11 research outputs found

    Novel closed-loop approaches for precise relative navigation of widely separated GPS receivers in LEO

    Get PDF
    This paper deals with the relative navigation of a formation of two spacecrafts separated by hundreds of kilometers based on processing dual-frequency differential carrier-phase GPS measurements. Specific requirements of the considered application are high relative positioning accuracy and real-time on board implementation. These can be conflicting requirements. Indeed, if on one hand high accuracy can be achieved by exploiting the integer nature of double-difference carrier-phase ambiguities, on the other hand the presence of large ephemeris errors and differential ionospheric delays makes the integer ambiguities determination challenging. Closed-loop schemes, which update the relative position estimates of a dynamic filter with feedback from integer ambiguities fixing algorithms, are customarily employed in these cases. This paper further elaborates such approaches, proposing novel closed loop techniques aimed at overcoming some of the limitations of traditional algorithms. They extend techniques developed for spaceborne long baseline relative positioning by making use of an on-the-fly ambiguity resolution technique especially developed for the applications of interest. Such techniques blend together ionospheric delay compensation techniques, nonlinear models of relative spacecraft dynamics, and partial integer validation techniques. The approaches are validated using flight data from the Gravity Recovery and Climate Experiment (GRACE) mission. Performance is compared to that of the traditional closed-loop scheme analyzing the capability of each scheme to maximize the percentage of correctly fixed integer ambiguities as well as the relative positioning accuracy. Results show that the proposed approach substantially improves performance of the traditional approaches. More specifically, centimeter-level root-mean square relative positioning is feasible for spacecraft separations of more than 260 km, and an integer ambiguity fixing performance as high as 98% is achieved in a 1-day long dataset. Results also show that approaches exploiting ionospheric delay models are more robust and precise of approaches relying on ionospheric-delay removal techniques. © 2013 IAA

    A linear time-varying approach for robustness analyses of a re-entry flight technology demonstrator

    Get PDF
    A novel robustness analysis technique is proposed for atmospheric re-entry applications. The problem is stated as a finite time stability (FTS) analysis of linear time-varying (LTV) systems on a compact time domain, subject to bounded variations in initial state and unknown parameters. The FTS property is formulated as the inclusion of all the possible system trajectories into a pre-specified time-varying subset of the state space. Based on assuming the involved sets are polytopes, the proposed approach allows deducing the system FTS from the property verification on a limited number of numerically computed system trajectories. An additional result is presented which allows determination of a conservative estimate of the maximum norm-bound of time-varying perturbations under which the LTV system remains finite time stable. Results of the application of the proposed technique to a re-entry technology demonstrator are presented which demonstrate its effectiveness in complementing conventional linear time invariant-based analyses. Results also show that it is computationally viable and allows linking the system robustness to a quantitative analysis of the system trajectory dispersion around the nominal one due to concurrent initial state dispersion and uncertain parameters effects, which aids in evaluating mission objectives fulfillment

    Robust Stochastic Design of Linear Controlled Systems for Performance Optimization

    Get PDF
    This study discusses a robust controller synthesis methodology for linear, time invariant systems, under probabilistic parameter uncertainty. Optimization of probabilistic performance robustness for [script H]_2 and multi-objective [script H]_2 measures is investigated, as well as for performance measures based on first-passage system reliability. The control optimization approaches proposed here exploit recent advances in stochastic simulation techniques. The approach is illustrated for vibration response suppression of a civil structure. The results illustrate that, for problems with probabilistic uncertainty, the explicit optimization of probabilistic performance robustness can result in markedly different optimal feedback laws, as well as enhanced performance robustness, when compared to traditional “worst-case” notions of robust optimal control

    Probabilistic Methods for Model Validation

    Get PDF
    This dissertation develops a probabilistic method for validation and verification (V&V) of uncertain nonlinear systems. Existing systems-control literature on model and controller V&V either deal with linear systems with norm-bounded uncertainties,or consider nonlinear systems in set-based and moment based framework. These existing methods deal with model invalidation or falsification, rather than assessing the quality of a model with respect to measured data. In this dissertation, an axiomatic framework for model validation is proposed in probabilistically relaxed sense, that instead of simply invalidating a model, seeks to quantify the "degree of validation". To develop this framework, novel algorithms for uncertainty propagation have been proposed for both deterministic and stochastic nonlinear systems in continuous time. For the deterministic flow, we compute the time-varying joint probability density functions over the state space, by solving the Liouville equation via method-of-characteristics. For the stochastic flow, we propose an approximation algorithm that combines the method-of-characteristics solution of Liouville equation with the Karhunen-Lo eve expansion of process noise, thus enabling an indirect solution of Fokker-Planck equation, governing the evolution of joint probability density functions. The efficacy of these algorithms are demonstrated for risk assessment in Mars entry-descent-landing, and for nonlinear estimation. Next, the V&V problem is formulated in terms of Monge-Kantorovich optimal transport, naturally giving rise to a metric, called Wasserstein metric, on the space of probability densities. It is shown that the resulting computation leads to solving a linear program at each time of measurement availability, and computational complexity results for the same are derived. Probabilistic guarantees in average and worst case sense, are given for the validation oracle resulting from the proposed method. The framework is demonstrated for nonlinear robustness veri cation of F-16 flight controllers, subject to probabilistic uncertainties. Frequency domain interpretations for the proposed framework are derived for linear systems, and its connections with existing nonlinear model validation methods are pointed out. In particular, we show that the asymptotic Wasserstein gap between two single-output linear time invariant systems excited by Gaussian white noise, is the difference between their average gains, up to a scaling by the strength of the input noise. A geometric interpretation of this result allows us to propose an intrinsic normalization of the Wasserstein gap, which in turn allows us to compare it with classical systems-theoretic metrics like v-gap. Next, it is shown that the optimal transport map can be used to automatically refine the model. This model refinement formulation leads to solving a non-smooth convex optimization problem. Examples are given to demonstrate how proximal operator splitting based computation enables numerically solving the same. This method is applied for nite-time feedback control of probability density functions, and for data driven modeling of dynamical systems

    A survey of randomized algorithms for control synthesis and performance verification

    Get PDF
    AbstractIn this paper, we present an overview of probabilistic techniques based on randomized algorithms for solving “hard’’ problems arising in performance verification and control of complex systems. This area is fairly recent, even though its roots lie in the robustness techniques for handling uncertain control systems developed in the 1980s. In contrast to these deterministic techniques, the main ingredient of the methods discussed in this survey is the use of probabilistic concepts. The introduction of probability and random sampling permits overcoming the fundamental tradeoff between numerical complexity and conservatism that lie at the roots of the worst-case deterministic methodology. The simplicity of implementation of randomized techniques may also help bridging the gap between theory and practical applications
    corecore