable of presenting a graphical and interactive overview of the system's runtime variability, with the goal of simplifying the deployment of the desired robot configuration.The research leading to these results has received funding support from the projects: “STEROID - Verification and Validation of ADAS Components for Intelligent Vehicles of the Future” from the European Union Financial Support (FEDER) under grant agreement No. 69989; “NORTE-06-3559-FSE-000046 - Emprego altamente qualificado nas empresas – Contratação de Recursos Humanos Altamente Qualificados (PME ou CoLAB)” financed by the Norte’s Regional Operational Programme (NORTE 2020) through the European Social Fund (ESF); and National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Understanding Variability-Aware Analysis in Low-Maturity Variant-Rich Systems

    Get PDF
    Context: Software systems often exist in many variants to support varying stakeholder requirements, such as specific market segments or hardware constraints. Systems with many variants (a.k.a. variant-rich systems) are highly complex due to the variability introduced to support customization. As such, assuring the quality of these systems is also challenging since traditional single-system analysis techniques do not scale when applied. To tackle this complexity, several variability-aware analysis techniques have been conceived in the last two decades to assure the quality of a branch of variant-rich systems called software product lines. Unfortunately, these techniques find little application in practice since many organizations do use product-line engineering techniques, but instead rely on low-maturity \clo~strategies to manage their software variants. For instance, to perform an analysis that checks that all possible variants that can be configured by customers (or vendors) in a car personalization system conform to specified performance requirements, an organization needs to explicitly model system variability. However, in low-maturity variant-rich systems, this and similar kinds of analyses are challenging to perform due to (i) immature architectures that do not systematically account for variability, (ii) redundancy that is not exploited to reduce analysis effort, and (iii) missing essential meta-information, such as relationships between features and their implementation in source code.Objective: The overarching goal of the PhD is to facilitate quality assurance in low-maturity variant-rich systems. Consequently, in the first part of the PhD (comprising this thesis) we focus on gaining a better understanding of quality assurance needs in such systems and of their properties.Method: Our objectives are met by means of (i) knowledge-seeking research through case studies of open-source systems as well as surveys and interviews with practitioners; and (ii) solution-seeking research through the implementation and systematic evaluation of a recommender system that supports recording the information necessary for quality assurance in low-maturity variant-rich systems. With the former, we investigate, among other things, industrial needs and practices for analyzing variant-rich systems; and with the latter, we seek to understand how to obtain information necessary to leverage variability-aware analyses.Results: Four main results emerge from this thesis: first, we present the state-of-practice in assuring the quality of variant-rich systems, second, we present our empirical understanding of features and their characteristics, including information sources for locating them; third, we present our understanding of how best developers\u27 proactive feature location activities can be supported during development; and lastly, we present our understanding of how features are used in the code of non-modular variant-rich systems, taking the case of feature scattering in the Linux kernel.Future work: In the second part of the PhD, we will focus on processes for adapting variability-aware analyses to low-maturity variant-rich systems.Keywords:\ua0Variant-rich Systems, Quality Assurance, Low Maturity Software Systems, Recommender Syste

    Seamless Variability Management With the Virtual Platform

    Get PDF
    Customization is a general trend in software engineering, demanding systems that support variable stakeholder requirements. Two opposing strategies are commonly used to create variants: software clone & own and software configuration with an integrated platform. Organizations often start with the former, which is cheap, agile, and supports quick innovation, but does not scale. The latter scales by establishing an integrated platform that shares software assets between variants, but requires high up-front investments or risky migration processes. So, could we have a method that allows an easy transition or even combine the benefits of both strategies? We propose a method and tool that supports a truly incremental development of variant-rich systems, exploiting a spectrum between both opposing strategies. We design, formalize, and prototype the variability-management framework virtual platform. It bridges clone & own and platform-oriented development. Relying on programming-language-independent conceptual structures representing software assets, it offers operators for engineering and evolving a system, comprising: traditional, asset-oriented operators and novel, feature-oriented operators for incrementally adopting concepts of an integrated platform. The operators record meta-data that is exploited by other operators to support the transition. Among others, they eliminate expensive feature-location effort or the need to trace clones. Our evaluation simulates the evolution of a real-world, clone-based system, measuring its costs and benefits.Comment: 13 pages, 10 figures; accepted for publication at the 43rd International Conference on Software Engineering (ICSE 2021), main technical trac
    corecore