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ABSTRACT

This dissertation develops a probabilistic method for validation and verification

(V&V) of uncertain nonlinear systems. Existing systems-control literature on model

and controller V&V either deal with linear systems with norm-bounded uncertainties,

or consider nonlinear systems in set-based and moment based framework. These ex-

isting methods deal with model invalidation or falsification, rather than assessing the

quality of a model with respect to measured data. In this dissertation, an axiomatic

framework for model validation is proposed in probabilistically relaxed sense, that

instead of simply invalidating a model, seeks to quantify the “degree of validation”.

To develop this framework, novel algorithms for uncertainty propagation have

been proposed for both deterministic and stochastic nonlinear systems in continu-

ous time. For the deterministic flow, we compute the time-varying joint probability

density functions over the state space, by solving the Liouville equation via method-

of-characteristics. For the stochastic flow, we propose an approximation algorithm

that combines the method-of-characteristics solution of Liouville equation with the

Karhunen-Loève expansion of process noise, thus enabling an indirect solution of

Fokker-Planck equation, governing the evolution of joint probability density func-

tions. The efficacy of these algorithms are demonstrated for risk assessment in Mars

entry-descent-landing, and for nonlinear estimation. Next, the V&V problem is for-

mulated in terms of Monge-Kantorovich optimal transport, naturally giving rise to a

metric, called Wasserstein metric, on the space of probability densities. It is shown

that the resulting computation leads to solving a linear program at each time of mea-

surement availability, and computational complexity results for the same are derived.

Probabilistic guarantees in average and worst case sense, are given for the valida-
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tion oracle resulting from the proposed method. The framework is demonstrated for

nonlinear robustness verification of F-16 flight controllers, subject to probabilistic

uncertainties.

Frequency domain interpretations for the proposed framework are derived for

linear systems, and its connections with existing nonlinear model validation methods

are pointed out. In particular, we show that the asymptotic Wasserstein gap between

two single-output linear time invariant systems excited by Gaussian white noise,

is the difference between their average gains, up to a scaling by the strength of

the input noise. A geometric interpretation of this result allows us to propose an

intrinsic normalization of the Wasserstein gap, which in turn allows us to compare it

with classical systems-theoretic metrics like ν-gap. Next, it is shown that the optimal

transport map can be used to automatically refine the model. This model refinement

formulation leads to solving a non-smooth convex optimization problem. Examples

are given to demonstrate how proximal operator splitting based computation enables

numerically solving the same. This method is applied for finite-time feedback control

of probability density functions, and for data driven modeling of dynamical systems.
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NOMENCLATURE

a.k.a. Also Known As

approx. Approximately

a.s. Convergence in Almost Sure Sense

CDF Cumulative Distribution Function

DMD Dynamic Mode Decomposition

DQMOM Direct Quadrature Method Of Moments

EDL Entry-Descent-Landing

FPA Flight Path Angle

GBM Geometric Brownian Motion

gsLQR Gain-scheduled Linear Quadratic Regulator

GWN Gaussian White Noise

i.e. id est (Latin), that is (English)

iff if and only if

i.i.d. (Statistically) independent and identically distributed

KL Expansion Karhunen-Loève Expansion

KLMOC “First KL, then MOC” Algorithm

KS Test Kolmogorov-Smirnov Test

LP Linear Program

LQR Linear Quadratic Regulator

LTI Linear Time Invariant

LTV Linear Time Varying

MC Monte Carlo

MCMC Markov Chain Monte Carlo
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MIMO Multiple Input Multiple Output

MISO Multiple Input Multiple Output

MOC Method Of Characteristics

MRI Magnetic Resonance Imaging

m.s. Convergence in Mean Square Sense

n/a Not Applicable

NMR Nuclear Magnetic Resonance

ODE Ordinary Differential Equation

OU Process Ornstein-Uhlenbeck Process

PC Polynomial Chaos

PDE Partial Differential Equation

PDF Probability Density Function

PF Operator Perron-Frobenius Operator

PMF Probability Mass Function

POD Proper Orthogonal Decomposition

PRVC Probabilistically Robust Validation Certificate

PSD Power Spectral Density

PWN Poisson White Noise

PWVC Probabilistically Worst-case Validation Certificate

QFPE Quantile Fokker-Planck Equation

QMC Quasi Monte Carlo

r.m.s. Root Mean Square

SDE Stochastic Differential Equation

SISO Single Input Single Output

SOS Sum Of Squares
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SQP Sequential Quadratic Program

TCI Transportation Cost Inequality

v.s. Versus

V&V Validation and Verification

w.r.t. With Respect To

Notation

N The set of natural numbers

R The set of real numbers

R+ The set of positive real numbers

R+
0 The set of nonnegative real numbers, R+

0 , R+ ∪ {0}

E [·] Expectation operator

cov (·, ·) Covariance operator

P (·) Probability of an event

] Push-forward of a probability measure

> Matrix transpose

∗ Complex conjugate

H Matrix conjugate transpose

† Moore-Penrose pseudo-inverse of a matrix

⊗ Kronecker product

∇ Gradient operator w.r.t. spatial variables

Hess (·) Hessian operator, Hess (·) , ∇∇>

◦ Composition operator
〈
. , .
〉
F

Frobenius inner product

ker (.) Kernel of a linear operator
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Im (.) Image of a linear operator

0 Zero vector of appropriate dimensions

1 Vector of ones, of appropriate dimensions

1 Indicator function

In Identity matrix of size n× n

Id Identity vector map of appropriate dimensions

diag (·) Diagonal matrix of appropriate dimensions

vec (·) Vectorization operator

tr (·) Trace of a matrix

det (·) Determinant of a matrix

supp (·) Support of a function

Λi (·) ith eigenvalue of a linear operator

ei (·) ith eigenfunction of a linear operator

λi (·) ith eigenvalue of a matrix

λmax (·) , λmin (·) Maximum and minimum eigenvalue of a matrix

λp Intensity parameter of Poisson counting process N(t)

Re (z) Real part of the complex number z

Im (z) Imaginary part of the complex number z

# Cardinality

∧ Minimum function, i.e. a ∧ b = minimum of a and b

̂ Model variable

∼ Distributional law, i.e. X ∼ ξ ⇔ X has joint PDF ξ

ns Dimension of the state space

no Dimension of the output space

np Dimension of the parameter space
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nw Dimension of the process noise vector

nv Dimension of the measurement noise vector

t Time, t ∈ R+
0

∆t Time step

tf Final time

x State vector, x ∈ Rns

y Output vector, y ∈ Rno

p Parameter vector, p ∈ Rnp

x̃ Extended state vector, x̃ = [x p]> ∈ Rns+np

x0 Initial state vector, x0 , x (t = 0)

µx State mean vector, µx , E [x] ∈ Rns

µy Output mean vector, µy , E [y] ∈ Rno

Σx State covariance matrix, Σx , E
[
(x− µx) (x− µx)>

]
∈ Rns×ns

Σy Output covariance matrix, Σy , E
[
(y − µy) (y − µy)>

]
∈ Rny×ny

ξ0 (x̃0) Joint PDF over initial states and parameters x̃0 , [x0 p]>

ξ (x̃(t), t) Joint PDF over true extended state space x̃(t) at time t

ξ̂
(
̂̃x(t), t

)
Joint PDF over model predicted extended state space ̂̃x(t) at time t

η (y(t), t) Joint PDF over true output space y(t) at time t

η̂ (ŷ(t), t) Joint PDF over model predicted output space ŷ(t) at time t

W , Ŵ True and model process noise vector, respectively

V , V̂ True and model measurement noise vector, respectively

h Altitude

ζ Latitude

λ Longitude

V Mars-relative velocity
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γ Flight path angle

χ Velocity azimuth angle measured from North

σb Bank angle

σ Standard deviation

ρ Martian atmospheric density

ρ0 Reference-level density

Bc Ballistic coefficient

CL
CD

Lift-to-drag ratio

R0 Mean equatorial radius of Mars

GM Gravitational constant for Mars

g Acceleration due to gravity ≈ GM
(R0+h)2

Ωr Rotational angular velocity for Mars

Ωs Sample space of a random vector

ωs Sample realization of a random vector, i.e. ωs ∈ Ωs

ω Temporal frequency

vc Normalizing velocity constant =
√

µ
R0

, where µ = gR2
0

δ (.) Dirac Delta

δij Kronecker Delta, i.e. δij = 1 if i = j, else zero

rFs Generalized hypergeometric function

B (α, β) Complete beta function, B (α, β) ,
∫ 1

0

tα−1 (1− t)β−1 dt

B (x;α, β) Incomplete beta function, B (x;α, β) ,
∫ x

0

tα−1 (1− t)β−1 dt

Ix (α, β) Regularized incomplete beta function, Ix (α, β) ,
B (x;α, β)

B (α, β)

I−1
t (α, β) Inverse of the beta CDF

Γ (z) Gamma function, Γ (z) ,
∫ ∞

0

xz−1e−x dx, Re (z) > 0

Ψ (z) Digamma function, Ψ (z) ,
d

dz
log Γ (z)
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erf−1 (·) Inverse error function

wno(.) Winding number

‖ · ‖F Frobenius norm

A (·) Arcsine PDF

B (α, β) Beta PDF with parameters α, β > 0, over x ∈ [0, 1]

B (a, b, α, β) Shifted beta PDF with parameters α, β > 0, over x ∈ [a, b]

N (µ,Σ) Normal PDF with mean vector µ, covariance matrix Σ

U ([a, b]) Uniform PDF over x ∈ [a, b]
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FIGURE Page

1.1 The proposed model validation framework compares experimentally
observed output PDF η (y, t) with the model-predicted output PDF
η̂ (ŷ, t), the comparison being made with respect to some suitable met-
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1. INTRODUCTION

During the last two decades, engineering research and development has shifted

emphasis from the conventional cycle of “designing, prototyping and testing” to

“modeling and simulation”, enabling faster and cheaper execution of a project from

conceptualization to delivery. One major driving force behind model based design

is that the modern engineering systems are becoming increasingly modular, and

have complex interconnections in multiple spatial and temporal scales. Often, one

has good scientific understanding of the individual components, but the collective

behavior is not well understood from a design point of view. As a result, model based

design and analysis are performed in mostly ad-hoc manner, and there is a need for

foundational science that can guide towards scalable architecture for designing a

large scale system. This dissertation concerns with a particular aspect of model

based design and analysis: validation and verification (V&V). In this introductory

Chapter, we first provide some background on the model validation problem, followed

by a literature review. Then we describe the probabilistic model validation setup

proposed in this dissertation, and finally list the contributions of the same.

1.1 Background on Model Validation

A model serves as a mathematical abstraction of the physical system, providing

a framework for system analysis and controller synthesis. Since such mathematical

representations are based on assumptions specific to the process being modeled, it

is important to quantify the reliability to which the model is consistent with the

physical observations. Model quality assessment is imperative for applications where

the model needs to be used for prediction (e.g. weather forecasting, stock market)

or safety-critical control design (e.g. aerospace, nuclear, systems biology) purposes.
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Here it is important to realize that a model can only be validated against exper-

imental observations, not against another model. Thus a model validation problem

can be stated as: given a candidate model and experimentally observed measurements

of the physical system, how well does the model replicate the experimental measure-

ments? It has been argued in the literature [4, 5, 6, 7] that the term ‘model validation’

is a misnomer since it would take infinite number of experimental observations to

do so. Hence the term ‘model invalidation’ or ‘falsification’ [8] is preferred. In this

dissertation, instead of hard invalidation, we will consider the validation/invalidation

problem in a probabilistically relaxed sense. Before proceeding further, it may be

helpful to put the model validation and refinement framework considered in this

dissertation, in a wider scientific context. We list here two examples from physics,

to argue that validation and refinement are constructive iterative processes [9, 10]

fundamental to scientific and technological advancement.

One of the early examples of model validation/invalidation came from Nicolaus

Copernicus in 1543, who proposed the heliocentric model that opposed the century-

old geocentric model proposed by Aristotle and Ptolemy. However, experimental

validation for Copernicus’s model had to wait until the invention of telescope in 17th

century that led to Galileo’s observation of four moons of Jupiter, and phases of

Venus in 1610, and Giovanni Zupi’s observation of phases of Mercury in 1639. Based

on the astronomical observation of Tycho Brahe, the Copernicus’s model was refined

by Johannes Kepler by proposing elliptical orbits for planets in 1609. Kepler’s laws

were later explained through Newton’s law of gravitation in 1687. It is instructive

to note that no single observation was enough to validate a model or to gain its

acceptance.

Another example of the recursive model (in)validation and refinement comes from

atomic physics. Following the discovery of electrons in 1897, J.J. Thomson proposed
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the plum pudding model of atom, advocating that the negatively charged electrons

are embedded in a positively charged “pudding” inside an atom. In 1909, this model

was invalidated by the goldfoil experiment of Hans Geiger and Ernest Marsden.

Thomson’s plum pudding model was refined by Ernest Rutherford in 1911, upon the

discovery of nucleus. Rutherford model was in turn refined by Neils Bohr in 1913 to

explain the stability of the motions of subatomic particles, and eventually led to the

development of quantum mechanics.

In 21st century, technological progress has arguably outpaced the rate at which

scientific theories are proposed or refined. Unlike Copernicus, we now have an abun-

dance of observational data, thanks to the tight integration of control, communica-

tion and computation in modern lifestyle. However, a foundational science of model

validation and refinement is lacking in systems-control literature, that can account

this data deluge in a disciplined manner, without sacrificing the mathematical rigor.

This dissertation is an attempt to address that.

1.2 Related Literature

Broadly speaking, there have been three distinct frameworks in which the model

validation problem has been attempted till now. First is a discrete formulation

in temporal logic framework [11] which has been extended to account probabilistic

models [11, 12]. Second is the H∞ control framework where time-domain [6, 13, 14],

frequency domain [5, 15] and mixed domain [16] model validation methods have

been studied extensively assuming structured norm-bounded uncertainty in linear

dynamics setting. The third framework involves deductive inference based on bar-

rier certificates [7] which was shown to encompass a large class of nonlinear models

including differential-algebraic equations [17], dynamic uncertainties described by

integral quadratic constraints [18], stochastic [19] and hybrid dynamics [20].
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In statistical setting, model validation has been addressed from system identifi-

cation perspective [21, 22] where the main theme is to validate an identified nominal

model through correlation analysis of the residuals. A polynomial chaos framework

has also been proposed [23] for model validation. Gevers et. al. [24] have connected

the robust control framework with prediction error based identification for frequency-

domain validation of linear systems. In another vein, using Bayesian conditioning,

Lee and Poolla [25] showed that for parametric uncertainty models, the statistical

validation problem may be reduced to the computation of relative weighted volumes

of convex sets. However, for nonparametric models: “the situation is significantly

more complicated” [25] and to the best of our knowledge, has not been addressed

in the literature. Recently, in the spirit of weak stochastic realization problem [26],

Ugrinovskii [27] investigated the conditions for which the output of a stochastic non-

linear system can be realized through perturbation of a nominal stochastic linear

system.

In practice, one often encounters the situation where a model is either proposed

from physics-based reasoning or a reduced order model is derived for computational

convenience. In either case, the model can be linear or nonlinear, continuous or

discrete-time, and in general, it’s not possible to make any a-priori assumption about

the noise. Given the experimental data and such a candidate model for the physical

process, our task is to answer: “to what extent, the proposed model is valid?” In

addition to quantify such degree of validation, one must also be able to demonstrate

that the answer is provably correct in the face of uncertainty. This brings forth

the notions of probabilistically robust model validation and probabilistically worst-

case model validation. In this dissertation, we will propose to construct such a

robust validation certificate, and worst-case validation certificate, guaranteeing the

performance of probabilistic model validation algorithm.
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1.3 Problem Setup

1.3.1 Intuitive Idea

The proposed framework is based on the evolution of densities in output space,

instead of evolution of individual trajectories, as in the Lyapunov framework. In-

tuitively, characteristics of the input to output mapping is revealed by the growth

or depletion of trajectory concentrations in the output space. Growth in concentra-

tion, or increased density, defines regions in where the trajectories accumulate. This

corresponds to regions with slow time scale dynamics or time invariance. Similarly,

depletion of concentration in a set implies fast-scale dynamics or unstable manifold.

We refer the readers to [28] for an introduction to analysis of dynamical systems

using trajectory densities. This idea of comparing dynamical systems based on den-

sity functions, have been presented before by Sun and Mehta [29] in the context of

filtering, and by Georgiou [30] in the context of matching power spectral densities.

Given the experimental measurements of the physical system in the form of a

time-varying distribution (such as histograms), we propose to compare the shape

or concentration profile of this measured output density, with that predicted by

the model. At every instant of time, if the model-predicted density matches with

the experimental one “reasonably well” (to be made precise later in the paper),

we conclude that the model is validated with high confidence (to be computed for

guaranteeing quality of inference).

1.3.2 Why Compare Densities Instead of Trajectories

The rationale behind comparing the distributional shapes for model validation

comes from the fact that the presence of uncertainties mask the difference between

individual output realizations. Uncertainties in initial conditions, parameters and

noise result different realizations of the trajectory or integral curve of the dynamical
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system. Regions of high (low) concentration of trajectories correspond to regions of

high (low) probability. Thus a model validation procedure should naturally aim to

compare concentrations of the trajectories between the measurements and model-

predictions, instead of comparing individual realizations of them, which would be

meaningful only in the absence of uncertainties.

We would like to point out that in some applications, the measurement naturally

arises in the form of a distribution. This includes (i) process industry applications like

measurement made at the wet end of papermaking machines [31, 32] that involves

the fibre length and filler size distribution sensed via vision sensors, (ii) Nuclear

Magnetic Resonance (NMR) spectroscopy and Imaging (MRI) applications where

the measurement variable is magnetization distribution [33], (iii) neuroscience ap-

plications where the measurement variable is the distribution of frequency across a

collection of neurons [34], and (iv) social systems where the measurement variable

could be an ensemble of crowd [35] sensed via cameras or motion detectors. Notice

that for (i) and (iii), distributional measurement is a design choice; for (ii) it is mo-

tivated by technological limitations of sensing individual magnetization states where

the number of states are of the order of Avogadro number 6 × 1023; and for (iv)

individual measurement may raise privacy concerns.

1.3.3 Why Compare Densities Instead of Moments or Sets

Density based model validation provides natural advantages over moment based

or set containment methods for the following reasons. Moment based methods can be

erroneous for nonlinear non-Gaussian systems, as two different trajectory densities

may provide the same correlation information. This can be circumvented by including

higher order moments, but such a strategy is computationally untractable since for

a nonlinear dynamical system with non-Gaussian PDF evolution, the number of
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η (y, t)

η̂ (y, t)

ξ0 (x0)

ξ̂ (x, t)

ξ (x, t)

(a) (b) (c)

Figure 1.1: The proposed model validation framework compares experimentally ob-
served output PDF η (y, t) with the model-predicted output PDF η̂ (ŷ, t), the compar-
ison being made with respect to some suitable metric at each instant of measurement
availability. The state dynamics evolves the initial joint PDF ξ0 (x0) (Fig. 1.1 (a))

to instantaneous joint state PDFs ξ (x, t) and ξ̂ (x̂, t) (Fig. 1.1 (b)). The associated
output PDFs η (y, t) and η̂ (y, t) may share the same support ([0, 1] as shown in Fig.
1.1 (c)), but have different shapes. Hence, instead of matching output supports, we
propose matching output PDFs at all times, for validating a model.

admissible moments at any fixed time, is not known a priori. This is typically

referred as the “moment closure problem”. On the other hand, set containment

arguments can be erroneous since it is possible that at a given time, two systems

have trajectory densities with identical supports but different concentrations (Fig.

1.1 (c)). In Fig. 1.1 and thereafter, we use the notation ξ0 (.) to denote the joint

PDF over initial conditions (x0) and parameters. At time t > 0, ξ (., t) and ξ̂ (., t)

denote joint PDFs over instantaneous states and parameters, for the true and model

dynamics, respectively. Similarly, η (., t) and η̂ (., t), respectively denote joint PDFs

over output spaces y and ŷ at time t, for the true and model dynamics. The symbol

x̃ is used to denote the extended state vector obtained by augmenting the state (x)

and parameter (p) vectors.

A proposed model is validated, if the “distance” between its predicted density

and the measured density, remains below a user-specified tolerance level, which need
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Figure 1.2: Block diagram for the proposed model validation formulation.

not be fixed over time. For example, take-off and landing are critical operational

segments during the flight of a commercial aircraft, and it’s unacceptable to have

a controller that does not guarantee the robust performance for these critical time-

segments with very high probability. This motivates the computation of probability

of validation as part of the model validation oracle.

1.3.4 Methodology and Organization

In this subsection, we formalize the ideas presented above. Fig. 1.1 and 1.2 show

the outline of the model validation framework proposed here. In this formulation,

the systems under comparison are excited with a known input signal u (t), and an

initial PDF ξ0 (x̃0), supported over the extended state space x̃ := {x, p}>, where

the states x ∈ Rns , and the parameters p ∈ Rnp . Given the PDF η (y (t)) supported

over the true output space y ∈ Rno , and a candidate model, we compute and then

compare the model predicted output PDF η̂ (ŷ (t)), with η (y (t)) at each instances

of measurement availability {tj}τj=1. Thus, one can think of two main steps of such
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a model validation framework. These are:

1. evolving ξ0 (x̃0) using the proposed model, to compute η̂ (ŷ (t)),

2. measuring an appropriate notion of distance, denoted as W (t) in Fig. 1.2,

between η (y (t)) and η̂ (ŷ (t)) at {tj}τj=1.

The first step, namely the evolution of uncertainty in the form of joint PDF, subject

to a nonlinear dynamics, will be treated in Chapter 2 and 3. The second step, namely

the notion of distributional comparison and the construction of validation certificates,

will be the topic of Chapter 4. Some case studies of the proposed probabilistic V&V

framework will be presented in Chapter 5, followed by systems-theoretic results in

Chapter 6. Chapter 7 will extend the proposed V&V framework to automatically

refine the models based on data. Chapter 8 will conclude this dissertation.

1.4 Contributions of This Dissertation

With respect to the existing V&V literature, the contributions of this dissertation

are as follows.

1. Instead of interval-valued structured uncertainty (as in H∞ control framework)

or moment based uncertainty (as in parametric statistics framework), this pa-

per deals with model validation in the sense of nonparametric statistics. Un-

certainties in the model are quantified in terms of the PDFs of the associated

random variables. We argue that such a formulation offers several advantages.

Firstly, we show that model uncertainties in the parameters, initial states and

input disturbance, can be propagated accurately by spatio-temporally evolv-

ing the joint state and output PDFs. Since experimental data usually come in

the form of histograms, it’s a more natural quantification of uncertainty than

specifying sets [7] to which the trajectories are contained at each instant of
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time. However, if needed, such sets can be recovered from the supports of the

instantaneous PDFs. Secondly, as we’ll see in Chapter 4, instead of simply

invalidating a model, our methodology allows to estimate the probability that

a proposed model is valid or invalid. This can help to decide which specific

aspects of the model need further refinement. Hard invalidation methods don’t

cater such constructive information. Thirdly, the framework can handle both

discrete-time and continuous-time nonlinear models which need not be polyno-

mial. Previous work like [7] dealt with semi-algebraic nonlinearities and relied

on sum of squares (SOS) decomposition [36] for computational tractability.

From an implementation point of view, the approach presented in this paper

doesn’t suffer from such conservatism.

2. Due to the uncertainties in initial conditions, parameters, and process noise,

one needs to compare output ensembles instead of comparing individual output

realizations. This requires a metric to quantify closeness between the experi-

mental data and the model in the sense of distribution. We propose Wasser-

stein distance to compare the output PDFs and argue why commonly used

information-theoretic notions like Kullback-Leibler divergence may not be ap-

propriate for this purpose.

3. We show that the uncertainty propagation through continuous-time dynamics,

for both deterministic and stochastic case, can be done via numerically efficient

meshless algorithms, even when the model is high-dimensional and strongly

nonlinear. Moreover, we outline how to compute the Wasserstein distance in

such settings. Further, bringing together ideas from analysis of randomized

algorithms, we give sample-complexity bounds for robust validation inference.
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Table 1.1: List of peer-reviewed publications resulting from this dissertation research.
Chapters Conference papers Journal papers

2 [37] [38]
3 [39, 40] n/a
4 [41] [42]
5 [43] [44]
6 [45, 46] n/a
7 [47] n/a

The peer-reviewed publications resulting from this dissertation research, are sum-

marized in Table 1.1. Next, we will focus on the first step of our model validation

formulation, namely uncertainty propagation. The forthcoming Chapter 2 will deal

with uncertainty propagation for deterministic flow.
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2. UNCERTAINTY PROPAGATION FOR DETERMINISTIC FLOW

In this Chapter, we consider the propagation of uncertainties in initial condi-

tions and parameters, subject to a deterministic nonlinear dynamics. As outlined in

the previous Chapter, our motivation to solve the uncertainty propagation problem

stems from model validation. However, in many science and engineering applications,

uncertainty propagation itself is a problem of interest, for predictive risk assessment.

Such applications include quantifying the landing footprint uncertainty in Mars land-

ing [48, 49], weather prediction [50, 51], uncertainty quantification in fluid dynamics

computations [52], and seismic loss prediction [53].

Traditionally, a Monte Carlo (MC) based dispersion analysis is carried out for this

purpose where one simulates a large number of trajectories for randomly sampled

initial conditions and parameter values. If most or all of such trajectories remain

inside the safety margin, one can at best hope for the system safety and reliability

without any quantitative guarantee whatsoever. Usually the engineers responsible

for subsystem models identify the uncertainty bounds and decide about the sam-

pling strategy based on their experience. Clearly, brute force MC simulation is not

the best approach for safety critical uncertainty analysis. Moreover, for high di-

mensional and nonlinear dynamics like spacecraft entry-descent-landing (EDL), MC

simulations are tremendously expensive as one strives to simulate individual trajec-

tories one by one for uncertainties in hundreds of states and parameters and their

combinations. In spite of all these drawbacks, MC simulations remain the state-of-

the-art tool for dispersion analysis among the engineers for two reasons. First, the

ease of implementation and second, lack of any rigorous alternative which is scalable

and accurate.
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Being aware of the computational scalability problem of MC simulations (see

e.g. Chapter 1 in [2]), researchers have pursued different methods for uncertainty

propagation in nonlinear dynamical systems. We will classify these methods in two

broad categories: parametric (where one evolves the statistical moments) and non-

parametric propagation of uncertainty (where one evolves the full PDF). There have

been three major directions in parametric propagation of uncertainty, as listed below.

1. The simplest method in this category assumes a linear time invariant descrip-

tion of the dynamics of the form ẋ(t) = Ax(t), where the state vector at time

t > 0 is x(t) ∈ Rns . One then sets for propagating the state mean vector

µx(t), and covariance matrix Σx(t), using the well known (see Appendix A)

equations µ̇x(t) = Aµx(t) and Σ̇x(t) = AΣx(t) + Σx(t)A
>. If the initial uncer-

tainty is Gaussian, then evolving the mean and covariance is indeed enough

(see Appendix A). This is because of two facts: (i) the dynamics ẋ(t) = Ax(t)

preserves Gaussianity, and (ii) mean and covariance are sufficient statistics

for a Gaussian PDF. However, the major drawback of this approach is that

most dynamical systems of practical interest (e.g Mars EDL) have nonlinear

dynamics in the trajectory level, and even if the initial PDF is Gaussian, the

nonlinearity manifests in the non-Gaussian joint PDF evolution. As a result,

the linear Gaussian framework is too far to fit for practical uncertainty propa-

gation. Nevertheless, this framework has been attempted in nonlinear problems

like EDL (see Chapter 13, p. 425–475 in [54]).

2. In polynomial chaos (PC) method, one derives a set of deterministic ODEs

using either Galerkin projection [55] or the stochastic collocation [56] and then

solves that set of ODEs. Although this method can handle nonlinear dynamics

with non-Gaussian uncertainties, one ends up solving a higher dimensional
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state space problem, which becomes intractable for a realistic problems with

large number of states and parameters. Further, the method is difficult to

apply for high nonlinearities [57] and computational performance degrades due

to the finite-dimensional approximation of the probability space, if long-term

statistics is desired.

3. Another method in this category is called the direct quadrature method of mo-

ments (DQMOM) [58] where the PDF is approximated as a sum of Dirac delta

functions with evolving parameters. This method suffers from the Hausdorff

moment problem (see Chapter 1, p. 1–22 in [59]). There are some variations of

this method where the PDF is expressed as a weighted sum of few constituent

PDFs, referred as ‘partial PDF’s and propagates them instead of the Dirac

delta functions [60].

On the other hand, non-parametric propagation of uncertainties can be done in

two ways: approximate method and direct method.

1. Approximate method is one where one tries to estimate (in nonparametric sense)

the underlying PDF. The method aims to approximate the solution of the PDF

transport equation. This method is widely exercised in statistics community

[61] under the name of kernel density estimation, although most applications

there concern with static data. In a dynamical system, optimal values of the

parameters must be determined at every instant of time. Many special cases of

this, may be constructed depending on the type of kernel function and the cri-

teria for optimization. A least-square error minimization set up is described in

[62] and is shown to have good computational performance. Further generaliza-

tions are possible by considering general basis functions which are not density

functions themselves. However, this too can suffer from high computational
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cost arising due to the explicit enforcement of normality constraint and mo-

ment closure constraint at each step of the optimization procedure. Moreover,

for high dimensional state spaces, recursively performing constrained optimiza-

tion becomes extremely challenging.

2. In direct method, one works with the PDF transport equation and instead

of approximating its solution, strives to solve that equation directly. In the

absence of process noise (which is the case for deterministic flow), this transport

equation reduces to the stochastic Liouville equation [50], which is a quasi-

linear PDE, first order in both space and time. This equation describes the

time evolution of the joint PDF over the state space, which itself is changing

due to the known dynamics. In this Chapter, we argue that the stochastic

Liouville equation can be easily solved in such direct way using the method of

characteristics (MOC). Since all the statistics can be derived from the PDF,

from an information point of view, it is definitely superior than parametric

propagation methods. Further, since we will be looking to solve the Liouville

equation directly, the solutions will automatically satisfy the criteria to be

PDF. Hence the conditions like moment closure or normality constraints are

not required to be enforced explicitly.

Our objective in this Chapter is to demonstrate that an MOC computation to

solve the Liouville equation is numerically attractive and it does provide the nec-

essary rigor for a statistically consistent uncertainty quantification for nonlinear

non-Gaussian problems. To see why it is the case, one must realize that in solv-

ing the Liouville equation, one propagates the joint PDF prescribed at the initial

time subject to the deterministic dynamics. In MC method, one randomly picks a

single initial condition and computes the trajectory and then repeats the process. In
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the Liouville equation method, instead of individual realizations (initial conditions

and/or parameters), one propagates the ensemble of realizations. Just like the con-

tinuity equation in fluid mechanics transports the fluid mass in configuration space,

the Liouville equation transports the probability mass in phase space.

This Chapter is organized as follows. The Liouville equation will be described in

the next Section along with the MOC formulation. The framework will be discussed

through illustrative examples and numerical algorithm. Then, the following Section

will present a case study to demonstrate the applicability of the proposed method

in a realistic problem setting. We have chosen the case study as the risk analysis for

Mars hypersonic entry. The last section will be devoted to compare the numerical

performance of the proposed method vis-a-vis with MC simulations.

2.1 The Liouville Equation

Consider the continuous-time nonlinear model with state dynamics given by the

ODE ˙̂x = f̂ (x̂, p̂), where x̂ (t) ∈ X̂ ⊆ Rn̂s is the state vector, p̂ ∈ P̂ ⊆ Rn̂p is the

parameter vector, the dynamics f̂ (., p̂) : X̂ 7→ Rn̂s ∀ p̂ ∈ P̂ , and is at least locally

Lipschitz . It can be put in an extended state space form

˙̂
x̃ =

̂̃
f
(
̂̃x
)
, ̂̃x ∈ X̂ × P̂ ⊆ Rn̂s+n̂p ,

̂̃
f =




f̂n̂s×1

0n̂p×1




. (2.1)

The output equation can be written as

ŷ = ĥ
(
̂̃x
)
, ĥ : X̂ × P̂ 7→ Ŷ , (2.2)

where ŷ (t) ∈ Ŷ ⊆ Rno is the output vector. If uncertainties in the initial conditions

(x0 := x (0)) and parameters (p̂) are specified by the initial joint PDF ξ0 (x̃), then
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the evolution of uncertainties subject to the dynamics (2.1), can be described by

evolving the joint PDF ξ̂
(
̂̃x, t
)

over the extended state space. Such spatio-temporal

evolution of ξ̂
(
̂̃x, t
)

is governed by the Liouville equation given by (see Section 7.6

in [28])

∂ξ̂

∂t
= LLEξ̂ = D1ξ̂ = −∇.

(
ξ̂f̂
)

= −
n̂s∑

i=1

∂

∂x̂i

(
ξ̂f̂i

)
, (2.3)

which is a quasi-linear PDE, first order in both space and time. Notice that, the

spatial Liouville operator LLE is a drift operator D1 that describes the advection

of the PDF in extended state space. The Liouville equation (2.3) essentially states

that the spatio-temporal evolution of the joint PDF occurs in a way that preserves

the total probability mass. Putting differently, if we pick up a control volume in

the extended state space, the net flux of probability mass must be zero since no

realizations are created or destroyed (no source or sink).

Once (2.3) is solved, the output PDF η̂ (ŷ, t) can be computed from the state

PDF as

η̂ (ŷ, t) =
ν∑

j=1

ξ̂
(
̂̃x?j
)

|det
(
J
(
̂̃x?j
))
|
, (2.4)

where ̂̃x?j is the jth root of the inverse transformation of (2.2) with j = 1, 2, . . . , ν,

and J is the Jacobian of this inverse transformation.

2.1.1 Method-of-Characteristics Formulation

In this section, we briefly describe the MOC and show how that helps in reducing

a linear or quasi-linear PDE to an ODE along the characteristics. Application of

MOC to nonlinear PDEs can be found in [63] (Chapter 2, p. 36–41).
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Consider a PDE of the form

n∑

i=1

ai (z1, z2, . . . , zn, ϑ)
∂ϑ

∂zi
= Γ (z1, z2, . . . , zn, ϑ) (2.5)

with ϑ being the dependent variable and z1, z2, . . . , zn are the n independent variables.

The characteristic curves corresponding to (2.5) are given by the Lagrange-Charpit

equations [64]

dz1

a1 (z1, z2, . . . , zn, ϑ)
= . . . =

dzn
an (z1, z2, . . . , zn, ϑ)

=
dϑ

Γ (z1, z2, . . . , zn, ϑ)
. (2.6)

Geometrically, this means that the (n+ 1) dimensional vector field

F := (a1 (z1, z2, . . . , zn, ϑ) , . . . , an (z1, z2, . . . , zn, ϑ) ,Γ (z1, z2, . . . , zn, ϑ))

is tangent to the surface ϑ = ϑ (z1, z2, . . . , zn) ∀ {z1, z2, . . . , zn}> ∈ Rn. In other

words, the solution of the PDE (2.5) is an (n+ 1) dimensional surface ϑ (z1, z2, . . . , zn)

that can be constructed as the union of the integral curves (or characteristic curves

given by (2.6)) of the vector field F .

To derive the characteristic curves for the Liouville equation, we put (2.3) in a

form similar to (2.5), using product rule of differentiation, to obtain

(
n̂s∑

i=1

f̂i
∂ξ̂

∂x̂i

)
+
∂ξ̂

∂t
= −ξ̂

n̂s∑

i=1

∂f̂i
∂x̂i

. (2.7)

From (2.6), it readily follows that the characteristic curves for (2.7) are given by

dx̂1

f̂1

=
dx̂2

f̂2

= . . . =
dx̂n̂s

f̂n̂s
=
dt

1
=

dξ̂

−ξ̂
n̂s∑

i=1

∂f̂i
∂x̂i

. (2.8)
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The equation above shows that the characteristic curves for the Liouville equation

are nothing but the trajectories of the dynamics given by (2.1). Notice that the

parameters, by definition, do not change with time, i.e.
dp̂i
dt

= 0, ∀i = 1, . . . , n̂p.

It can be noted from (2.8) that using MOC, along the trajectory, one can reduce

the Liouville PDE (2.3) to an ODE of the form

dξ̂

dt
= −ξ̂ ∇ · f̂ , (2.9)

where∇·f̂ is the trace of the Jacobian of the underlying dynamics and hence, evolves

with time. If the initial state and parametric uncertainties are specified in terms of

a joint PDF ξ0 (x̃0) , ξ̂
(
̂̃x (0) , 0

)
, then we can write the solution of (2.9) as

ξ̂ (x̂, t) = ξ0 (x̃0) exp

(
−
∫ t

0

∇ · f̂
(
̂̃x (τ)

)
dτ

)
. (2.10)

The exponential in (2.10) is formally known as the ordered exponential [65] and is

analogous to the Dyson operator of the quantum Liouville equation [66] in statistical

quantum mechanics. Since the ordered exponential is a ratio of the instantaneous

and initial PDFs, one may interpret it as a likelihood ratio [67].

Notice that ∇ · f̂ being the divergence of the vector field f̂ , is a measure of the

rate of change of the phase space (Lebesgue) volume. For example, if f̂ is linear time

invariant, then ∇ · f̂ must be a constant. Depending on the sign of this constant,

the phase space volume can expand (expanding flow) or contract (contractive flow)

exponentially fast or may remain constant (volume-preserving flow). The Liouville

Theorem [68] tells us that the case of divergence-free vector field ensures that the

system is Hamiltonian. Notice that, a nonlinear vector field can be Hamiltonian too.

In general, it is hardly possible to analytically evaluate the integral in (2.10) and
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thus mandates numerical solution. Once the solution for the joint PDF ξ̂
(
̂̃x (t) , t

)

is obtained, one can find the marginal PDFs by integrating out the other states over

their respective domains, namely

ξ̂i , ξ̂
(
̂̃xi, t

)
=

∫

D1

...

∫

Di−1

∫

Di+1

...

∫

Dn̂s+n̂p
ξ̂
(
̂̃x, t
)
d̂̃x1...d̂̃xi−1d̂̃xi+1...d̂̃xn̂s+n̂p(2.11)

whereDi is the domain of the ith extended state variable at time t. Here it’s important

to realize that since the domain in the state space is deforming with time, one must

know the instantaneous domain to carry out the integration in (2.11). This will

be explained in more details later in this Chapter, when we perform the numerical

simulations for our case study.

2.1.2 Examples

We now provide some examples to clarify the ideas presented above. Specifically,

we want to illustrate how MOC enables the solution of Liouville PDE (2.3) by solving

the ODE initial value problem (2.9) along the trajectories. For ease of understanding,

we drop the “hat” notation for the time-being.

2.1.2.1 1D Example

Let’s consider the 1D dynamics ẋ(t) = f (x(t)) = −x2, with initial condition

x (0) = x0. By direct integration, we can solve this initial value problem as

x (x0, t) =
x0

1 + tx0

. (2.12)

Consequently, we have

∇ · f = −2x (t) = − 2x0

1 + tx0
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⇒ exp

(
−
∫ t

0

∇ · f (x (τ)) dτ

)
= exp

(
2x0

∫ t

0

dτ

1 + τx0

)
= (1 + tx0)2(2.13)

which, from (2.10), leads to

ξ (x, t) = ξ0 (x0) (1 + tx0)2 . (2.14)

Now we can find x0 = x0 (x, t) using (2.12) as

x0 =
x

1− tx, (2.15)

and substitute this to (2.14) to yield

ξ (x, t) = ξ0

(
x

1− tx

) (
1 +

tx

1− tx

)2

=
ξ0

(
x

1−tx

)

(1− tx)2 . (2.16)

Fig. 2.1 shows the spatio-temporal evolution of the PDF ξ (x, t) according to (2.16),

when the initial PDF ξ0 is chosen to be a standard normal distribution N (0, 1). The

plot illustrates the rise of the PDF peak with time, accompanied with a shrinkage

of its support. As t → ∞, the PDF tends to become a Dirac delta. This is not

surprising since the origin being the unique equilibrium of this dynamics, in the

asymptotic limit, all probability mass gets in that “sink”. Thus the support of the

stationary distribution has Lebesgue measure zero.

Another interesting observation from Fig. 2.1 is the existence of multiple peaks,

which become more prominent as t increases. This is due to the fact that the vector

field ẋ = −x2 is locally Lipschitz and the unique solution (2.12) has finite escape

time at t = − 1

x0

. Since t ∈ R+
0 , the finite escape time comes into play for x0 < 0.

On the other hand, x(t) = 0 is always a solution. Thus, the MOC solution of the

Liouville equation captures the non-uniqueness of the flow.
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Figure 2.1: Snapshots for the PDF evolution according to (2.16), at initial and five
consecutive times, starting with a standard normal PDF N (0, 1).

2.1.2.2 2D Example

Next, consider a planar vector field

ẋ1 = f1 (x1, x2) = −x1 −
2x2

log (x2
1 + x2

2)
,

ẋ2 = f2 (x1, x2) = −x2 +
2x1

log (x2
1 + x2

2)
, (2.17)

with given initial conditions x1 (0) = x10 and x2 (0) = x20. Looking at the form of the

dynamics, we convert (2.17) from cartesian to polar coordinates using the standard

transformation rṙ = x1ẋ1 + x2ẋ2 and θ̇ =
x1ẋ2 − x2ẋ1

x2
1 + x2

2

, to obtain

ṙ = fr (r, θ) = −r,
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θ̇ = fθ (r, θ) =
1

log r
, (2.18)

purely as a matter of working convenience. The initial conditions for (2.18) are

r0 , r (0) =
√
x2

10 + x2
20 and θ0 , θ (0) = arctan

x20

x10

. From the polar equations, it

immediately follows that as t → ∞, r (t) → 0 and |θ (t) | → ∞ implying that the

origin is a globally asymptotically stable spiral for this nonlinear system (Fig. 2.2).

Notice however that a linear stability analysis predicts the origin to be a stable star.

In fact, one can easily solve (2.18) to get the trajectory in closed form

r (r0, t) = r0e
−t, θ (θ0, t) = θ0 + log

(
log r0

log r0 − t

)
, (2.19)

which corroborates the asymptotic behavior mentioned above. Further, one can

compute

∇ · f =
∂f1

∂x1

+
∂f2

∂x2

=
1

r

(
∂

∂r
(rfr) +

∂fθ
∂θ

)
=

1

r

(
∂

∂r

(
−r2

)
+

∂

∂θ

(
1

log r

))
= −2

⇒ exp

(
−
∫ t

0

∇ · f (r (τ) , θ (τ)) dτ

)
= e2t. (2.20)

Notice that the coordinate transformation rule for the divergence operator
∂f1

∂x1

+

∂f2

∂x2

=
1

r

(
∂

∂r
(rfr) +

∂fθ
∂θ

)
, simplifies the computation. Alternatively, one could get

the same result in Cartesian coordinates, by deriving

∂f1

∂x1

= −1− 2x2
∂

∂x1

(
1

log (x2
1 + x2

2)

)
= −1 +

4x1x2

(x2
1 + x2

2) (log (x2
1 + x2

2))
2 ,

∂f2

∂x2

= −1 + 2x1
∂

∂x2

(
1

log (x2
1 + x2

2)

)
= −1− 4x1x2

(x2
1 + x2

2) (log (x2
1 + x2

2))
2 .
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Figure 2.2: Vector field (left) and an ensemble of trajectories in the phase space
(right) for the nonlinear system given by (2.17).

From (2.19), we also get

r0 (r, t) = ret, θ0 (θ, t) = θ − log

(
log r + t

log r

)
. (2.21)

Thus, (2.20) and (2.21) results

ξ (r, θ, t) = ξ0 (r0, θ0) e2t = ξ0

(
ret, θ − log

(
log r + t

log r

))
e2t. (2.22)

If the initial conditions are sampled from a uniform PDF, then the transient PDFs

resemble the phase portrait of Fig. 2.2, converging toward a Dirac delta at the origin.

To examine the case for non-uniformly sampled initial conditions, an initial PDF is

taken which has a high probability around θ = 0 and is symmetric about the same.

The polar plots of Fig. 2.3 shows the PDF contours at t = 0, 0.2, 0.5, 1.0, 1.4 and 2.0

respectively, for the dynamics given by (2.17). It can be observed that the support
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of the transient PDFs shrink progressively and spirally converge toward the origin,

which is consistent with the trajectory level analysis. The red (blue) color denotes

high (low) probability.
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Figure 2.3: Contours of the PDF ξ (r, θ, t) computed from (2.22) at t = 0 (top left),
0.2 (top middle), 0.5 (top right), 1.0 (bottom left), 1.4 (bottom middle) and 2.0
(bottom right), respectively.

Remark 1. The two simple examples given above illustrate how MOC solves the

Liouville equation. In MOC, the initial value problem (2.9) is solved along the char-

acteristics, which in case of Liouville equation, are the integral curves or trajectories

of the flow. Thus the integral in (2.10) is a path integral computed along each tra-

jectory (see Fig. 2.4). To further clarify this, consider a divergence-free vector field.
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Figure 2.4: In MOC based solution of the Liouville equation, along each sample tra-
jectory, the probability weights are updated during dynamics propagation. In MC
method, one tries to reconstruct a histogram to approximate such weight distribu-
tion, as a post-processing step. So the main advantage of using Liouville equation
compared to MC is the ability to update exact probability weights “on the fly” and
hence, the samples are ‘colored’ so to speak, with the color-value being proportional
to the value of the instantaneous joint PDF. Red (blue) denotes high (low) value.

Then (2.9) tells us that the joint PDF remains constant as long as we are “riding”

a particular trajectory. The value of this constant is different along a different tra-

jectory. Thus, a volume-preserving flow, in general, does admit a spatio-temporally

evolving PDF. For the same reason, in the above examples, initial condition was com-

puted as a function of the current state and time to substitute for x (0) in ξ (x (0) , 0)

(see (2.15), (2.16) and (2.22)).

Remark 2. For the Liouville equation, since the trajectories are same as the char-

acteristic curves and trajectories can’t intersect (due to uniqueness), the solutions of
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the MOC are no where discontinuous.

2.1.3 Algorithms

The numerical algorithm for implementing the MOC method to solve Liouville

equation, comprises of three main modules as described below.

1. Initial sampling: The initial uncertainties are specified by an initial joint

PDF ξ0. Once the initial joint PDF is known, one needs to generate a pre-

specified number of samples such that they best represent that prescribed joint

PDF ξ0. For the case of uniform initial distribution, one may do a grid-based

discretization or for high dimensions, opt for a pseudo-random number gen-

erator using low discrepancy sequences like Halton sequence [2] to avoid the

‘curse of dimensionality’. Some preliminary comparative simulation results

along these lines were reported in [37]. In this dissertation, samples from uni-

form initial PDF were generated using multi-dimensional Halton sequence. For

non-uniform initial PDFs, one needs to use probability integral transform (e.g.

Box-Muller transform in case of normal distribution) methods [69]. However,

one must resort to the Markov Chain Monte Carlo [70, 71] (MCMC) techniques

to achieve better computational performance for sampling any general initial

PDF in high dimensions [72].

2. Uncertainty propagation: The samples from the initial PDF ξ0 are propa-

gated according to the given deterministic dynamics, and the MOC ODE (2.9)

is solved at each time step, for each of these samples, as illustrated in Fig. 2.4.

Notice that solving (2.9) along one trajectory, is independent of the other, and

hence the formulation is a natural fit for parallel implementation. Algorithm 1

details this method for uncertainty propagation.
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Algorithm 1 Uncertainty Propagation via MOC Solution of the Liouville PDE

Require: The initial joint PDF ξ0 (x0, p̂), dynamics (2.1), number of samples N ,
final time tf , time step ∆t.

1: Generate N scattered samples {x0i, p̂i}Ni=1 from the initial PDF ξ0 (x0, p̂) .
Using MCMC

2: Evaluate the samples {x0i, p̂i}Ni=1 at ξ0 (x0, p̂), to get the point cloud
{x0i, p̂i, ξ0i}Ni=1

3: for t = 0 : ∆t : tf do . Index for time
4: for i = 1 : 1 : N do . Index for samples
5: Numerically integrate the dynamics (2.1) . Propagate states to obtain
{x̂i(t)}Ni=1

6: Compute ∇ · f̂ . either analytically or numerically, evaluated at x̂i(t)
7: Numerically integrate the characteristic ODE (2.9) . Propagate joint

PDF values to
8: . obtain {ξ̂i(t) , ξ̂ (x̂i(t), p̂i, t)}Ni=1

9: end for
10: end for . Get time-varying probability-weighted scattered data
{x̂i(t), p̂i, ξ̂i(t)}Ni=1 for each t

3. Marginal PDF computation: As the samples from the initial PDF ξ0 are

propagated according to dynamics f̂ , the joint PDF ξ̂ at any given time t >

0, is represented by the instantaneous distribution of those evolved samples.

Because of the nonlinear dynamics, such a distribution, in general, is a scattered

data set residing over the extended state space. To compute the marginal PDFs

from these joint PDFs, one needs to isolate a snapshot of interest and integrate

out the dimensions other than whose marginal is sought. In Section 2.1.1, we

briefly touched upon the fact that because of dynamics, the domain or the

support of the joint PDF deforms with time, and the integration for marginal

computation needs to be carried out over few dimensions of this instantaneous

domain. This brings forth the problem of integration over high dimensional

scattered data.

One way to tackle this problem is to interpolate these scattered data, which
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itself is numerically challenging. Since the joint PDF values were computed

directly by solving the Liouville equation, it’s an interpolation problem as op-

posed to function approximation. Alternatively, one may attempt the numer-

ical integration without interpolation. For this, one can sprinkle a new set of

Halton points (preferably more than the number of samples) inside the bound-

ing box of this static/time-frozen data and then use these newly sprinkled

points as the quadrature points to carry out quasi-Monte Carlo (QMC) inte-

gration (see Chapter 2 in [2]). The computational cost associated with this

approach comes from the evaluation of the joint PDF values at this new set

of points, which can be determined by first back-integrating the dynamics and

then forward integrating the MOC ODE for these quadrature points.

Notice that for computing marginals from MC simulations, one takes a fre-

quentist approach and counts samples in the bins lying on the requisite slices.

Since we are interested to compare the Liouville derived marginals with those

obtained from MC, a similar (and computationally less heavy than described

above) method can be employed to approximate the marginals from MOC

computation. In the MOC computation, since there is a probability weight

associated with each sample, one can do a binning similar to MC histograms.

Only this time, instead of counting the number of samples in each bin, the bin

weight can be assigned as the average of the joint pdf values of the samples in

that bin (see Fig. 6 in [38]). In both cases, the individual bin weights need

to be normalized with respect to the bin size and total probability weight. In

this dissertation, all marginals computed from the joint PDFs propagated by

the MOC ODE, are obtained in this fashion.
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2.2 Case Study: Risk Analysis for Mars Hypersonic Entry

Almost all space mission uncertainty analysis have been done with MC simula-

tions including Mars Pathfinder [48], METEOR [73] recovery module, Stardust [74]

comet sample return capsule, Mars Microprobe [75], Mars Surveyor Program 2001

Orbiter and Lander [76] and the Mars Science Laboratory [49] mission. In fact,

many important decisions in mission design have been historically driven by MC

based dispersion analysis. Mars landing site selection [77], design of the Pathfinder

aeroshell thermal protection system [78], and parachute deployment algorithm [48]

are examples for the same. This heavy bias towards MC simulations among EDL

analysis practitioners is partly due to its ease of implementation, and partly due to

the scarcity of alternative analysis methods. Two primary EDL simulation frame-

works which are seeing extensive use at present, are NASA Langley Research Center’s

(LaRC) Program to Optimize Simulated Trajectories II (POST2) [79] and NASA Jet

Propulsion Laboratory’s (JPL) Dynamics Simulator for Entry, Descent and Surface

Landing (DESENDS) [80]. Both of these two presently rely on MC based disper-

sion analysis for EDL simulations. In this Section, we work out an uncertainty

propagation case study for Mars hypersonic entry, using the MOC computation to

solve the Liouville PDE, described in Section 2.1, and compare our results with MC

simulations.

2.2.1 Vinh’s Equation for Hypersonic Entry

We model the kinematics for hypersonic entry into the Mars atmosphere through

Vinh’s equations [81]. We will work with two different models of the same, a three

state model where the kinematics is assumed to be purely longitudinal, and a more

general six state model with lateral-longitudinal coupling. Both these models de-

scribe the trajectory of the center-of-mass of a spacecraft entering into the Mars
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atmosphere.

2.2.1.1 Three State Model

Assuming the entire trajectory is contained in the longitudinal plane, one can

write the following non-dimensionalized three state (h, V, γ) model for non-rotating

spherical Mars with zero bank angle flight.

ḣ = V sin γ, (2.23a)

V̇ = −ρR0

2Bc

V 2 − gR0

v2
c

sin γ, (2.23b)

γ̇ =
ρR0

2Bc

CL
CD

V +
gR0

v2
c

cos γ

(
V

1 + h
− 1

V

)
. (2.23c)

Here the model for Martian atmospheric density variation [82] is taken as

ρ = ρ0 exp

(
h2 − hR0

h1

)
, (2.24)

where h2 = 20 km and h1 = 9.8 km. The mean equatorial radius of Mars will be

taken as R0 = 3397 km.

2.2.1.2 Six State Model

Here we present the more general form of Vinh’s equations, which is a non-

dimensionalized six state (h, ζ, λ, V, γ, χ) model. This model takes the self-rotation

rate (Ωr) of the planet and the bank angle (σb) into account.

ḣ = V sin γ, (2.25a)

ζ̇ =
V cos γ sinχ

(1 + h)
, (2.25b)

λ̇ =
V cos γ cosχ

(1 + h) cos ζ
, (2.25c)

31



V̇ = −ρR0

2Bc

V 2 − gR0

v2
c

sin γ

+
R2

0Ω2
r

v2
c

(1 + h) cos ζ (sin γ cos ζ − cos γ sin ζ sinχ) , (2.25d)

γ̇ =
ρR0

2Bc

CL
CD

V cosσb +
gR0

v2
c

cos γ

(
V

1 + h
− 1

V

)
, (2.25e)

χ̇ =
ρR0

2Bc

CL
CD

V sinσb
cos γ

− V cos γ

(1 + h)
tan ζ cosχ+

2R0Ωr

vc
(tan γ cos ζ sinχ− sin ζ)

− R2
0Ω2

r

v2
c

(1 + h)

V cos γ
sin ζ cos ζ cosχ. (2.25f)

Ωr was calculated from the rotational time period of Mars, which is 24 hours 39

minutes and 35.24 seconds. The density variation is taken identical to the three-state

model.

2.2.2 Numerical Simulations

Before solving the Liouville equation for the three state and six state Vinh’s

equation, we will examine certain restricted cases of the same. Since the three and

six-state models, in general, require numerical solution for the PDF, considering

specific cases will give us some physical understanding of the problem.

2.2.2.1 Horizontal Flight

For horizontal flight, γ ≈ 0 and h = constant. Therefore, only the second equation

remains to be considered in (2.23), which becomes

V̇ = −ρR0

2Bc

V 2

⇒
∫ V

V0

dV

V 2
= −ρR0

2Bc

∫ t

0

dt [since h is constant, so is ρ ]

⇒ V =
V0

1 + ρR0

2Bc
V0t

(2.26)
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which implies that V decreases monotonically with time. In this case, ξ̂ (V, t) =

ξ0 (V0) exp

(
−
∫ t

0

−ρR0

Bc

V (τ) dτ

)
. Therefore,

ξ̂ (V, t) = ξ0 (V0)

[
1 +

ρR0

2Bc

V0t

]2

= ξ0 (V0)

(
V0

V

)2

= ξ0

(
V

1− ρR0

2Bc
V t

)
1

(
1− ρR0

2Bc
V t
)2 . (2.27)

Thus, given an initial PDF ξ0 describing the initial condition uncertainty, (2.27)

provides an algebraic expression for determining the transient PDF ξ̂ (V, t) at any

current time t and velocity V .

2.2.2.2 Vertical Flight

This special case concerns with the vertical descent (γ = −π
2

) in a non-lifting

trajectory. Consequently, we eliminate (2.23c) as all terms in it are identically zero.

Hence, we are left with (2.23a), (2.23b) and (2.24). Substituting ρ in (2.23b) as a

function of h, we get two first order coupled nonlinear ODEs in h and V , shown

below.

ḣ = −V, (2.28a)

V̇ = −K1V
2e−βh +K2, (2.28b)

with K1 =
ρ0R0

2Bc

eh2/h1 , β =
R0

h1

and K2 =
gR0

v2
c

. With ∇ · f̂ = −2K1V e
−βh, the

Liouville equation needs to be solved numerically along with the above dynamics.

With nominal initial altitude h0 = 80 Km and nominal initial velocity V0 =

3.5 Km/sec, and assuming 5% uniform dispersion in both h0 and V0, the Liouville

equation was solved numerically. The simulation was repeated for 15% uniform

dispersion in both h0 and V0. In both the cases, 1000 samples were taken to represent
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the trajectory ensemble. Fig. 2.5 and 2.6 show the color-coded scatter plots at

t = 19.13 seconds in the h V plane, with the color-value being proportional to the

value of the bivariate joint PDF at that instant. As before, red denotes high and

blue denotes low value of the joint PDF. Notice that, a larger dispersion in the initial

conditions results in more spread in the point cloud at the same instant of time.
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Figure 2.5: Scatterplot at t = 19.13 sec
with 5% uniform initial condition un-
certainties in h0 and V0.
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Figure 2.6: Scatterplot at t = 19.13 sec
with 15% uniform initial condition un-
certainties in h0 and V0.

2.2.2.3 Numerical Results for the Generic Vinh’s Equation

The nominal initial conditions are taken to be h0 = 80 Km, ζ0 = 24.01◦N,

λ0 = 341.03◦E, V0 = 3.5 Km/s, γ0 = −2◦, and χ0 = 0.0573◦. The nominal values

of the parameters are taken as Bc = 72.8 Kg/m2, ρ0 = 0.0019 Kg/m3, and
CL
CD

=

0.3. Since the models described in Section 2.2.1 are non-dimensionalized, numerical

integration was performed in non-dimensional time t = 0 to t = 0.7 with the non-

dimensional step-size ∆t = 0.01. One can easily convert it back to the physical time

by multiplying the non-dimensional time with a factor
R0

vc
. In this paper, results are
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presented for two kinds of initial uncertainties, viz. 5% uniform dispersion in each

variable, and Gaussian dispersion about the nominals with 10% variance along each

dimension.

For the generic three state model (2.23), it is possible to visualize the joint PDF

using the three dimensional color-coded scatter plots similar to Fig. 2.5 and 2.6. Such

plots are shown in Fig. 2.7 for 1000 samples at t = 0.05, 0.20, 0.30 and 0.50, with

both uniform (top row) and Gaussian (bottom row) initial condition uncertainties.

It can be observed that at t = 0.05, the joint PDFs are slightly perturbed from the
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Figure 2.7: Scatter plots of the joint PDF ξ̂ (h, V, γ, t) at t = 0.05, 0.20, 0.30 and
0.50, respectively. Columns show different times, rows signify different initial PDFs
(uniform for top and Gaussian for bottom row).

respective initials. As time progresses, the probability mass accumulates near zero

altitude and zero velocity and the flight path angle assumes a steep value. This is

in agreement with the physical intuition as the vehicle, with high probability, slows

down through the lower part of the atmosphere.
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Figure 2.8: The univariate and bivariate marginals for the case of uniform initial
condition uncertainty at t = 0.05, 0.30 and 0.50, respectively. The simulation is for
three state Vinh’s equations (2.23) with 5000 samples. For univariate marginals,
MOC results are in solid red and MC results are in dashed blue. For bivariate
marginals, MOC results are in the bottom row and MC results are in the top row.
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Figure 2.9: The univariate and bivariate marginals for the case of Gaussian initial
condition uncertainty at t = 0.05, 0.30 and 0.50, respectively. The simulation is for
three state Vinh’s equations (2.23) with 5000 samples. Conventions for the MC and
MOC plots are same as in the previous figure.
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Figure 2.10: The univariate marginals for the case of uniform initial condition un-
certainty at t = 0.30. The simulation is for six state Vinh’s equations (3.66f) with
10,000 samples. MOC results are in solid red and MC results are in dashed blue.
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Starting from the uniform initial joint PDF, the evolution of the univariate and

bivariate marginals for the three state Vinh’s equations, are shown in Fig. 2.8.

The same for the Gaussian initial PDF are plotted in Fig. 2.9. The univariate

MC (dashed blue) and MOC (solid red) PDFs are in good match. The bivariate

marginals show the general trend that MOC-derived marginals (bottom row) capture

the concentration of the probability mass well (by virtue of the probability weights

obtained by solving the Liouville equation) while the MC bivariate marginals (top

row) tend to smear it out (because of the histogram approximation). This can be

seen, for example, in V − γ bivariate plots. Similar trends can be observed for the

six state model (3.66f). For brevity, in Fig. 2.10, we only show the snapshot of

univariate PDFs at t = 0.30, for the six state model with uniform initial PDF.

The simulation results shown above bears testimony to the fact that with same

number of simulations, MOC based approach can better resolve the instantaneous

PDF compared to the MC method. This is not surprising since the former assigns

explicit probability weights computed by solving the Liouville equation while the

latter tries to approximate a PDF by constructing histograms.

2.2.2.4 Further Statistical Analysis

Next, we demonstrate two statistical analysis pertaining to EDL interest in the

MOC framework. More analysis along this line can be found in Section VI of reference

[38].

1. Tracking Uncertainty: It’s of interest to compute the probability that the

flight path angle (FPA) will be within a specified interval, i.e. γmin 6 γ 6 γmax.

This problem is important in the context of tracking the spacecraft by a space-

based antenna. Univariate FPA marginals (like those shown in Fig. 2.8, 2.9 and

2.10) can be computed at different times to calculate the tracking probabilities.
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Such information can be crucial from mission design perspective.

2. Landing Footprint Uncertainty: Computing the landing footprint uncer-

tainty has been one of the key aspects of EDL analysis. Important decisions

like landing risk evaluation and trajectory correction maneuver design depend

on it. A list of factors contributing toward landing footprint uncertainty, can

be found in [77]. Almost all EDL analysis has been based on evolving a bivari-

ate Gaussian in latitude and longitude and thereby characterizing a 3σ landing

ellipse representing the landing footprint uncertainty. Historically, the landing

ellipses have spanned hundreds of Km (see Fig. 2.11). However, depending

on the initial uncertainty and system dynamics, the latitude-longitude bivari-

ate marginal can be far from Gaussian, resulting the 3σ estimates unrealistic.

Computing this marginal using MC method is not only computationally ex-

pensive but can be inaccurate, for reasons discussed before. Fig. 2.12 compares

the latitude-longitude (ζ λ) bivariate marginal at the final time, computed for

the six state model using MC (left) and MOC based Liouville equation (right)

method. Notice that, the MOC based Liouville equation method (right in Fig.

2.12) predicts the landing footprint to be at 377 degrees E and 21.3 degrees

N (approx.) with maximum probability and a very small dispersion around it.

It ascertains that the landing probability everywhere else is zero. In contrast,

MC method (left in Fig. 2.12) can at best predict a high probability around

357–381 degrees E and 20.5–21.4 degrees N and is unable to do any further re-

finement of the landing footprint uncertainty. Not surprisingly, such huge MC

dispersion in latitude-longitude results 3σ landing ellipse spanning hundreds of

Km. It’s evident that MOC based Liouville equation method outperforms MC.
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Viking 1,2 (1976)Pathfinder (1997)

Phoenix (2008)
MER A,B (2004)

MSL (2011)

Figure 2.11: Schematic comparison of landing footprints of Mars missions. To make
a comparison between their sizes, all ellipses are drawn with the same center and
same orientation. The scale on each axis is in Km (data taken from [1]).

Table 2.1: Comparison of joint PDF computation over Rn̂s+n̂p : MC vs. MOC
Attributes MC simulation MOC for Liouville equation
Concurrency Offline post-processing Online
Accuracy Histogram approximation Exact arithmetic
Spatial discretization Grid based Meshless
ODEs per sample n̂s n̂s + 1

2.3 Computational Performance Assessment Against Monte Carlo

In this section, we compare the computational performance between MC and

the proposed MOC method. The main differences of the MOC computation from

the MC simulation are summarized in Table 2.1. Next, we focus on comparing

the numerical performance of MC and MOC, with respect to the three steps, viz.

sampling the initial PDF, uncertainty propagation, and computing marginals.

2.3.1 Sampling Initial PDF

The initial distribution is specified as a PDF supported over the initial conditions

and parameters. Then the question arises, how to generate a user-specified number
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Figure 2.12: Comparison of the latitude-longitude (ζ λ) bivariate marginal PDF at
the final time, from MC (left) and MOC based Liouville equation (right) method.
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of samples from such prescribed initial joint PDF, and what can be said about the

accuracy and computation time for the same?

2.3.1.1 Accuracy

If the initial density is jointly uniform, then multidimensional Halton sequence

[83] provides a deterministic method to generate a prescribed number of samples.

Since the construction is based on a deterministic algorithm (as opposed to ran-

domized algorithm), it’s often called a quasi Monte Carlo (QMC) method of sample

generation. The Halton sequence is a multidimensional extension of van der Corput

sequence with respect to base b, denoted by Vb, whose nth term is given by

Vb (n) :=
∞∑

r=0

ar (n)

br+1
, n ∈ N, (2.29)

where ar (n) is the rth digit of the b-adic expansion of

n− 1 =
∞∑

r=0

ar (n) br. (2.30)

The nth term of the Halton sequence in unit hypercube [0, 1]ns is defined as the

ns-tuple

Hn :=
(
Vb1 (n) , . . . ,Vbn̂s (n)

)
, (2.31)

where the bjs are pairwise coprime, for j = 1, . . . , n̂s. Accuracy of the gener-

ated Halton points is quantified through the notion of discrepancy, denoted by

Dν (Sn̂s) ∈ (0, 1), that intuitively measures the amount of irregularity in the gen-

erated n̂s-dimensional sample set of cardinality ν i.e. Sn̂s , {H1, . . . ,Hν}. Since the

samples of uniform distribution are desired to be scattered evenly throughout the
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domain, lower discrepancy is better.

Definition 1. (Discrepancy and star discrepancy) Let F denote the nonempty

family of subsets of [0, 1]n̂s. The discrepancy Dν (Sn̂s) of a sample set Sn̂s of cardi-

nality ν, is defined as

Dν (Sn̂s) , sup
F∈F

∣∣∣∣∣
1

ν

ν∑

i=1

χ (Hi ∈ F)− Vol (F)

∣∣∣∣∣. (2.32)

If instead of F , we use G , the nonempty family of subsets of semi-open unit hypercube

[0, 1)ns, then the above defines star discrepancy D?
ν (Sn̂s) as

D?
ν (Sn̂s) , sup

G∈G

∣∣∣∣∣
1

ν

ν∑

i=1

χ (Hi ∈ G)− Vol (G)

∣∣∣∣∣. (2.33)

The following theorem ensures that the multidimensional Halton sequence, as

defined in (2.31), is of low discrepancy.

Theorem 1. [2]

∀ν > 1, D?
ν (Sn̂s) <

n̂s
ν

+
1

ν

n̂s∏

j=1

(
bj − 1

2 log bj
log ν +

bj + 1

2

)
. (2.34)

There are other low discrepancy sequences like Sobol, Faure and Niederreiter

sequences [2], which suitably permute Halton sequences to lower the discrepancy for

large n̂s. If the initial joint density is other than uniform, then the availability of

a low discrepancy uniform random number generator still comes handy for inverse

transform sampling or other specialized methods [69].

Unfortunately, sampling non-uniform density through transform techniques suf-

fers from computational inefficiency in high dimensions. Hence, to sample arbitrary
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initial PDF in high dimensions, one must resort to an MCMC sampler. The core

idea behind MCMC is to create a Markov chain whose stationary distribution is the

one from where we want to sample. Two popular ways of doing this are Metropolis-

Hastings algorithm [71, 84] and Gibbs sampler (also known as Glauber dynamics

and heat-bath algorithm) [85, 86, 87]. Since MCMC guarantees that the constructed

Markov chain asymptotically converges to the desired density, to adjudge the perfor-

mance of MCMC, one can ask: how long must the chain be run to get sufficiently

close to the target density? This rate of convergence, often called ‘burn-in period’ in

MCMC literature, quantifies the performance of a sample generation algorithm. We

describe it next.

2.3.1.2 Computational Time

Although numerically implementing Metropolis-Hastings and Gibbs sampler are

straightforward, deriving rigorous bounds for burn-in period is a daunting task. In

particular, sharp computable bounds are not available in general setting. Hence two

approaches of tackling this problem have evolved in the statistics community. One is

the practitioners’ approach, where instead of computing an upper bound for burn-in

period, a convergence diagnostics is performed to test whether the realized samples

“seem to be stable” after “large enough” number of iterations. Some widely used

convergence diagnostics can be found in [88].

The second approach strives to find a rigorous upper bound for the burn-in period.

Here the distance between the nth iterate of the Markov chain and the stationary

target density is estimated in total variation norm. The idea is to upper bound this

distance as a function of n, to answer how many steps are necessary to be ε close

to the target density. This thread of research is an ongoing pursuit. In our context

of continuous state space, most results (see section 3, [89], and [90]) impose some
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restrictions on the Markov chain (e.g. uniform ergodicity, geometric ergodicity etc.).

Due to lack of practical and computable MCMC bounds in continuous state space,

we simply denote the time required to sample as Tgen (ν, n̂s), a function of number of

samples ν, and dimension of the state space ns. To make the comparison meaningful,

we propagate the uncertainty with same set of MCMC samples, for both MC and

PF method. This precludes Tgen from exponential dependence on n̂s, i.e. grid-based

curse of dimensionality. However, if the initial density is jointly uniform, then the

QMC samplers of the previous subsection are in force, and runtime complexity results

are known for them (see Table 2 in [91]).

2.3.2 Propagation of Uncertainty

The main idea here is that constructing joint PDF through MC histogram is an

approximate method (piecewise constant approximation) while computing the same

via MOC solution of Liouville equation, is an exact method. Except the truncation

error of the integrator, for any generic nonlinear dynamics, the joint PDF weights

updated through MOC computation of the Liouville PDE, is exact at the sample

sites. The finite sample computation of MOC does not incur any loss of generality.

To elicit this, consider a case where the user queries the instantaneous joint PDF

value at a location of the extended state space where none of the finite samples have

landed. To determine this value exactly, by back integrating the dynamics till t = 0,

we can determine the initial condition this sample would have come from. If the

corresponding initial condition is found to lie outside the support of the prescribed

initial joint density, the joint PDF value at the query site is zero. Otherwise, the

instantaneous joint PDF value can be computed exactly by forward integrating the

Liouville equation along the characteristic curve for that single initial condition.

Comparison of computational time between MC and MOC computation is detailed
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in Section 4.2 of reference [91].

2.3.3 Computing Marginals

The comparison of marginal computation algorithms for MC and MOC are cov-

ered in detail in Section 5 of reference [91], where accuracy and runtime are compared

in section 5.1 and 5.2 respectively. It can be noted that unlike propagation of joint

PDF, marginal PDF computation is an approximation algorithm for both MC and

MOC formalism. For the purpose of brevity, we skip the details here and refer the

interested readers to [91].

2.4 Chapter Summary

In this Chapter, an algorithm is proposed for propagating probabilistic uncer-

tainties subject to a deterministic flow. This situation arises when the deterministic

model is known, but there are initial conditions and parametric uncertainties. The

proposed algorithm computes the time-varying joint PDF supported over the state

or output space of the deterministic model. This is accomplished by solving the

method of characteristics ODE corresponding to the Liouville PDE, obviating the

need for function approximation. This exact computation differs from histogram

approximation in Monte Carlo, and dispenses the need for grid. The algorithm is

demonstrated through various simple examples, and through a risk analysis case

study for Mars EDL. Numerical performance comparison for the proposed method

was done vis-a-vis with Monte Carlo.
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3. UNCERTAINTY PROPAGATION FOR STOCHASTIC FLOW

In the previous Chapter, we dealt with propagation of uncertainties in initial

conditions and parameters, subject to a deterministic flow. In this Chapter, we deal

with propagation of uncertainties in initial conditions and parameters, subject to a

stochastic flow. We first describe the Fokker-Planck equation, also known as for-

ward Kolmogorov equation, that transports the probability mass in the state space,

and outline the computational challenges in solving the same. Next, we combine

the MOC computation of Liouville equation described in the previous Chapter with

Karhunen-Loève (KL) expansion, to develop an algorithm that provably approxi-

mates the solution of the Fokker-Planck PDE. The efficacy of the proposed algorithm

is demonstrated through its application to nonlinear estimation.

The motivation behind investigating a mixed parametric-nonparametric approach

stems from the fact that the presence of process noise necessitates solving second

order Fokker-Planck PDE, and consequently, MOC based exact arithmetic compu-

tation can not be achieved. This argument usually leads researchers to develop

approximation algorithms to solve the second order Fokker-Planck PDE, which is an

exact description of the problem. Here, instead, we derive an approximate ordinary

differential equation (ODE) representation of the problem using KL expansion, and

then solve this approximate problem in exact arithmetic (using MOC). Hence our

approach differs from those which strive to numerically solve the Fokker-Planck PDE,

in the sense that we propose to approximate the problem while the latter strives to

approximate the solution. We prove that our ”first KL, then MOC” algorithm is

asymptotically consistent in distribution.
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3.1 The Fokker-Planck a.k.a. Forward Kolmogorov Equation

On a probability space (Ωs,F ,P) with filtration {Ft}t>0, consider the Itô stochas-

tic differential equations (SDEs)

d̂̃x (t) =
̂̃
f
(
̂̃x (t) , t

)
dt+ ĝ̂̃x dŴ (ωs, t) , (3.1)

dŷ (t) = ĥ
(
̂̃x (t) , t

)
dt+ ĝŷ dV̂ (ωs, t) , (3.2)

where at time instance t > 0, the extended state vector ̂̃x (t) ∈ Rn̂s+n̂p , and the

measurement vector ŷ (t) ∈ Rno . Further, Ŵ (ωs, t) : Ωs×R+ 7→ Rn̂w , V̂ (ωs, t) : Ωs×

R+ 7→ Rn̂v are mutually independent Wiener processes (a.k.a. Brownian motions)

denoting process and measurement noise, of dimensions n̂w and n̂v, respectively. For

the drift vector fields
̂̃
f and ĥ (.), we have

̂̃
f : Rn̂s+n̂p × R+ 7→ Rn̂s+n̂p , ĥ : Rn̂s+n̂p × R+ 7→ Rno . (3.3)

Similarly, for the diffusion fields ĝ̂̃x, and ĝŷ, we have

ĝ̂̃x : Rn̂s+n̂p × R+ 7→ R(n̂s+n̂p)×n̂w , ĝŷ : Rn̂s+n̂p × R+ 7→ Rn̂o×n̂v . (3.4)

The process noise is assumed to satisfy E
[
dŴi

]
= 0, E

[
dŴidŴj

]
= Qij; i, j =

1, . . . , n̂w. Similarly the measurement noise is assumed to satisfy E
[
dV̂i
]

= 0,

E
[
dV̂idV̂j

]
= Rij; i, j = 1, . . . , n̂v. Then the Fokker-Planck equation that describes

the spatio-temporal transport of state PDF ξ̂
(
̂̃x(t), t

)
, is given by

∂ξ̂

∂t
= LFPEξ̂

= (D1 +D2) ξ̂
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= −∇.
(
ξ̂
̂̃
f

)
+
〈
∇∇>,

(
ĝ̂̃xQĝ>̂̃x

)
ξ̂
〉
F

= −
n̂s∑

i=1

∂

∂x̂i

(
ρf̂i

)
+

n̂s∑

i=1

n̂s∑

j=1

∂2

∂x̂i∂x̂j

((
ĝ̂̃xQĝ>̂̃x

)
ij
ξ̂

)
. (3.5)

It can be noticed that the spatial Fokker-Planck operator LFPE can be written

as a sum of a drift operator (D1) and a diffusion operator (D2). The drift term

D1 ξ̂ = −∇.
(
ξ̂
̂̃
f

)
= −

(
∇.̂̃f +

̂̃
f · ∇

)
ξ̂ = −

n̂s∑

i=1

∂

∂x̂i

(
ξ̂f̂i

)
, governs the advection

of the PDF in the state space. The diffusion term D2 ξ̂ =
〈
∇∇>,

(
ĝ̂̃xQĝ>̂̃x

)
ξ̂
〉
F

=

n̂s∑

i=1

n̂s∑

j=1

∂2

∂x̂i∂x̂j

((
ĝ̂̃xQĝ>̂̃x

)
ij
ξ̂

)
, can be thought as a Frobenius inner product, de-

noted by the symbol
〈
. , .
〉
F

, between the Hessian operator
(
∇∇>

)
and the matrix

(
ĝ̂̃xQĝ>̂̃x

)
ξ̂. This term accounts for the smearing of the joint state PDF, due to

process noise.

The Fokker-Planck equation (3.5) needs to be solved for ξ̂
(
̂̃x(t), t

)
with specified

initial PDF ξ0 supported over the space of initial states and parameters. Since (3.5)

is a homogeneous PDE, it does not guarantee the solution ξ̂ to be non-negative, or

to obey the normality constraint. Hence, the numerical methods to solve this PDE

must explicitly enforce these constraints.

Notice that if the diffusion vector field ĝ̂̃x = 0, then (3.5) reduces to the Liouville

equation (2.3). On the other hand, if the drift vector field
̂̃
f = 0, then (3.5) reduces

to the heat equation.

3.1.1 Examples

We now work out few examples to demonstrate the solution of Fokker-Planck

equation (3.5). Just like Section 2.1.2, for the sake of notational simplicity, we drop

the “hat” symbol for the time being.
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3.1.1.1 Linear Drift with Constant Diffusion: Ornstein-Uhlenbeck (OU) Process

Consider the multivariate Ornstein-Uhlenbeck (OU) process x (t) ∈ Rns , that

satisfies the Itô SDE with linear drift and constant diffusion, given by

dx (t) = Ax (t) dt+G dW (ωs, t) , (3.6)

where E [dWi] = 0, E [dWidWj] = Qij; i, j = 1, . . . , nw. Further, A ∈ Rns×ns , and

G ∈ Rns×nw . Due to process noise, the dynamics (3.6) gives rise to a state PDF

ξ (x(t), t), governed by the Fokker-Planck equation (3.5), which in this case becomes

∂ξ

∂t
= −tr (A) ξ + Ax · ∇ξ +

ns∑

i=1

ns∑

j=1

(
GQG>

)
ij

∂2ξ

∂xi∂xj
. (3.7)

The stationary state PDF ξ∞ (x) exists iff A is Hurwitz and (A,G) is a controllable

pair, and is given by N (0,Σx∞), where Σx∞ solves the Lyapunov equation AΣx∞ +

Σx∞A
> +GQG> = 0.

The transient PDF depends on the initial condition x0. It can be shown that OU

process preserves Gaussianity. Also, no matter what kind of uncertainty x0 has, the

transient mean vector µx (t) and covariance matrix Σx (t) for OU process are given

by (directly taking expectation and covariance of (3.6), see Section 4.4.6 in [92], for

example)

µ̇x (t) = Aµx (t) , µx (0) = µ0, (3.8)

Σ̇x (t) = AΣx (t) + Σx (t)A> +GQG>, Σx (0) = Σ0, (3.9)
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which can be explicitly solved as

µx (t) = eAtµ0, (3.10)

Σx (t) = eAtΣ0e
A>t +

∫ t

0

eA(t−τ)GQG>eA
>(t−τ) dτ. (3.11)

Thus, x0 ∼ N (µ0,Σ0) results x (t) ∼ ξ (x(t), t) = N (µx(t),Σx(t)), where µx(t) and

Σx (t) are given by (3.10) and (3.11), respectively. Furthermore, a deterministic

initial condition x0 can be seen as a special case of Gaussian, i.e. x0 ∼ N (x0, 0).

Thus, starting from a deterministic initial condition, the state PDF for OU process at

any time t, is N
(
eAtx0,

∫ t

0

eA(t−τ)GQG>eA
>(t−τ) dτ

)
. These solutions for ξ (x(t), t)

can be readily verified from (3.7).

3.1.1.2 Stochastic Lure System

Consider the Itô SDE

dx(t) = Ax(t) dt+G dW (ωs, t) + bf
(
c>x
)
dt, (3.12)

where x (t) , b, c ∈ Rns ;W ∈ Rnw . The function f : R 7→ R is assumed to be piecewise

continuous. The matrix A ∈ Rns×ns is Hurwitz stable, and (A,G) is a controllable

pair. As in the previous example, Σx∞ denotes the solution of the Lyapunov equation

AΣx∞+ Σx∞A
>+GQG> = 0. We say two vectors u and v are proportional, if there

exists λ > 0 such that u = λv. If the vectors b and AΣx∞c are proportional, then

the stationary PDF of (3.12) is given by

ξ∞ (x) = N exp

(
−1

2
x>Σ−1

x∞x− λF
(
c>x
))

, (3.13)
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where F (z) ,
∫ z

0

f (θ) dθ, and N is the normalization constant. Proof for this

result and its application to RLC circuit with noisy resistor, can be found in [93].

Again, one can verify that (3.13) satisfies the stationary Fokker-Planck equation

corresponding to the Itô SDE (3.12).

3.1.2 Computational Challenges in Solving the Fokker-Planck PDE

The Fokker-Planck equation (3.5) is a parabolic PDE, second order in space and

first order in time. Being a second order PDE, it does not enjoy the MOC solution

that we employed for the first order Liouville equation in the previous chapter. Thus,

compared to Liouville equation (2.3), it is this second order diffusion term that

makes the numerical solution of (3.5) difficult. Function approximation techniques

for solving (3.5) usually suffer from the “curse of dimensionality” [94]. For this

reason, grid-based finite element methods have poor scalability with the increase

in dimension. On the other hand, the method of eigenfunction expansion can be

used to solve (3.5) for some special cases [95], but for general nonlinear dynamics,

suffers from poor rate of convergence [96]. Next, we present a new algorithm that

approximates the solution of Fokker-Planck equation (3.5).

3.2 A New Approximation Algorithm

We propose to develop an uncertainty propagation methodology based on Karhunen-

Loève (KL) expansion [97], and MOC solution of Liouville equation presented in the

previous Chapter. KL expansion, represents any random process as an infinite sum

of homogeneous products of functions of deterministic and stochastic variables. In

the context of dynamical systems, it has primarily been used in model reduction

and data analysis [98]. However, its application to uncertainty propagation has been

limited.

53



3.2.1 Karhunen-Loève Expansion for Process Noise

KL expansion was derived independently by many researchers [99, 97, 100, 101,

102] to represent a stochastic process Y (ωs, t) as a random linear combination of a

set of orthonormal deterministic L2 functions {ei (t)}∞i=1, i.e.

Y (ωs, t) =
∞∑

i=1

Zi (ωs) ei (t) , (3.14)

where Zi (ωs) are random variables. The idea is similar to the Fourier series expan-

sion, where a deterministic linear combination of orthonormal L2 functions is used.

Further, if we write Zi (ωs) =
√

Λiζi (ωs), where Λi ∈ R+ and {ζi (ωs)}∞i=1 is a se-

quence of random variables to be determined, then {Λi}∞i=1 and {ei (t)}∞i=1 can be

interpreted as the eigenvalues and eigenfunctions of the covariance function [103]

C (t1, t2) , cov (Y (ωs, t1)− E [Y (ωs, t1)] , Y (ωs, t2)− E [Y (ωs, t2)]) , (3.15)

that admits a spectral decomposition [104] of the form C (t1, t2) =
∞∑

i=1

Λiei (t1) ei (t2).

Since the covariance function is bounded, symmetric and positive-definite, the eigen-

value problem can be cast as a homogeneous Fredholm integral equation of second

kind, given by

∫

Dt
C (t1, t2) ei (t1) dt1 = Λiei (t2) . (3.16)

Given the covariance function of a stochastic process, the eigenvalue-eigenfunction

set can be found by solving (3.16), and the resulting expansion (3.14) converges to

Y (ωs, t) in mean-square sense [105]. The following four results will serve as examples

to illustrate our formulation. First two results below are well known in the literature
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[104]; we will prove the last two results.

Theorem 2. (KL expansion of Wiener process) For Wiener process W (ωs, t)

with variance σ2, the eigenvalues and eigenfunctions {Λi, ei (t)}∞i=1, of its covariance

function C (t1, t2) = (t1 ∧ t2), t1, t2 ∈ [0, T ]× [0, T ], are given by

Λi =
4T

π2 (2i− 1)2 , ei (t) =
√

2 sin

((
i− 1

2

)
πt

T

)
, (3.17)

and hence the KL expansion of W (ωs, t), is of the form

W (ωs, t)
m.s.
=
√

2
∞∑

i=1

ζi (ωs)

sin

((
i− 1

2

)
πt

T

)

(
i− 1

2

)
π

T

, (3.18)

where ζi (ωs) are i.i.d. samples drawn from N (0, σ2).

Corollary 3. (KL expansion of Gaussian white noise) Since dW (ωs, t) =

GWN (ωs, t) dt, the KL expansion for Gaussian white noise GWN (ωs, t) can be ob-

tained by taking the derivative of (3.18) with respect to t, i.e.

GWN (ωs, t)
m.s.
=
√

2
∞∑

i=1

ζi (ωs) cos

((
i− 1

2

)
πt

T

)
, (3.19)

where the i.i.d. random variables ζi (ωs) ∼ N (0, σ2).

Definition 2. The compound Poisson process P (ωs, t) is defined as [106]

P (ωs, t) =





0, if N(t) = 0,

N(t)∑

j=1

Pj (ωs) , if N(t) > 0,
(3.20)

where N(t) is a homogeneous Poisson counting process with intensity parameter
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λp > 0, and Pj(ωs) are i.i.d random variables drawn from N (µ, σ2). The choice

of Gaussian distribution for Pj(ωs) is a working convenience, and could be general-

ized. If Pj(ωs) is chosen to be non-Gaussian, then P (ωs, t) is still called compound

Poisson process as long as the chosen distribution for Pj is independent to that of

the counting process {N(t)}t>0.

Theorem 4. (KL expansion of compound Poisson process) For the com-

pound Poisson process P (ωs, t), if {Λi, ei (t)}∞i=1 are the eigenvalue-eigenfunction

pairs of its covariance function C (t1, t2) = λpσ
2 (t1 ∧ t2) + (λpµ)2 t1t2, where t1, t2 ∈

[0, T ]× [0, T ], then the KL expansion of P (ωs, t), is of the form

P (ωs, t)
m.s.
=

∞∑

i=1

√
Λiζi (ωs) ei (t) , (3.21)

where ζi (ωs) are i.i.d. samples drawn from N (0, 1). Further, Λi solves

tan

(
σT

√
λp
Λi

)
=

[
1 +

1

λpT

(
σ

µ

)2
](

σT

√
λp
Λi

)
, λp, σ, µ, T > 0; i ∈ N, (3.22)

and the eigenfunctions ei(t) = 2√[
2T−βi sin 2T

βi

] sin
(
t
βi

)
, where βi ,

√
Λi
λpσ2 .

Proof. We first solve the Fredholm integral equation of second kind (3.16), associated

with the covariance function

C (s, t) = λpσ
2 (s ∧ t) + (λpµ)2 st,where s, t ∈ [0, T ]× [0, T ] . (3.23)

This leads to

Λiei(s) = (λpµ)2s

∫ T

0

tei(t) dt+ λpσ
2

∫ s

0

tei(t) dt+ λpσ
2s

∫ T

s

ei(t) dt,(3.24)
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⇒ Λie
′
i(s) = (λpµ)2

∫ T

0

tei(t) dt+ λpσ
2

[
sei(s) +

∫ s

0

∂(tei(t))

∂s
dt

]

+λpσ
2

∫ T

s

ei(t) dt+ λpσ
2s

[
−ei(s) +

∫ T

s

∂(ei(t))

∂s
dt

]
, (3.25)

⇒ Λie
′
i(s) = (λpµ)2

∫ T

0

tei(t) dt+ λpσ
2

∫ T

s

ei(t) dt, (3.26)

⇒ Λie
′′
i (s) = −λpσ2ei(s), let β2

i ,
Λi

λpσ2
, (3.27)

⇒ ei(t) = A sin

(
t

βi

)
+B cos

(
t

βi

)
. (3.28)

Now, Λiei(0) = 0 ⇒ B = 0; and
∫ T

0
e2
i (t) dt = 1 ⇒ A

∫ T
0

sin2
(
t
βi

)
dt = 1 ⇒ A =

2√[
2T−βi sin 2T

βi

] . Consequently, we get

ei(t) =
2√[

2T − βi sin 2T
βi

] sin

(
t

βi

)
. (3.29)

Now, we substitute s = T in (3.26) and use (3.29), to obtain

Λi

βi
cos

T

βi
= (λpµ)2β2

i sin
T

βi
− (λpµ)2Tβi cos

T

βi
, (3.30)

which is a transcendental equation in Λi. Next, we substitute s = T in (3.24) and

use (3.29), to obtain

Λi sin
T

βi
=
[
(λpµ)2T + λpσ

2
] [
β2
i sin

T

βi
− Tβi cos

T

βi

]
, (3.31)

which is another transcendental equation in Λi. Since βi =

√
Λi

λpσ2
, solving for

eigenvalues Λi boils down to solve for βi as a function of the parameters λp, σ, µ, T >
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0, and i ∈ N. From (3.30) and (3.31), we have

1

(λpµ)2

Λi

βi
cos

T

βi
=

1

(λpµ)2 T + λpσ2
Λi sin

T

βi
, (3.32)

⇒ βi tan
T

βi
= T +

σ2

λpµ2
, since Λi 6= 0, ∀i ∈ N, (3.33)

⇒ tanx = m x, where x ,
T

βi
, andm , 1 +

1

λpT

(
σ

µ

)2

. (3.34)

Thus, solving for x > 0 is same as finding positive abscissa for intersections of tanx

and a straight line passing through the origin with slope > 45◦ (since m > 1, from

(3.34). Such intersections happen in either first or fourth quadrant, depending on the

value of m. Hence, x will be a function of (2i− 1)
π

2
, up to translation. Consequently,

the KL expansion of compound Poisson process P (ωs, t) is given by

P (ωs, t) =
∞∑

i=1

√
Λiζi (ωs) ei (t) , (3.35)

where Λi solves

tan

(
σT

√
λp
Λi

)
=

[
1 +

1

λpT

(
σ

µ

)2
](

σT

√
λp
Λi

)
, λp, σ, µ, T > 0; i ∈ N. (3.36)

Further, ζi (ωs) are i.i.d random variables from N (0, 1), and the eigenfunctions

ei(t) = 2√[
2T−βi sin 2T

βi

] sin
(
t
βi

)
, βi ,

√
Λi
λpσ2 . �

Corollary 5. (KL expansion of Poisson white noise) Since dP (ωs, t) =

PWN (ωs, t) dt, the KL expansion for Poisson white noise PWN (ωs, t) is

PWN (ωs, t)
m.s.
=

∞∑

i=1

√
Λiζi (ωs)

2
βi√[

2T − βi sin 2T
βi

] cos

(
t

βi

)
, (3.37)
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where Λi, ζi (ωs) and βi are as in Theorem 4.

Proof. The proof follows by taking the derivative of the right-hand-side of (3.35)

with respect to t. �

Remark 3. Setting the parameters λp = 1, µ = 0, in (3.23), we recover Wiener

process as a special case of compound Poisson process. Substituting the same in

(3.30), we indeed recover the eigenvalues and eigenfunctions given by (3.17), for the

covariance kernel of Wiener process, and consequently, the KL expansion (3.19) for

Gaussian white noise.

3.2.2 Approximating the Langevin Equation

We consider the problem of approximating the joint state PDF evolution of the

stochastic flow x (t) that satisfies the Itô SDE (3.1). For notational ease, we drop

the “hat” (denoting model dynamics) and “tilde” (denoting extended state space)

notation. Dropping the “tilde” means considering only initial condition (x0) uncer-

tainties, and no uncertainties in parameters p. From what follows, it will be obvious

that the proposed algorithm can be applied for the extended state space, by sim-

ply augmenting ṗ = 0 with the actual state dynamics. Hence, there is no loss of

generality due to our notational simplification.

Given the Itô SDE (3.1), we write an approximate dynamical system correspond-

ing to its Langevin ODE for the jth state as

ẋ
(j)
N (t) = f (j) (xN(t), t) +

nw∑

k=1

g(j,k)
x (xN(t), t) KL

(k)
N (ωs, t) , (3.38)

where j = 1, 2, . . . , ns; and KL
(k)
N (ωs, t) =

N∑

i=1

√
Λi ζ

(k)
i (ωs) ei (t) is the N -term KL

expansion of the kth component of the noise vector in the Langevin ODE form;
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k = 1, . . . , nw. Here, {Λi, ei (t)}∞i=1 is the sequence of eigenvalue-eigenfunction pairs

of the covariance function C (t1, t2) associated with the additive stationary process

noise, which is assumed to be a second order stochastic process. Moreover, ζi (ωs) are

i.i.d. random variables drawn from the distribution of the noise stochastic process.

For example, ifW (ωs, t) is Wiener process with C (t1, t2) = σ2 (t1 ∧ t2), t1, t2 ∈ [0, T ],

then {Λi, ei (t)}∞i=1 is the eigen-pair sequence for Gaussian white noise GWN(ωs, t)

given by (3.19) in Corollary 3, and ζi (ωs) ∼ N (0, σ2). On the other hand, if the

process noise in (3.1) is compound Poisson process P (ωs, t) instead of the Wiener

process W (ωs, t), then the KL expansion KL
(k)
N (ωs, t) in (3.38) would correspond

to that of Poisson White noise, given by (3.37) in Corollary (5). Since this noise

KL expansion can be done for any second order stochastic process, not necessarily

Gaussian, we summarize the procedure in Table 3.1, for two example cases. We affix

subscript N to the flow xN(t) of the approximate dynamics (3.38), to distinguish it

from the sample path x(t) of the original SDE (3.1).

Table 3.1: Noise KL expansion: Examples
Noise in SDE C (t1, t2) for SDE noise Noise in KL expansion

Langevin ODE in (3.38)

W (ωs, t) σ2 (t1 ∧ t2) GWN(ωs, t) (3.19)

P (ωs, t) λpσ
2 (t1 ∧ t2) + (λpµ)2t1t2 PWN(ωs, t) (3.37)
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Next, we augment (3.38) with the characteristic ODE

ξ̇N = −∇ · (fN) ξN , (3.39)

where fN denotes the right-hand-side nonlinearity of (3.38), and ξN (xN(t), t) denotes

the joint state PDF at time t, supported over the state space xN(t). In other words,

(3.39) computes the evolution of joint PDF along the characteristic curves xN (t),

with the joint initial PDF ξN (xN (0) , 0) = ξ (x (0) , 0) , ξ0. Notice that we do not

assume the process noise to be Gaussian. As long as the additive noise has finite

second moment, we can write down the approximate dynamical system (3.39) via

the noise KL expansion (Table 3.1). The overall formulation is summarized in Fig.

3.1.

It is well-known [104] that as N → ∞, the finite-term noise KL expansion

KL
(k)
N (ωs, t) converges uniformly to the kth component of the unstructured process

noise in m.s. sense. However, to justify our formulation, it remains to answer

whether xN (t) converges to x (t), and if yes, then in what sense. For our formulation

to make sense, at least xN (t) should converge to x (t) in weak distributional sense,

i.e. the PDF ξN (xN(t), t) should converge to the PDF ξ (x (t) , t). We next provide

numerical evidence to support this. Then we will proceed to rigorously derive the

convergence result.

3.2.3 Examples and Numerical Verification

3.2.3.1 Application to Vanderpol’s and Duffing Oscillator

The proposed methodology is applied to a noisy Vanderpol’s oscillator, given by

ẍ (t) =
(
1− x2 (t)

)
ẋ (t)− x (t) + GWN (ωs, t) , (3.40)
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Figure 3.1: Summary of the proposed uncertainty propagation formulation.

and to a noisy Duffing oscillator, with dynamics

ẍ (t) = 10x (t)− 30x3 (t)− 10ẋ (t) + GWN (ωs, t) , (3.41)

with GWN (ωs, t) having covariance 2πI2. The initial state uncertainty, is given by

the PDF ξ0 = N
(
[0, 0]>, diag (1, 1)

)
for both the systems (3.40) and (3.41).

In state space form, the approximated augmented dynamics for the Vanderpol’s
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oscillator, similar to (3.38) and (3.39), is given by

ẋ
(1)
N (t) = x

(2)
N (t) , (3.42a)

ẋ
(2)
N (t) =

(
1−

(
x

(1)
N (t)

)2
)
x

(2)
N (t)− x(1)

N (t) + KLN (ωs, t) , (3.42b)

ξ̇N = −
(

1−
(
x

(1)
N (t)

)2
)
ξN , (3.42c)

and for the Duffing oscillator, is given by

ẋ
(1)
N (t) = x

(2)
N (t) , (3.43a)

ẋ
(2)
N (t) = 10x

(1)
N (t)− 30

(
x

(1)
N (t)

)3

− 10x
(2)
N (t) + KLN (ωs, t) , (3.43b)

ξ̇N = 10ξN . (3.43c)

Next, the initial PDF ξ0 is sampled with sample size of ν = 5000. For the Vanderpol’s

oscillator, final time T is taken to be 1 s, for the Duffing oscillator T = 3 s. Number

of terms in the KL expansion is kept fixed as N = 7, for (3.42b) and (3.43b). Fig.

3.2 shows the evolution of joint state PDFs ξN with time for the two oscillators. It is

observed that, for the Vanderpol’s oscillator, the probability mass accumulates along

the limit cycle; and for the Duffing oscillator, we get a bimodal PDF at final time.

This is in agreement with the qualitative behavior of these systems.

3.2.3.2 Verification of Solution

As mentioned before, it is not apparent whether xN (t) converges to x (t). Hence,

it is important to at least numerically verify the consistency of the solution obtained

through the proposed framework. Here, we outline the procedure to verify weak

distributional convergence, i.e. the convergence of ξN to ξ as N → ∞. We use the

Kolmogorov-Smirnov (KS) test to verify the solution of the approximated dynamics
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Figure 3.2: Uncertainty Propagation for Vanderpol’s oscillator (3.40) in top row, and
Duffing oscillator (3.41) in bottom row, obtained via integrating (3.42) and (3.43),
respectively. Darker regions have higher joint PDF value than lighter regions.

(3.38).

The Kolmogorov-Smirnov test [107, 108] is a statistical hypothesis testing proce-

dure, used to compare a sample with a reference probability distribution. It quantifies

a distance Dν , between a reference cumulative distribution function (CDF), F (x),

and empirical CDF of the sample being tested, Fν(x), which is given by

Dν , sup
x
|Fν(x)− F (x)|, (3.44)

where ν refers to the sample size. The null hypothesis is that the sample comes

from the reference distribution. Given a significance level α, the null hypothesis is
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accepted if

√
νDν ≤ Kα, with P (K ≤ Kα) = 1− α. (3.45)

Here K is a random variable that follows Kolmogorov distribution, with CDF

P (K ≤ x) , FK (x) =

√
2π

x

∞∑

i=1

exp

(
−(2i− 1)2 π2

8x2

)
. (3.46)

If (3.45) is satisfied, then the KS test is passed and it is concluded that the given sam-

ple comes from the reference PDF. Due to finite number of samples ν, the quantity

Dν is a random variable as each sample will give different Dν values. The empirical

distribution of
√
νDν is given by

FNs (x) =
1

Ns

Ns∑

i=1

1x<
√
νDiν

, (3.47)

where Ns is the number of sample sets, and Di
ν is Dν value for the ith sample. The

Dvoretzky-Kiefer-Wolfowitz inequality [109] states that

P
(

sup
x∈R
|FNs(x)− FK(x)| > ε

)
≤ 2 exp

(
−2Nsε

2
)
, ∀ε > 0, (3.48)

where FK (x) is the Kolmogorov CDF in (3.46). Hence, as Ns →∞, the test statistic

√
νDν exponentially converges in distribution to a Kolmogorov random variable with

rate 2 exp (−2Nsε
2).

In our case, the analytical representation of PDF at final time tf is not known.

The only time when we know the PDF exactly is at time t = 0. Hence to verify

our solution, we use the original dynamics (3.1) to back-propagate the probability

weighted scattered data obtained by performing MOC on (3.38), till time t = 0.
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Then, we want to check if the back-propagated sample belongs to the initial PDF ξ0.

Let the elements sampled from the initial PDF be x0,i, i = 1, . . . , ν; and the

elements after propagation of (3.38) till t = tf be xN,i (tf ). Let the back-propagated

sample obtained by propagating xN,i (tf ) via (3.1) during [tf , 0], be xb0,i. To use the

KS test, the sample xb0,i is compared with ξ0, for statistical significance. Here, we use

a multivariate version [107] of the KS test. The verification methodology is described

in algorithm 2.

Algorithm 2 Verification of the proposed uncertainty propagation algorithm

Require: Initial PDF ξ0, number of sample sets Ns, number of samples ν, sig-
nificance level α, final time tf , number of terms in KL expansion N , original
dynamics (3.1) in ns dimensions.

1: Calculate Kα using (3.45)
2: for j = 1 : Ns do . sample set counter
3: Draw ν samples xj0,i from ξ0 . using MCMC
4: Create null hypothesis H0: ξ = ξ0 for current sample
5: for i = 1 : ν do . sample counter
6: Propagate xj0,i from [0, tf ] using (3.38), to get xjN,i (tf ) . use N terms in

noise KL expansion
7: Back-propagate xjN,i (tf ) from [tf , 0] using (3.1), to get xb,j0,i

8: Get uj0,i ← ξ0

(
xb,j0,i

)
. Inverse probability transform, uj0,i are from

U ([0, 1]ns)
9: end for

10: Calculate Gj
ν(u)← 1

ν

ν∑

i=1

1u≤uj0,i
. empirical CDF for transformed uniform

sample
11: Calculate Dj

ν ← sup
u∈[0,1]

|Gj
ν(u)−G(u)| . G(u) is uniform CDF in [0, 1]ns

12: if Dj
ν ≤ Kα√

ν
then

13: Accept H0 for the jth sample
14: else
15: Reject H0 for the jth sample
16: end if
17: end for . Repeat for the next sample set
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We illustrate this verification algorithm using the noisy Vanderpol’s oscillator

(3.42). We take the initial PDF ξ0 = N
(
[0, 0]>, diag (1, 1)

)
as before, Ns = 100

sample sets, each same set with ν = 500 samples, and N = 21 terms in noise KL

expansion. The noise strength for GWN was taken same as before. At first, we pick

a particular sample set, and perform KS test on it. Fig. 3.3 shows the location of

original initial samples {x0,i}νi=1 (blue circles), and after back-propagation {xb0,i}νi=1.

It is observed that {xb0,i}νi=1 is clustered around the origin and sparseness increases

as we move away, in agreement with the fact that ξ0 is standard Gaussian. Plots and

a detailed analysis for the KS results for this example can be found at [39].

3.2.4 Asymptotic Consistency of Approximation

In this section, we proceed to rigorously characterize the convergence of xN(t)

to x(t), for all t. We show that the xN(t) converges to x(t) in mean square sense,

which is indeed stronger than distributional convergence, that we hoped for. An

illustration of this convergence result is shown in Fig. 3.4. To present the main ideas

in a transparent manner, without notational clutter, we restrict to the case when the

dimension of the process noise is same as that of the state vector, i.e. ns = nw, and

the diffusion field being identity. It will be apparent from the derivation below that

our results extend to the more general case.

Theorem 6. Let x (ωs, t) be the solution of the nonlinear Itô SDE

dx(t) = f(x(t), t)dt+ dW(ωs, t), (3.49a)

⇒ d

dt
x (t) = f (x, t) + ℘(ωs, t), (3.49b)

where W(ωs, t) is any second order stationary stochastic process, and the process

℘(ωs, t) is defined as dW(ωs, t) = ℘ (ωs, t) dt. Further, f : Rns × [0, tf ] → Rns
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Figure 3.3: Comparison of the original (blue circles) and back-propagated samples
(red circles) at t = 0, for the noisy Vanderpol oscillator.

satisfies the following:

1. non-explosion condition: ∃ D ≥ 0, s.t. |f (x, t)| < D(1 + |x|) where x ∈ Rns,

t ∈ [0, tf ];

2. Lipschitz condition: ∃ C ≥ 0, s.t. |f (x, t)− f (x̆, t)| < C |x− x̆|, where x, x̆ ∈

Rns, t ∈ [0, tf ].
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Let xN (t) be solution of the ODE

d

dt
xN (t) = f (xN(t), t) + ℘N(ωs, t), (3.50)

where ℘N(ωs, t) is the N-term truncated orthonormal expansion of the L2 stochastic

process ℘N(ωs, t), and E
[∫ tf

0

℘N(ωs, t)dt

]
<∞. Then,

lim
N→∞

E|x (t)− xN (t)|2 = 0, (3.51)

iff xN (t) is the KL expansion of x (t).

Proof. (⇐) Given (3.51) holds, we need to show xN (ωs, t) is the KL expansion of

x (ωs, t). Let {ψm(t)}∞m=1 be any orthonormal basis. Then x (ωs, t) can be written as

a convergent sum in L2 (Ωs,F ,P), i.e. x (ωs, t) =
∞∑

m=1

bmcm(ωs)ψm(t).

Let xN (ωs, t) be an N -term m.s. convergent approximation of x (ωs, t), and

the resulting truncation error equals EN (ωs, t) =
∞∑

m=N+1

bmcm(ωs)ψm(t). Further,

projecting x (ωs, t) onto the basis ψm(t) results cm(ωs) = 1
bm

∫ tf

0

x(ωs, t)ψm(t)dt.

For convergence, the basis ψm(t) should minimize

∫ tf

0

E [EN (ωs, t)] dt subject to the

orthonormality constraint

∫ tf

0

ψm(t)ψk(t)dt = δmk, ∀m, k ∈ N.

Introducing b2
m as Lagrange multipliers and using the above derived formula

for cm (ωs), the first order optimality condition yields

∫ tf

0

Cxx (t1, t2)ψm (t1) dt1 =

b2
mψm (t2), which is the Fredholm integral equation of second kind for the covari-

ance function of random process x (ωs, t). Hence {b2
m, ψm(t)}∞m=1 is the eigenvalue-

eigenfunction sequence for Cxx(t1, t2). Thus, the original expansion is indeed a KL

expansion. �

Proof. (⇒) To proceed, we need the following uniqueness conditions on (i) solution
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of (3.49a), and (ii) KL expansion of a random process.

Proposition 1 ([19], Chap. 5). Given, the non-explosion condition and the Lipschitz

condition are satisfied for f (·, ·) in (3.49a). Let Z be a random variable, independent

of the σ-algebra generated by ℘(ωs, t), t ≥ 0, and E [|Z|2] <∞. Then the SDE (3.49a)

where t ∈ [0, tf ], x(ωs, 0) = Z, has a unique t-continuous solution x(ω, t) adapted to

the filtration FZ
t generated by Z, and E

[∫ tf

0

|x(ωs, t)|2dt
]
<∞.

Proposition 2 ([110], Chap. 2). The Karhunen-Loève expansion of a random pro-

cess x(ωs, t), given by x(ωs, t) =
∞∑

i=1

√
Λiζi(ωs)ei(t), is unique.

Let us assume that x̆N(ωs, t) is the KL expansion of x(ωs, t). Furthermore, if

possible, assume that x̆N(ωs, t) 6= xN(ωs, t), which is the solution of (3.50) and

converges to the solution of (3.49a) in m.s. sense.

Notice that (3.50) has unique solution as the right-hand-side of (3.50) satisfies

Lipschitz condition. This can be proved as follows: for the right-hand-side of (3.50) to

satisfy Lipschitz condition, we must have |f(x, t) + ℘N(ωs, t)− f(x̆, t)− ℘N(ωs, t)| ≤

C |x− x̆|, which is true since f(·, ·) itself satisfies Lipschitz condition. Hence, (3.49a)

has unique solution that admits a unique KL expansion. Also according to our

assumption, the solution of (3.50) converges to the solution of (3.49a) in m.s. sense.

This contradicts our assumption that x̆N(ωs, t) 6= xN(ωs, t), which completes the

proof. �

Remark 4. Theorem 6 states conditions upon the solutions of approximated and true

systems for m.s. convergence to hold, under certain assumptions on the nonlinear-

ities. No condition has been imposed yet on the initial states, which we investigate

next.

70



Theorem 7. Given the stochastic dynamical system

dx(t) = f(x(t), t)dt+ dW (ωs, t) , (3.52)

and its corresponding N-term KL approximation given by

dx
(j)
N (t) = f (j)(xN(t), t) dt+

N∑

i=1

√
Λiζ

(j)
i (ωs)ėi(t) dt, (3.53)

where, lim
N→∞

E

∣∣∣∣∣W
(j) (ωs, t)−

N∑

i=1

√
Λiζ

(j)
i (ωs)ei(t)

∣∣∣∣∣

2

= 0, ∀ j = 1, 2, . . . , ns. Then,

lim
N→∞

E|x(t)− xN(t)|2 = 0, if x(0) = xN(0).

Proof. Integrating (3.52) and (3.53) and taking the expected value of square of the

difference, we obtain

E|x(t)− xN (t)|2

= E



∣∣∣∣∣(x(0)− xN (0)) +

∫ t

0
(f(x, s)− f (xN , s)) ds+

∫ t

0
d(Ws −

N∑

i=1

√
Λiζi(ωs)ei(s))

∣∣∣∣∣

2

 ,

≤ E|(x(0)− xN (0))|2︸ ︷︷ ︸
0=:B (say)

+E
∣∣∣∣
∫ t

0
(f(x, s)− f(xN , s))ds

∣∣∣∣
2

+ E

∣∣∣∣∣

∫ t

0
d(Ws −

N∑

i=1

√
Λiζi(ωs)ei(s))

∣∣∣∣∣

2

,

≤ B + tE
∫ t

0
|f(x, s)− f(xN , s)|2 ds+ E

∣∣∣∣∣

∫ t

0
d(Ws −

N∑

i=1

√
Λiζi(ωs)ei(s))

∣∣∣∣∣

2

, (3.54)

where in the last step, we used Chebyshev’s integral inequality. Consequently, we

have

lim
N→∞

E|x(t)− xN (t)|2 ≤ B + lim
N→∞

tE
[∫ t

0
|f(x, s)− f(xN , s)|2 ds

]

+ lim
N→∞

E

∣∣∣∣∣

∫ t

0
d(Ws −

N∑

i=1

√
Λiζi(ωs)ei(s))

∣∣∣∣∣

2

. (3.55)
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Using the Lipschitz criterion and property of KL expansion, from (3.55) we get

lim
N→∞

E|x(t)− xN (t)|2
︸ ︷︷ ︸

v(t) (say)

≤ B + tC

∫ t

0
lim
N→∞

E |x(s)− xN (s)|2 ds,

⇒ v(t) ≤ B +A

∫ t

0
v(s)ds⇒ v(t) ≤ B exp(At), (3.56)

where the last step follows from Gronwall’s inequality, with tC ≤ A, ∀t ∈ (0, tf ].

Therefore, lim
N→∞

E|x(t)− xN(t)|2 = 0, since x(0) = xN(0) ⇒ B = 0, as per our

assumption. �

Corollary 8. Suppose xN(0) 6= x (0). If xN(0) is the generalized polynomial chaos

expansion of x(0), then lim
N→∞

E|x(t)− xN(t)|2 = 0.

Proof. In the proof of Theorem 7, for x(0) 6= xN(0), taking the limit N →∞ yields

lim
N→∞

E|x(t)− xN(t)|2 ≤ lim
N→∞

E|(x(0)− xN(0))|2+

lim
N→∞

tE
∫ t

0

|f(x, s)− f(xN , s)|2 ds+

lim
N→∞

E

∣∣∣∣∣

∫ t

0

d(Ws −
N∑

i=1

√
Λiζi(ωs)ei(s))

∣∣∣∣∣

2

.

Going through the subsequent steps as before, we arrive at

lim
N→∞

E|x(t)− xN(t)|2 = 0, if lim
N→∞

E|x(0)− xN(0)|2 = 0.

However, if xN(0) is the generalized polynomial chaos expansion of x(0), then they

asymptotically converge in m.s. sense [110]. Hence lim
N→∞

E|x(0)− xN(0)|2 = 0,

which, from the Gronwall’s inequality, implies that lim
N→∞

E|x(t)− xN(t)|2 = 0. This

completes our proof. �
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Figure 3.4: This plot illustrates the asymptotic convergence results developed in
Section 3.2.4, for the noisy Vanderpol oscillator given by (3.40). Starting from the
same initial condition (1; 1), denoted by the filled circle, the dashed, and solid curves
show the deterministic (zero noise), and stochastic (SDE sample path with zero-mean
additive Gaussian noise of variance 0.25) trajectories, respectively. The dash-dotted
curve is the trajectory of the approximated system of the form (3.42) with N = 100
terms in the noise KL expansion, starting from the same initial condition, with
process noise same as that of the SDE path. As N increases, the dash-dotted curve
converges to the solid curve in mean-square sense.

3.2.5 Rate of Convergence of Approximation

The results of the above subsection proves that our proposed algorithm for un-

certainty propagation is asymptotically consistent. Next, we want to investigate if

we can characterize the rate-of-convergence for our proposed algorithm. This issue is

important for numerical implementation perspective. One relevant fact [111] for this

purpose is that the rate-of-convergence of KL expansion is governed by the decay

rate of the sum of the eigenvalues of the covariance function. We provide an example
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to demonstrate this.

3.2.5.1 Example: Rate of Convergence of KL Expansion of Wiener Process

Consider the stochastic process dx (ωs, t) = dW (ωs, t). Eigenvalues of the covari-

ance function of x (ωs, t) are given by (3.17). Consequently, the truncation error due

to N -term KL approximation of x (ωs, t), is

∞∑

i=N+1

λi =
∞∑

i=1

λi −
N∑

i=1

λi

=
4T

π2

[
π2

8
− 1

8

(
π2 − 2ψ(1)

(
N +

1

2

))]
=

T

π2
ψ(1)

(
N +

1

2

)
,(3.57)

which decays faster than O (N−1), but slower than O (N−2). Here ψ(1) (.) denotes

the trigamma function [112].

3.2.5.2 Rate of Convergence and Smoothness of the Covariance Function

Recently, it has been shown [113] that one can estimate the convergence rate of

KL expansion, by knowing the smoothness of the covariance function, even though

the eigenvalues are not available analytically. The main result is that exponential

convergence occurs when the covariance function is analytic. If the latter has Sobolev

regularity, the KL expansion has algebraic decay. The following example on geomet-

ric Brownian motion (GBM) illustrates this.

3.2.5.3 Example: Rate of Convergence of KL Expansion of GBM

Consider the GBM dx (ωs, t) = ax (ωs, t) dt + bx (ωs, t) dW (ω, t), where a, b are

deterministic constants, and W (ω, t) is the standard Brownian motion. The covari-

ance function for x (ωs, t) can be computed from definition as

C (t1, t2) = (x0 (ωs))
2 ea(t1+t2)

(
eb

2t2 − 1
)
. (3.58)
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Since C (t1, t2) is analytic, the convergence is exponential.

Remark 5. In the general nonlinear SDE setting, the covariance function of the

state is not known beforehand. What is known here is the dynamics, i.e. the drift

and diffusion fields. Thus, one could look for connections between the smoothness of

the dynamics with the regularity of C (t1, t2). This will be a topic of our future work.

3.3 Case Study: Nonlinear Estimation with Approximated Prior Dynamics

To demonstrate our “first KL, then MOC” (henceforth KLMOC) algorithm, we

now focus on estimation problems, where we propose to compute the prior PDF using

our proposed method, followed by Bayesian update to result the posterior PDF. To

understand the context of our contribution, we outline some background behind the

state-of-the-art for the computation of nonlinear estimation.

State and parameter estimation for nonlinear systems are commonly done us-

ing sequential Monte Carlo methods, particle filter being the most popular amongst

them [114]. It is well known [115] that these methods require large number of sam-

ples for convergence, leading to higher computational cost. This problem is usually

tackled by combining particle filters with resampling [116, 117], commonly known as

bootstrap filters [118]. However, resampling may introduce loss of diversity amongst

particles [119]. Several other methods like regularized particle filter [120], and fil-

ters with Markov Chain Monte Carlo (MCMC) move step [121], have been proposed

to enhance sample diversity. At the same time, even with resampling, due to the

simulation based nature of these filters, the sample size scales exponentially with

state dimension [122]. To circumvent this problem, particle filters based on Rao-

Blackwellization [123] have been proposed to partially solve the estimation problem

analytically. However, its application remains limited to systems where the required

partition of the state space is possible.
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The main novelty in our approach is to recognize the fact that much of the

computational burden of particle filter, stems from the Monte Carlo approximation

of the prior. Lack of statistically consistent methods for high dimensional uncertainty

propagation, has stymied the accurate computation of prior density. Hence it is

reasonable to expect that our proposed improvement in the prior PDF computation

will also lead to improvement in the estimation performance. We demonstrate these

ideas through the following examples.

3.3.1 Simulation Setup

First, we consider two examples for which the estimation problem is exactly

solvable and hence the true posterior is known. To demonstrate the performance

improvement achieved by KLMOC compared to particle filter, we must show that

the posterior computed from our algorithm, is closer to the true posterior, than

particle filter. In other words, the “distance” between KLMOC posterior and true

posterior, must remain smaller than the “distance” between particle filter posterior

and true posterior, for all times. The notion of distributional distance used here,

is the quadratic Wasserstein metric of order two (denoted as 2W2), that measures

the difference in shapes between the two statistical distributions under comparison.

We will formally introduce the Wasserstein distance in the next Chapter, and show

that it is a metric on the manifold of PDFs, and that its value has the physical

interpretation of minimum amount of work needed to morph one PDF to the other.

For the time being, the distance 2W2 can be thought of as the minimum mean square

error between two random vectors whose PDFs under comparison.
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3.3.2 Kalman Filter

Let us consider the continuous-discrete Kalman filter with continuous-time state

dynamics

ẋ (t) = −0.05 I2 x (t) + [1 1]>GWNx (t) , (3.59)

and discrete-time measurement model

y (k) = [1 1] x (k) + GWNy (k) , k ∈ N, (3.60)

where the process noise GWNx (t) is a two dimensional zero mean Gaussian white

noise process, with covariance Q = 1
8
I2. The measurement noise GWNy (k) is an

one dimensional zero mean Gaussian white noise process, with variance R = 1
4
. We

assume the initial joint state PDF to be N
(

[1 1]> , diag (1, 1)
)

.

From this initial state PDF, we draw 100 sample sets, each with sample size

500. Then we compute two Wasserstein time histories: 2W2

(
ξ+

Kalman (t) , ξ+
Particle (t)

)

and 2W2

(
ξ+

Kalman (t) , ξ+
KLMOC (t)

)
, where ξ+

Kalman (t), ξ+
Particle (t) and ξ+

KLMOC (t) denote

posteriors at time t, obtained from Kalman filter, particle filter and KLMOC filter,

respectively. The Wasserstein distance 2W2 between two multivariate Gaussians can

be computed in closed form, and will be detailed in Section 4.2. The means and

standard deviations of these time histories are shown in Fig. 3.5. This plot shows

that the KLMOC filter posterior remains indeed closer to the Kalman posterior,

compared to the particle filter posterior.
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Figure 3.5: Plot of means and standard deviations of the Wasserstein distances of the
posteriors from KLMOC filter (solid line) and the particle filter (hyphenated line)
for the Kalman filter. The vertical lines about the means represent ±1σ limits.

3.3.3 Benes̆ Filter

Benes̆ filter is one of the few [124] nonlinear filters which admit a known finite-

dimensional solution of the nonlinear estimation problem. Here, the nonlinear drift

in state dynamics, is assumed to satisfy a Riccati differential equation [125] and the

measurement model is taken to be affine in states. We consider the continuous-

continuous scalar Benes̆ filtering problem of the form:

dx (t) =
κex − e−x
κex + e−x

dt+ dW (ω, t) , (3.61)

dy (t) = x (t) dt+ dV (ω, t) , (3.62)
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with κ = 0.5 and deterministic initial condition x0. The process and measurement

noise densities are N (0, Q) and N (0, R) respectively, with Q = 1, R = 10. It can be

shown [126] that the drift nonlinearity satisfies the necessary Riccati condition and

the resulting solution [127] is given by the normalized posterior density

ξ (x (t) |Yt) =

√
coth(t)

2π

(
κex + e−x

κeIt(y(ωs)) + e−It(y(ωs))

)
exp

(
−1

2
Γ (t)

)
, (3.63)

where Yt is the history (filtration) till time t, and

It (y (ωs)) , sech(t)

[
x0 +

∫ t

0

sinh(s)dy (ωs)

]
, (3.64)

Γ (t) , tanh(t) + coth(t) (x− It (y (ωs)))
2 . (3.65)

for this nonlinear non-Gaussian estimation problem, unlike Kalman filter case, we

can not write the Wasserstein distance between the true posterior (3.63) and parti-

cle filter/KLMOC posterior, as an analytical expression in terms of the respective

sufficient statistics. It will be shown in next Chapter that computing 2W2 between

two generic multivariate non-Gaussian PDFs, amounts to solving a linear program.

At each time, we sample (3.63) using the Metropolis-Hastings MCMC technique

[71], and solve the LP between the sampled true Benes̆ posterior and particle fil-

ter/KLMOC posterior, to result the Wasserstein trajectories shown in Fig. 3.6. Like

the Kalman filter case, as time progresses, KLMOC posterior gets closer, compared

to particle filter, to true Benes̆ posterior.

3.3.4 Nonlinear Estimation for Mars Hypersonic Entry

The KLMOC filtering technique is applied next to estimate states of a hypersonic

spacecraft entering the atmosphere of Mars. The entry dynamics is given by the
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Figure 3.6: Plot of means and standard deviations of the Wasserstein distances of
the posteriors from KLPF filter (solid line) and the particle filter (hyphenated line)
for the Benes̆ filter. The vertical lines about the means represent ±1σ limits.

“noisy” version of the six state Vinh’s equation given in Section 2.2.1, i.e.

ḣ = V sin γ + GWNh, (3.66a)

ζ̇ =
V cos γ sinχ

(1 + h)
+ GWNζ , (3.66b)

λ̇ =
V cos γ cosχ

(1 + h) cos ζ
+ GWNλ, (3.66c)

V̇ = −ρR0

2Bc

V 2 − gR0

v2
c

sin γ
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+
R2

0Ω2
r

v2
c

(1 + h) cos ζ (sin γ cos ζ − cos γ sin ζ sinχ) + GWNV , (3.66d)

γ̇ =
ρR0

2Bc

CL
CD

V cosσb +
gR0

v2
c

cos γ

(
V

1 + h
− 1

V

)
+ GWNγ, (3.66e)

χ̇ =
ρR0

2Bc

CL
CD

V sinσb
cos γ

− V cos γ

(1 + h)
tan ζ cosχ+

2R0Ωr

vc
(tan γ cos ζ sinχ− sin ζ)

− R2
0Ω2

r

v2
c

(1 + h)

V cos γ
sin ζ cos ζ cosχ+ GWNχ. (3.66f)

The measurement model is given by

y1 = q̃ + GWNy1 , (3.67a)

y2 = H + GWNy2 , (3.67b)

y3 = ζ + GWNy3 , (3.67c)

y4 = λ+ GWNy4 , (3.67d)

y5 = γ + GWNy5 , (3.67e)

y6 = χ+ GWNy6 . (3.67f)

where q̃ is the dynamic pressure, and H is the heating rate; and they are given by

q̃ =
1

2
ρV 2, (3.68a)

H = Kρ1/2V 3.15. (3.68b)

Here K = 4.47228× 10−9 is the scaled material heating coefficient [128]. Each com-

ponent of the process noise vector (GWNh,GWNζ ,GWNλ,GWNV ,GWNγ,GWNχ)>

is a zero mean mutually uncorrelated Gaussian white noise, with appropriate units.

Same holds true for the 6× 1 measurement noise vector, which is also uncorrelated

with the process noise vector. The process and measurement noise covariances are
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taken as Q = 3.6×10−5I6, and R = 3.6×10−3I6, respectively. The parameter values

are as in the simulation set up described in Section 2.2.2.

Starting with an initial state PDF N (µ0,Σ0), with

µ0 = [54 Km,−60◦, 30◦, 2.4 Km/s,−9◦, 0.0573◦]>, (3.69)

Σ0 = diag (5.4 Km, 3◦, 3◦, 240 m/s, 0.9◦, 0.0057◦) , (3.70)

both particle filter and KLMOC filtering schemes are applied to estimate the state

vector x = [h, ζ, λ, V, γ, χ]>. For presenting the results, instead of h in Km, we often

plot r , (R0 + h) in Km, which denotes the distance of the spacecraft’s center-of-

mass, measured from the center of the planet Mars. Fig. 3.7 shows the plots for

square root of the difference between the respective variance (σxi) and Cramer-Rao

lower bound (CRLBxi) for each state xi. The performance of KLMOC filter with

sample size 3000, is compared with the same for particle filters with 3000, 20,000

and 50,000 particles. It can be observed that
√
σ2
xi
− CRLBxi for KLMOC filter

is lower than that of the particle filters for all the states. This demonstrates that

the solution obtained from proposed estimation scheme remains closer to the true

minimum variance solution than that obtained from particle filters. Next, we plot

the final posterior univariate and bivariate marginals obtained from the two filtering

methods, computed using the algorithm given in [38]. Fig. 3.8 and 3.9 respectively

compare the univariate and bivariate marginals, obtained from KLMOC estimator

and particle filter, both with 3000 samples. It can be observed that the KLMOC

estimator is able to reduce variance and capture localization of uncertainty better

than the particle filter, with same number of samples. This remains true even when

the performance of KLMOC estimator with 3000 samples, is compared with a particle

filter with 50,000 samples (Fig. 3.10 and 3.11).

82



0 50 100
0

20

40

60

80

time (s)

sq
rt

(σ
r2
−

C
R

LB
r) 

(in
 k

m
)

0 50 100
0

0.1

0.2

0.3

0.4

time (s)

sq
rt

(σ
v2
−

 C
R

LB
v) 

(in
 k

m
/s

)

0 50 100
0

0.1

0.2

0.3

0.4

time (s)

sq
rt

(σ
γ2
−

 C
R

LB
γ) 

(in
 d

eg
)

0 50 100
0.05

0.1

0.15

0.2

0.25

time (s)

sq
rt

(σ
2
−

 C
R

LB
) 

(in
 d

eg
)

0 50 100
0

0.1

0.2

0.3

0.4

time (s)

sq
rt

(σ
λ2
−

 C
R

LB
λ) 

(in
 d

eg
)

0 50 100
0.01

0.02

0.03

0.04

time (s)

sq
rt

(σ
2
−

 C
R

LB
) 

(in
 d

eg
)

Figure 3.7: Plots for
√
σ2
xi
− CRLBxi for states x1, . . . , x6. The solid line represents

KLMOC filter (3000 particles). The hyphenated, hyphen-dotted and solid-asterixed
lines represent particle filters with 3000, 20,000 and 50,000 particles, respectively.
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Figure 3.8: Comparison of final posterior univariate marginal PDFs for all states,
obtained from KLMOC estimator (solid line) and particle filter (hyphenated line)
with 3000 particles.
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Figure 3.9: Plots for the final posterior bivariate marginal PDFs obtained from KL-
MOC estimator and particle filter with 3000 particles. The darker (lighter) regions
represent lower (higher) PDF values.
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line) with 50,000 particles.

86



rEkm)

vE
km

/s
)

3420 3425 3430 3435

1.2

1.4

1.6

1.8

2

2.2

2.4

rEkm)

γE
de

gr
ee

s)

3420 3425 3430 3435

−12

−10

−8

−6

−4

−2

vEkm/s)

γE
de

gr
ee

s)

1.5 2 2.5

−12

−10

−8

−6

−4

−2

rEkm)

vE
km

/s
)

3420 3425 3430 3435 3440

1

1.5

2

2.5

rEkm)

γE
de

gr
ee

s)

3420 3425 3430 3435 3440

−16

−14

−12

−10

−8

−6

−4

−2

0

vEkm/s)

γE
de

gr
ee

s)

1 1.5 2 2.5

−16

−14

−12

−10

−8

−6

−4

−2

0

λEdegrees)

rE
de

gr
ee

s0
E

)

−62 −60 −58 −56 −54 −52
25

30

35

rEkm)

λE
de

gr
ee

s)

3420 3425 3430 3435
25

30

35

rEkm)

γE
de

gr
ee

s)

3420 3425 3430 3435

−12

−10

−8

−6

−4

−2

vEkm/s)

γE
de

gr
ee

s)

1.5 2 2.5

−12

−10

−8

−6

−4

−2

λEdegrees)

Ed
eg

re
es

0E
)

−62−60−58−56−54−52
24

26

28

30

32

34

rEkm)

λE
de

gr
ee

s)

3420 3430 3440
24

26

28

30

32

34

rEkm)

γE
de

gr
ee

s)

3420 3430 3440

−16

−14

−12

−10

−8

−6

−4

−2

0

vEkm/s)

γE
de

gr
ee

s)

1 1.5 2 2.5

−16

−14

−12

−10

−8

−6

−4

−2

0

Ea)00Top0row:0particle0filter,0bottom0row:0KLMOC0estimator

Eb)00Top0row:0particle0filter,0bottom0row:0KLMOC0estimator

Figure 3.11: Plots for the final posterior bivariate marginal PDFs obtained from
KLMOC estimator with 3000 particles, and particle filter with 50,000 particles. The
darker (lighter) regions represent lower (higher) PDF values.
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3.4 Chapter Summary

In this Chapter, an algorithm is proposed for propagating probabilistic uncer-

tainties subject to a stochastic flow. This situation arises when there are modeling

uncertainties and/or stochastic forcing, in addition to the uncertainties present in

initial conditions and parameters. Unlike the previous Chapter, here we develop an

algorithm that approximates the time-varying joint PDF that satisfies the Fokker-

Planck or forward Kolmogorov equation. We show that the proposed algorithm

not only approximates the joint PDF, but also approximates the sample path of the

stochastic flow in mean square sense. The proposed algorithm is a mixed parametric-

nonparametric method that leverages the method of characteristics formulation of

the previous Chapter. To show that the proposed approximation algorithm performs

better than Monte carlo, several case studies in nonlinear estimation are carried out.

This leads to a new nonlinear filtering algorithm, which is shown to have better

estimation performance than the particle filtering techniques.
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4. DISTRIBUTIONAL COMPARISON

The previous two chapters have introduced computational methods for uncer-

tainty propagation in the form of joint PDF, subject to deterministic or stochas-

tic dynamics in continuous time. Given the dynamical system, and associated ini-

tial condition, parametric and modeling uncertainties, these methods result time-

varying probability weighted scattered data representing model predicted output

PDF η̂ (ŷ, t), which need to compared with true output PDF η (y, t), at times {tj}τj=1,

when the measurement PDF η (y, tj) is available. For this purpose, we need a metric

to compare the shapes of these two PDFs at each time of measurement availability.

We argue that the suitable metric in this context, is the Wasserstein distance.

4.1 Choice of Metric

Distances on the space of probability distributions [129], can be broadly cate-

gorized into two classes, viz. Csisźar’s φ-divergence [130] and integral probability

metrics [131]. The first includes well-known distances like Kullback-Leibler (KL)

divergence, Hellinger distance, χ2 divergence etc. while the latter includes Wasser-

stein distance, Dudley metric, maximum mean discrepancy. Total variation distance

belongs to both of these classes.

4.1.1 Axiomatic Requirements for Model Validation

The choice of a suitable metric depends on application. Following the intuitions

of Section 1.3, we list below the axiomatic requirements, that a model validation

metric must satisfy.

R.1 The notion of “distance” must measure the shape difference between two in-

stantaneous output PDFs. This is because a good model must emulate similar
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concentration of trajectories as observed in the measurement space, i.e. the re-

spective joint PDFs η (y, t) and η̂ (ŷ, t), over the time-varying output supports,

must match at times whenever measurements are available. In particular, the

distance must be function of shape difference but not of shape, i.e. same amount

of shape difference must return same magnitude of distance, irrespective of the

individual shapes being compared.

R.2 For meaningful validation inference, the choice of distance must be a metric.

R.3 For a given model-data pair, the supports of η (y, t) and η̂ (ŷ, t) may not match

at t = tj, j = 1, . . . , τ . The distance must be well defined and computable

under such circumstances.

R.4 The computation of the distance need not require η (y, t) and η̂ (ŷ, t) to be rep-

resented by the same number of samples. For the purpose of model validation,

this offers practical advantages since experimental data are often expensive

to gather. However, model based simulation can harness the computational

resources and hence, simulation sample size is often larger than that of exper-

imental data.

R.5 The distance must be asymptotically consistent with respect to finite sample

representations of the PDFs under comparison. Namely, in the infinite sam-

ple limit, the empirical estimate of the distance must converge to the actual

instantaneous value of the distance. For practical computation, this rate-of-

convergence is required to be fast with respect to the number of samples.

Next, we introduce the Wasserstein distance on the manifold of PDFs, which will be

shown to fulfil the axiomatic requirements listed above.
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4.1.2 Wasserstein Metric

Definition 3. (Wasserstein distance) Let the `p norm between two random out-

put vectors y ∈ Y ⊆ Rno, and ŷ ∈ Ŷ ⊆ Rno, be denoted as ‖ y − ŷ ‖p. Then, the

Wasserstein distance of order q, between two PDFs η (y) and η̂ (ŷ), is defined as

pWq (η, η̂) ,

[
inf

ρ∈M2(η,η̂)

∫

Y×Ŷ
‖y − ŷ‖qp ρ (y, ŷ) dydŷ

] 1
q

, (4.1)

where M2 (η, η̂) is the set of all joint PDFs supported on Y ×Ŷ, having finite second

moments, with first marginal as η and second marginal as η̂.

Remark 6. (Generalizations) In general, the sets Y and Ŷ can be subsets of any

complete, separable metric (Polish) space, equipped with a pth order distance metric.

Further, (4.1) does not require the distributions under comparison to be absolutely

continuous. It remains well defined between output measures µ and µ̂, even when the

corresponding PDFs η and η̂ don’t exist.

Remark 7. (Choice of p = q = 2) We take Euclidean metric (p = 2) as the

inter-sample distance between random vectors y and ŷ. Further, we set q = 2 since it

guarantees uniqueness [132] in (4.1), and has the interpretation of minimum effort

needed to morph a density shape to other. Also, Jordan, Kinderlehrer and Otto [133]

have rigorously demonstrated that uncertainty propagation in a dynamical system can

be seen as a gradient flux of free energy with respect to the Wasserstein distance of

order q = 2.

The interpretation of 2W2 as mass preserving optimal transport between two

given shapes, makes it a strong candidate for model validation purpose. Further, it

is known [134] that on the setM2, 2W2 defines a metric. Thus, Wasserstein distance

meets R.1 and R.2. Also, R.3 and R.4 are satisfied since Definition 7.1 does not
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require the supports or cardinality of the sample representations of the PDFs to be

the same. This will be illustrated further in Section 4.2.4, when we describe the

computation of 2W2 between two scattered point clouds with probability weights.

For R.5, convergence of sample Wasserstein estimate to its true deterministic value,

will be discussed in Section 4.3.1 (Theorem 10).

4.1.3 Limitations of Pointwise Distances

Commonly used information-theoretic distances like Kullback-Leibler divergence

DKL (η ‖ η̂) , E[log(η/η̂)], its symmetrized version Dsymm
KL , DKL (η ‖ η̂)+DKL (η̂ ‖

η), are not metrics. On the other hand, Hellinger distance H (η, η̂) , 1√
2
‖ √η −

√
η̂ ‖L2(Rno ), and the square-root of Jensen-Shannon divergence JSD (η, η̂) , 1

2
[DKL

(
η ‖ 1

2
(η + η̂)

)
+DKL

(
η̂ ‖ 1

2
(η + η̂)

)]
are metrics. However, being pointwise defini-

tions, all of them fail to satisfy R.3 and R.4, resulting computational difficulties

for model validation. As for R.5, DKL (η ‖ η̂) is known to be asymptotically con-

sistent, but the rate-of-convergence can be arbitrarily slow [135, 136]. Besides these

computational problems, we emphasize here that the information theoretic distances

may not discriminate shapes in a geometric sense, as desired in R.1. We provide

two counterexamples below to illustrate this point. The first counterexample high-

lights that two PDFs with same randomness need not have similar shapes. The

second counterexample demonstrates that DKL may depend on the shapes under

comparison.

Counterexample 1. (Randomness 6= shape) Consider the two parametric family

of beta densities B (α, β) , xα−1(1−x)β−1

B(α,β)
, α, β > 0, x ∈ [0, 1], where B (α, β) ,

∫ 1

0
tα−1 (1− t)β−1 dt = Γ(α)Γ(β)

Γ(α+β)
, is the complete beta function, and Γ (z) denotes the
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gamma function. The differential entropy for beta family can be computed as [137]

Hb (α, β) = −
∫ 1

0

B (α, β) logB (α, β) dx

= logB (α, β)− (α− 1) (Ψ (α)−Ψ (α + β))− (β − 1) (Ψ (β)−Ψ (α + β)) ,(4.2)

where Ψ (z) , d
dz

log Γ (z), is the digamma function. Since (4.2) remains invariant

under (α, β) 7→ (β, α), α 6= β, hence B (α, β) and B (β, α) have same entropy, but

one is skewed to right and the other to left, as shown in Fig. 4.1. Fig. 4.2 shows the

isentropic contours of beta PDFs in (α, β) space. Any pair of distinct points chosen

on these contours, results two beta PDFs with non-identical shapes, as revealed by

Fig. 4.3 and Appendix B, Section B.1.

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

PDF

Figure 4.1: The two beta densities B
(
4, 3

2

)
(left-skewed) and B

(
3
2
, 4
)

(right-skewed)
have same entropy or randomness, but have different shapes.

Counterexample 2. (DKL 6= shape difference) Consider two ν-dimensional ho-

moscedastic Gaussian PDFs N (m1,Σ1) and N (m2,Σ2), such that Σ1 = Σ2. Since
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Figure 4.2: Isentropic contours of beta family in (α, β) space. The symmetry of
the contours about α = β line implies Hb(α, β) = Hb(β, α). The two solid circles
correspond to the symmetric isentropic pair B (α, β) and B (β, α). The star in the
figure corresponds to another isentropic beta PDF, that is parametrically asymmetric
with the previous two. This plot also shows that uniform distribution (α = β = 1)
is of maximum entropy.

the only difference between the two PDFs is the location of their means, a shape-

discriminating distance is expected to be a function of ‖ m1 −m2 ‖2, and should not

depend on the covariance matrix, i.e. shapes of the individual PDFs.

In this situation, 2W2 = ‖m1−m2‖2 [138] and DKL =
1

2
(m2 −m1)>Σ−1

2 (m2 −m1)

[139]. If we introduce m := m2 −m1, then
DKL

2W2

=
‖m‖2

2
r, where r :=

m>Σ−1
2 m

m>m

is the Rayleigh quotient corresponding to the positive semi-definite precision matrix

Σ−1
2 . It’s known (see e.g., Chapter 7 in [140]) that if we denote K := {λ : λ =
ν∑

i=1

αiλi,
ν∑

i=1

αi = 1, αi > 0, ∀i = 1, 2, . . . , ν} as the convex hull of the eigenvalues
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Figure 4.3: Iso-Wasserstein contours of 2W2 (B (α, β) ,B (β, α)) in (α, β) space. Since

2W2 is a metric, it has symmetry about α = β line, and vanishes only along this line.

of the precision matrix Σ−1
2 , then r (m) ∈ K. In particular,

rmin = λmin

(
Σ−1

2

)
=

1

λmin (Σ2)
> 0,

rmax = λmax

(
Σ−1

2

)
=

1

λmax (Σ2)
> 0,

and these extrema are attained when m := m2 −m1 respectively coincides with the

minimum and maximum eigenvector of Σ−1
2 . Thus the spectrum of Σ−1

2 governs the

magnitude of the ratio
DKL

2W2

, even when ‖m‖2 is kept fixed. In particular, the ratio

assumes unity iff r =
2

‖m‖2

⇒ Σ−1
2 =

2

‖m‖2

Iν ⇒ Σ1 = Σ2 =
‖m‖2

2
Iν.

Further discussions on the inadequacy of DKL for capturing shape characteristics

and the utility of Wasserstein distance for the same, can be found in [141, 142].
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4.2 Wasserstein Gap Between Dynamical Systems

4.2.1 Single Output Systems

Proposition 3. [143] At time t > 0, let F (y, t) and F̂ (ŷ, t) be the cumulative dis-

tribution functions (CDFs) corresponding to the univariate PDFs η (y, t) and η̂ (ŷ, t),

respectively. Then

2W2 (t) =

√∫ 1

0

(
F−1 (ς, t)− F̂−1 (ς, t)

)2

dς, (4.3)

and the optimizer in (4.1) is the PDF ρ? (y, ŷ, t) corresponding to the CDF F ? (y, ŷ, t) ,

min
(
F (y, t) , F̂ (ŷ, t)

)
.

4.2.2 Linear Gaussian Systems

Proposition 4. Consider stable, observable LTI system pairs in continuous and

discrete time:

dxi(t) = Aixi(t)dt+GidWi(t), yi(t) = Cixi(t), (4.4)

xi(k + 1) = Aixi(k) +GiWi(k), yi(k) = Cixi(k), (4.5)

where i = 1, 2. Wi(t) are Wiener processes with auto-covariances Qi (t1 ∧ t2), t1, t2 >

0, and Wi (k) are Gaussian white noises with covariances Qi (k). If the initial

PDF ξ0 = N (µ0,Σ0), then the Wasserstein distance between output PDFs ηi =

N (µyi ,Σyi), is given by [138]

2W2 =

√
‖ µy1 − µy2 ‖2

2 +tr

(
Σy1 + Σy2 − 2

[√
Σy1Σy2

√
Σy1

] 1
2

)
, (4.6)
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where µyi = Ciµxi, Σyi = CiΣxiC
>
i . For the continuous-time case,

µ̇xi(t) = Aiµxi(t), (4.7)

Σ̇xi(t) = AiΣxi(t) + Σxi(t)A
>
i +GiQiG

>
i , (4.8)

and for the discrete-time case,

µxi (k + 1) = Aiµxi (k) , (4.9)

Σxi (k + 1) = AiΣxi (k)A>i +GiQiG
>
i , (4.10)

to be solved with µxi (0) = µ0, and Σxi (0) = Σ0. Deterministic results are recovered

from above by setting the diffusion matrix Gi = 0.

4.2.3 Asymptotic Wasserstein Distance

In Table 4.1, we have listed asymptotic Wasserstein distances between different

pairs of stable dynamical systems. The asymptotic 2W2 between two deterministic

linear systems (first row) is zero since the origin being unique equilibria for both

systems, Dirac delta is the stationary density for both. For a pair of deterministic

affine systems (second row), asymptotic 2W2 is simply the `2 norm between their

respective fixed points. This holds true even for a pair of nonlinear systems, each

having a unique globally asymptotically stable equilibrium. For the stochastic linear

case (third row), Σy∞ = CΣx∞C
>, and Σ̂ŷ∞ = ĈΣ̂x̂∞Ĉ

>; where Σx∞, Σ̂x̂∞ respec-

tively solve AΣx∞+Σx∞A
>+BQB> = 0, and ÂΣ̂x̂∞+Σ̂x̂∞Â

>+ B̂Q̂B̂> = 0. Q and

Q̂ are process noise covariances associated with Wiener processes β (t) and β̂ (t). For

the fourth and fifth row, the set of stable equilibria for the true and model nonlin-

ear system, are given by {y?i }n
?

i=1 and {ŷ?i }n̂
?

i=1, respectively. Further, we assume that

the nonlinear systems have no invariant sets other than these stable equilibria. In
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such cases, the stationary densities are convex sum of Dirac delta densities, located

at these equilibria. The weights for this convex sum, denoted as m?
i and m̂?

i , depend

on the initial PDF ξ0. In particular, if we denote Ri as the region-of-attraction

of the ith equilibrium, then (see Appendix B, Section B.2)

m?
i =

∫

supp(ξ0)∩Ri
ξ0 (x0) dx0 ∈ [0, 1] . (4.11)

To further illustrate this idea, a numerical example corresponding to the fourth row

in Table 4.1, will be provided in Section 4.5.

4.2.4 Computing Transient Wasserstein Distance for Multivariate Output Systems

Computing Wasserstein distance from (4.1) calls for solving Monge-Kantorovich

optimal transportation plan [144]. In this formulation, the difference in shape between

two statistical distributions is quantified by the minimum amount of work required

to convert a shape to the other. The ensuing optimization, often known as Hitchcock-

Koopmans problem [145, 146, 147], can be cast as a linear program (LP), as described

next.

Consider a complete, weighted, directed bipartite graph Km,n (U ∪ V,E) with

# (U) = m and # (V ) = n. If ui ∈ U, i = 1, . . . ,m, and vj ∈ V, j = 1, . . . , n, then

the edge weight cij :=‖ ui − vj ‖2
`2

denotes the cost of transporting unit mass from

vertex ui to vj. Then, according to (4.1), computing 2W
2
2 translates to

minimize
m∑

i=1

n∑

j=1

cij ϕij (4.12)

subject to the constraints

n∑

j=1

ϕij = αi, ∀ ui ∈ U, (C1)
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ẋ

(t
)

=
A
x

(t
),
y
(t

)
=
C
x

(t
),

η ∞
=
δ

(y
)

0
˙̂ x
(t

)
=
Â
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Â
x̂

(t
)

+
b̂,
ŷ
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ĥ

(x̂
(t

))
η̂ ∞

=
n̂
? ∑ i=
1

m̂
? i
δ

(ŷ
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m∑

i=1

ϕij = βj, ∀ vj ∈ V, (C2)

ϕij > 0, ∀ (ui, vj) ∈ U × V. (C3)

The objective of (4.12) is to come up with an optimal mass transportation policy

ϕij := ϕ (ui → vj) associated with cost cij. Clearly, in addition to constraints (C1)–

(C3), (4.12) must respect the necessary feasibility condition

m∑

i=1

αi =
n∑

j=1

βj (C0)

denoting the conservation of mass. In our context of measuring the shape difference

between two PDFs, we treat the joint probability mass function (PMF) vectors αi and

βj to be the marginals of some unknown joint PMF ϕij supported over the product

space U × V . Since determining joint PMF with given marginals is not unique,

(4.12) strives to find that particular joint PMF which minimizes the total cost for

transporting the probability mass while respecting the normality condition. Notice

that the finite-dimensional LP (4.12) is a direct discretization of the Wasserstein

definition (4.1), and it is known [148] that the solution of (4.12) is asymptotically

consistent with that of the infinite dimensional LP (4.1).

4.3 Computational Complexity for 2W2

4.3.1 Sample Complexity

For a desired accuracy of Wasserstein distance computation, we want to specify

the bounds for number of samples m = n, for a given initial PDF. Since the finite

sample estimate of Wasserstein distance is a random variable, we need to answer how

large should n be, in order to guarantee that the empirical estimate of Wasserstein

distance obtained by solving the LP (4.12), (C1)–(C3) with m = n, is close to the
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true deterministic value of (4.1) in probability. In other words, given ε, δ ∈ (0, 1), we

want to estimate a lower bound of m = n as a function of ε and δ, such that

P
(∣∣

2W2

(
ηjm (y) , η̂jn (ŷ)

)
− 2W2

(
ηj (y) , η̂j (ŷ)

)∣∣ < ε
)
> 1− δ, ∀j = 1, . . . , τ. (4.13)

Similar consistency and sample complexity results are available in the literature (see

Corollary 9(i) and Corollary 12(i) in [149]) for Wasserstein distance of order q = 1.

From Hölder’s inequality, Wq2 > Wq1 for q2 > q1, and hence that sample complexity

bound, in general, does not hold for q = 2.To proceed, we need the following results.

Lemma 1. Given random variables X, Y , Z, such that X 6 Y +Z, then for ε > 0,

we have

P (X > ε) 6 P (Y + Z > ε) 6 P
(
Y >

ε

2

)
+ P

(
Z >

ε

2

)
. (4.14)

Proof. Since X (ωs) 6 Y (ωs) + Z (ωs) , ∀ ωs ∈ Ωs, hence we have {ωs : X (ωs) >

ε} ⊆ {ωs : Y (ωs) + Z (ωs) > ε} ⊆ {ωs : Y (ωs) >
ε
2
} ∪ {ωs : Z (ωs) >

ε
2
}, ∀ ωs ∈ Ωs.

Thus, we get P (X > ε) 6 P
(
{Y > ε

2
} ∪ {Z > ε

2
}
)
6 P

(
Y > ε

2

)
+ P

(
Z > ε

2

)
, from

Boole-Bonferroni inequality (see e.g., Appendix C in [150]). �

Definition 4. (Transportation cost inequality)[151] A probability measure µ

is said to satisfy the Lp-transportation cost inequality (TCI) of order q, if there

exists some constant C > 0 such that for any probability measure ν, pWq (µ, ν) 6
√

2CDKL (ν ‖ µ). In short, we write µ ∈ Tq (C). In particular, for µ ∼ N (mκ×1,Σκ×κ),

we have [152] µ ∈ T2 (λmax (Σ)).

Theorem 9. (Rate-of-convergence of empirical measure in Wasserstein

metric)(Theorem 5.3 in [153]) For a probability measure ρ ∈ Tq (C ), 1 6 q 6 2,
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and its n-sample estimate ρn, we have

P (pWq (ρ, ρn) > θ) 6 Kθ exp

(
−nθ

2

8C

)
, θ > 0, (4.15)

and logKθ :=
1

C
inf
µ

# (supp µ) (diam (supp µ))2. The optimization takes place over

all probability measures µ of finite support, such that pWq (ρ, µ) 6 θ/4.

We now make few notational simplifications. In this subsection, we denote ηj (y)

and η̂j (y) by η and η̂, and their finite sample representations by ηm and η̂n, respec-

tively. Then we have the following result.

Theorem 10. (Rate-of-convergence of empirical Wasserstein estimate)

For true densities η and η̂, let corresponding empirical densities be ηm and η̂n, eval-

uated at respective uniform sampling of cardinality m and n. Let C1, C2, be the TCI

constants for η and η̂, respectively and fix ε > 0. Then

P
(∣∣∣∣ 2W2 (ηm, η̂n) − 2W2 (η, η̂)

∣∣∣∣ > ε

)
6 K1 exp

(
− mε2

32C1

)
+K2 exp

(
− nε2

32C2

)
.(4.16)

Proof. Since Wasserstein distance is a metric, from triangle inequality

2W2 (ηm, η̂n) 6 2W2 (ηm, η) + 2W2 (η̂n, η) 6 2W2 (ηm, η) + 2W2 (η̂n, η̂) + 2W2 (η, η̂)

⇒ 2W2 (ηm, η̂n) − 2W2 (η, η̂) 6 2W2 (ηm, η) + 2W2 (η̂n, η̂) .

Combining the above with Lemma 1, we have

P
(∣∣∣∣ 2W2 (ηm, η̂n)−2 W2 (η, η̂)

∣∣∣∣ > ε

)
6 P

(
2W2 (ηm, η) >

ε

2

)

+ P
(

2W2 (η̂n, η̂) >
ε

2

)
, (4.17)
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where each term in the right-hand-side of (4.17) can be separately upper-bounded

using Theorem 1 with θ 7→ ε

2
. Hence the result. �

Remark 8. At a fixed time, K1, K2, C1 and C2 are constants in a given model

validation problem, i.e. for a given pair of experimental data and proposed model.

However, values of these constants depend on true and model dynamics. In par-

ticular, the TCI constants C1 and C2 depend on the dynamics via respective PDF

evolution operators. The constants K1 and K2 depend on η and η̂, which in turn

depend on the dynamics.

4.3.2 Runtime Complexity

The LP formulation (4.12), (C1)–(C3), requires solving for mn unknowns subject

to (m+ n+mn) constraints. For m = n, it can be shown that [154, 155] the runtime

complexity for solving the LP is O (no n
2.5 log ν). Notice that the output dimension

no enters only through the cost cij in (4.12) and hence affects the computational time

linearly.

In actual simulations, we found the runtime of the LP (4.12) to be sensitive on

how the constraints were implemented. Suppose, we put (4.12) in standard form

minimize c̃>ϕ̃, subject to Aϕ̃ = b, ϕ̃ > 0, (4.18)

where c̃mn×1 , vec (c), ϕ̃mn×1 , vec (ϕ), b(m+n)×1 := [αm×1, βn×1]>. If we let en :=

[1, 1, . . . , 1︸ ︷︷ ︸
n times

]>, then the implementation A(m+n)×mn =



e>n ⊗ Im
In ⊗ e>m


 was found to achieve

fast offline construction of the constraint matrix.
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4.3.3 Storage Complexity

For m = n, the constraint matrix A in (4.18), is a binary matrix of size 2n× n2,

whose each row has n ones. Consequently, there are total 2n2 ones in the constraint

matrix and the remaining 2n2 (n− 1) elements are zero. Hence at any fixed time, the

sparse representation of the constraint matrix needs # non-zero elements ×3 = 6n2

storage. The PMF vectors are, in general, fully populated. In addition, we need to

store the model and true sample coordinates, each of them being a no-tuple. Hence

at any fixed time, constructing cost matrix requires storing 2non values. Thus total

storage complexity at any given snapshot, is 2n (3n+ no + 1) = O (n2), assuming

n > no. However, if the sparsity of constraint matrix is not exploited by the solver,

then storage complexity rises to 2n (n2 + no + 1) = O (n3). For example, if we take

n = 1000 samples and use double precision arithmetic, then solving the LP at each

time requires either megabytes or gigabytes of storage, depending on whether or not

sparse representation is utilized by the solver1. For m 6= n, it is easy to verify that

the sparse storage complexity is (6mn+ (m+ n)no +m+ n), and the non-sparse

storage complexity is (m+ n) (mn+ n0 + 1).

4.4 Construction of Validation Certificates

4.4.1 Probabilistically Robust Model Validation

Often in practice, the exact initial density is not known to facilitate our model

validation framework; instead a class of densities may be known. For example, it

may be known that the initial density is symmetric unimodal but its exact shape

(e.g. normal, semi-circular etc.) may not be known. Even when the distribution-

type is known (e.g. normal), it is often difficult to pinpoint the parameter values

describing the initial density function. To account such scenarios, consider a random

1We used MOSEK (available at www.mosek.com) as the LP solver.
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variable ∆ : Ω→ E, that induces a probability triplet (Ω,F ,P) on the space of initial

densities. Here E ⊂ Ω and # (E) = 1. The random variable ∆ picks up an initial

density from the collection of admissible initial densities Ω := {ξ(1)
0 (x̃) , ξ

(2)
0 (x̃) , . . .}

according to the law of ∆. For example, if we know ξ0 ∼ N (µ0, σ
2
0) with a given

joint distribution over the (µ0, σ
2
0) space, then in our model validation framework,

one sample from this space will return one distance measure between the instanta-

neous output PDFs. How many such (µ0, σ
2
0) samples are necessary to guarantee

the robustness of the model validation oracle? The Chernoff bound provides such an

estimate for finite sample complexity.

At time step tk, let the validation probability be p (γk) , P (2W2 (ηk (y) , η̂k (ŷ)) 6

γk). Here γk ∈ R+ is the prescribed instantaneous tolerance level. If the model

validation is performed by drawing N samples from Ω, then the empirical validation

probability is p̂N (γk) ,
1

N

N∑

i=1

1
V

(i)
k

where V
(i)
k , {η̂

(i)
k (ŷ) : 2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
6

γk}. Consider ε, δ ∈ (0, 1) as the desired accuracy and confidence, respectively.

Lemma 2. (Chernoff bound)[156] For any ε, δ ∈ (0, 1), if N > Nch :=
1

2ε2
log

2

δ
,

then P (|p (γk)− p̂N (γk) |< ε) > 1− δ.

The above lemma allows us to construct probabilistically robust validation certifi-

cate (PRVC) p̂N (γk) through the Algorithm 3 stated next. The PRVC vector, with

ε accuracy, returns the probability that the model is valid at time tk, in the sense

that the instantaneous output PDFs are no distant than the required tolerance level

γk. Lemma 2 lets the user control the accuracy ε and the confidence δ, with which

the preceding statement can be made. Thus the framework enables us to compute

a provably correct validation certificate on the face of uncertainty with finite sample

complexity.
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Algorithm 3 Construct PRVC

Require: ε, δ ∈ (0, 1), T , ν, law of ∆, experimental data {ηk (y)}τk=1, model, toler-
ance vector {γk}τk=1

1: N ← Nch (ε, δ) . Using lemma 2

2: Draw random functions ξ
(1)
0 (x̃) , ξ

(2)
0 (x̃) , . . . , ξ

(N)
0 (x̃) according to the law of ∆

3: for k = 1 to τ do . Index for time step
4: for i = 1 to N do . Index for initial density
5: for j = 1 to ν do . Samples drawn from ξ

(i)
0 (x̃)

6: Propagate states using dynamics
7: Propagate measurements
8: end for
9: Propagate ξ̂

(i)
k

(
̂̃x
)

. Use (2.9) or (3.38)

10: Compute η̂
(i)
k (ŷ)

11: Compute 2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
. Distributional comparison by solving

LP (4.12) subject to (C0)–(C3)
12: sum ← 0 . Initialize
13: if 2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
6 γk then

14: sum ← sum + 1
15: end if
16: end for
17: p̂N (γk)←

sum

N
. Construct PRVC vector

18: end for

4.4.2 Probabilistically Worst Case Model Validation

Following [157, 158, 159], one can also define a probabilistic notion of the worst-

case model validation performance as γwc
k := sup

∆
2W2 (ηk (y) , η̂k (ŷ)), and its em-

pirical estimate γ̂Nk := max
i=1,...,N

2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
. The sample complexity for

probabilistically worst-case model validation is given by the lemma below.

Lemma 3. (Worst-case bound) (p. 128 in [156]) For any ε, δ ∈ (0, 1), if N >

Nwc :=
log

1

δ

log
1

1− ε
, then P

(
P
(

2W2 (ηk (y) , η̂k (ŷ)) 6 γ̂Nk
)
> 1− ε

)
> 1− δ.

Notice that in general, there is no guarantee that the empirical estimate γ̂Nk
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Algorithm 4 Construct PWVC

Require: ε, δ ∈ (0, 1), τ , ν, law of ∆, experimental data {ηk (y)}τk=1, model
1: N ← Nwc (ε, δ) . Using lemma 3

2: Draw N random functions ξ
(1)
0 (x̃) , ξ

(2)
0 (x̃) , . . . , ξ

(N)
0 (x̃) according to the law of

∆ . Use MCMC
3: for k = 1 to τ do . Index for time step
4: for i = 1 to N do . Index for initial density
5: for j = 1 to ν do. Index for samples in the extended state space, drawn

from ξ
(i)
0 (x̃)

6: Propagate states using dynamics
7: Propagate measurements
8: end for
9: Propagate ξ̂

(i)
k

(
̂̃x
)

. Use (2.9) or (3.38)

10: Compute η̂
(i)
k (ŷ) . Algebraic transformation

11: Compute 2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
. Distributional comparison by solving

LP (4.12) subject to (C0)–(C3)

12: γ̂Nk ← max
i=1,...,N

2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
. Empirically estimate worst-case

performance
13: end for
14: end for

is close to the true worst-case performance γwc
k . Also, the performance bound is

obtained a posteriori while the robust validation framework accounted for a priori

tolerance levels. The corresponding probabilistically worst-case validation certificate

(PWVC) γ̂Nk can be computed from Algorithm 4, given below. In summary, the

algorithm, with high probability (1− ε), only ensures that the output PDFs are at

most γ̂Nk far. The preceding statement can be made with probability at least 1− δ.
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4.5 Examples

4.5.1 Validating Deterministic Flow Model

Consider the following nonlinear dynamical system

ẍ = −ax− b sin 2x− cẋ, a = 0.1, b = 0.5, c = 1. (4.19)

The system has five fixed points P0 = (0, 0), P±1 = (±1.7495, 0), P±2 = (±2.8396, 0),

which can be solved by noting the abscissa values of the points of intersection of two

curves f (x) = b sin 2x and g (x) = −ax, as shown in Fig 4.4. From linear analysis,

it is easy to verify that P0 and P±2 are stable foci while P±1 are saddles (Fig. 4.5).

-10 -5 5 10

-1.0

-0.5

0.5

1.0

Figure 4.4: Points of intersection of
the curve f (x) = b sin 2x and the line
g (x) = −ax.

Figure 4.5: Phase portrait of the vector
field (4.19) with three stable and two
saddle fixed points.

To illustrate our model validation framework, let’s assume that ‘true data’ is

generated by the dynamics (4.19). However, this true dynamics is unknown to the
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modeler, whose proposed model is a linearization of (4.19) about the origin. We

emphasize here that the purpose of (4.19) is only to create the synthetic data and to

demonstrate the proof-of-concept. In a realistic model validation, the data arrives

from experimental measurements, not from another model. For simplicity, we take

the outputs same as states for both true and model dynamics.

Starting from the bivariate uniform distribution U ([−π, π]× [−π, π]) =: ξ0, we

evolve the respective joint PDFs ξ = η and ξ̂ = η̂, through true and model dy-

namics via MOC implementation of Liouville equation discussed in Chapter 2. The

distributional shape discrepancy is captured via the Wasserstein gap (2W2 (η, η̂)) be-

tween these instantaneous joint PDFs, as shown in Fig. 4.6 (solid line), computed

by solving the LP (4.12), (C1)–(C3). As the individual joint PDFs converge toward

their respective stationary densities, the slope of the Wasserstein time-history de-

creases progressively. Fig. 4.7 shows the Wasserstein gap trajectories when ξ0 is

taken to be N (0, σ2
0I2), instead of uniform. In this case, we observe that larger

initial dispersion causes larger Wasserstein gap. Suppose the user-specified tol-

erance level {γj}40
j=1 is 0.8 for first 10 instances and 0.6 for next 30 instances of

measurement availability, as shown by the shaded area in Fig. 4.7. Given the set

of admissible initial densities {ξ(1)
0 , . . . , ξ

(9)
0 } with ξ

(i)
0 := N (0, σ2

0iI2), i = 1, . . . , 9,

we can compute the PRVC vector, shown as the dashed line in Fig. 4.7, to be
1, . . . , 1,︸ ︷︷ ︸

3 times

0.89, 0.78, . . . , 0.78,︸ ︷︷ ︸
5 times

0.67, 0.56, . . . , 0.56︸ ︷︷ ︸
30 times



>

.

4.5.2 Validating Stochastic Flow Model

Here we assume the true data to be generated by (4.19) with additive white noise

having autocorrelation Qδ (t1 − t2), t1, t2 > 0. Letting x1 = x and x2 = ẋ, the
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associated Itô SDE can be written in state-space form similar to (3.1)




dx1

dx2





=





x2

−ax1 − b sin 2x1 − cx2





dt+





0

1





dW , (4.20)

where W (t) is a Wiener process with autocorrelation Q (t1 ∧ t2). The stationary

Fokker-Planck equation for (4.20) can be solved in closed form (Appendix B, Section

B.3)

η∞ (x1, x2) ∝ exp

(
− c

2Q

(
ax2

1 + x2
2 − b cos 2x1

))
, (4.21)

and one can verify that peaks of (4.21) appear at the fixed points of the nonlinear

drift.

Let the proposed model be the linearization of (4.20) about the origin. It is well-

known [93] that the stationary density of a linear SDE of the form dx̂ = Ax̂dt+GdW ,

is given by

η̂∞ (x̂) = N (0,Σ∞) =
exp

(
−1

2
x̂>Σ−1

∞ x̂
)

√
(2π)2 det (Σ∞)

, (4.22)

provided A is Hurwitz and (A, g) is a controllable pair. The steady-state covariance

matrix Σ∞ solves AΣ∞ + Σ∞A
> + GQG> = 0. For the linearized version of (4.20),

A =




0 1

(−a− 2b) −c


 and G =





0

1





satisfy the aforementioned conditions and the

stationary density is obtained from (4.22).

Taking the initial density same as in the deterministic case, we propagated the

joint PDFs for (4.20) and the linear SDE using the KLMOC method described in

Chapter 3. The dashed line in Fig. 4.6 shows the Wasserstein trajectory for this case.
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The dash-dotted line in Fig. 4.6 shows the asymptotic Wasserstein gap between the

respective stationary densities (4.21) and (4.22). Due to randomized sampling, all

stochastic computations are in probabilistically approximate sense [160].

4.5.3 Comparison with Prajna’s Barrier Certificate Based Model Falsification

Consider the nonlinear model validation problem stated as Example 4 in [7], where

the model is ẋ = −px3, with parameter p ∈ P = [0.5, 2]. The measurement data are

interval-valued sets X0 = [0.85, 0.95] at t = 0, and XT = [0.55, 0.65] at t = T = 4. A

barrier certificate of the form B (x, t) = B1 (x)+tB2 (x) was found in [7] through sum

of squares (SOS) optimization [161] where B1 (x) = 8.35x+10.40x2−21.50x3+9.86x4,

and B2 (x) = −1.78 + 6.58x − 4.12x2 − 1.19x3 + 1.54x4. The model was thereby

invalidated by the existence of such certificate, i.e. the model ẋ = −px3, with

parameter p ∈ P was shown to be inconsistent with measurements {X0,XT , T}.

To tackle this problem in our model validation framework, consider the spatio-

temporal evolution of the joint PDF ξ (x, p, t) over the extended state space x̃ =

[x p]>, with initial support X̃0 := X0 × P , under the action of the extended vector

field f̃ (x, p) = [−px3 0]
>

. Our objective then, is to prove that for T = 4, the PDF

ξT (xT , p, T ) = U (xT , p) = 1/vol
(
X̃T
)

is not finite-time reachable from ξ0 (x0, p) =

U (x0, p) = 1/vol
(
X̃0

)
, subject to the proposed model dynamics on the extended

state space.

Theorem 11. The two-point boundary value problem

∂ξ

∂t
+∇x̃ ·

(
f̃ (x, p) ξ

)
=
∂ξ

∂t
+∇x ·

(
−px3ξ

)
= 0,

ξ (x(0), p, 0) = ξ0 (x0, p) = U (x0, p) = 1/vol
(
X̃0

)
,

ξ (x(T ), p, T ) = ξT (xT , p, T ) = U (xT , p) = 1/vol
(
X̃T
)
,
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has no solution for ξ (x, p, t), such that

∫

X̃ (t)

ξ (x, p, t) dx dp = 1, ∀t ∈ (0, T ).

Proof. MOC ODE (2.9) corresponding to the Liouville PDE ∂ξ
∂t

+∇x̃ ·
(
f̃ (x, p) ξ

)
= 0,

yields a solution of the form

ξ (x, p, t) = ξ0 (x0, p) exp

(
−
∫ t

0

∇x̃ ·
(
f̃ (x (τ) , p)

)
dτ

)
. (4.23)

For the model dynamics ẋ = −px3, we have ∇x̃ ·
(
f̃ (x (τ) , p)

)
= −3p (x (τ))2 and

1

x2
=

1

x2
0

+ 2pt. Consequently (4.23) results

ξ (x, p, t) = ξ0 (x0, p)
(
1 + 2x2

0pt
)3/2

=
1

(1− 2x2pt)3/2
ξ0

(
± x√

1− 2x2pt
, p

)
. (4.24)

In particular, for ξ0 (x0, p) = 1/vol
(
X̃0

)
, ξT (xT , p, T ) = 1/vol

(
X̃T
)

, and T = 4,

(4.24) requires us to satisfy

(
1− 8x2

Tp
)

=




vol
(
X̃T

)

vol
(
X̃0

)




2/3

> 0⇒ 1 > 8x2
Tp. (4.25)

Since 8x2
Tp is an increasing function in both xT ∈ XT and p ∈ P , we need at least

1 > 8 (xT )2
min pmin = 8 × (0.55)2 × 0.5 = 1.21, which is incorrect. Thus the PDF

ξT (xT , p, T ) ∼ U (xT , p) is not finite-time reachable from ξ0 (x0, p) ∼ U (x0, p) for

T = 4, via the proposed model dynamics. Hence our measure-theoretic formulation

recovers Prajna’s invalidation result [7] as a special case. �

Remark 9. (Relaxation of set-based invalidation) Instead of binary (in)validation

oracle, we can now measure the “degree of validation” by computing the Wasserstein
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distance 2W2

(
1

(1−2x2T pT)
3/2

1

vol(X̃0)
, 1

vol(X̃T )

)
between the model predicted and experi-

mentally measured joint PDFs. More importantly, it dispenses off the conservatism

in barrier certificate based model validation by showing that the goodness of a model

depends on the measures over the same pair of supports X̃0 and X̃T , than on the sup-

ports themselves. Indeed, given a joint PDF ξ (xT , p, T ) supported over X̃T at T = 4,

from (4.24) we can explicitly compute the initial PDF ξ0 (x0, p) supported over X̃0

that, under the proposed model dynamics, yields the prescribed PDF, i.e.

ξ0 (x0, p) =
1

(1 + 8x2
0p)

3/2
ξ

(
± x0√

1 + 8x2
0p
, p, 4

)
. (4.26)

In other words, if the measurements find the initial density given by (4.26) and final

density ξ (xT , p, T ) at T = 4, then the Wasserstein distance at T = 4 will be zero,

thereby perfectly validating the model. This reinstates the importance of considering

the reachability of densities over sets than reachability of sets, for model

validation.

4.5.4 Comparison with Rantzer’s Density Function Based Model Falsification

Similar to barrier certificates, Rantzer’s density functions [162] can provide de-

ductive invalidation guarantees (see Theorem 1 in [163]) by constructing a scalar

function via convex program. Various applications of these two approaches for tem-

poral verification problems have been reported [164]. It is interesting to note that

the main idea of Rantzer’s density function stems from an integral form of Liouville

equation, given by (see Lemma A.1 in [162])

∫

XT
ξ dx −

∫

X0

ξ dx =

∫ T

0

∫

φt(X0)

∇x · (ξf) dx dt, (4.27)
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where the initial set X0 gets mapped to the set XT at time t = T , under the action

of the flow φt(·) associated with the nonlinear dynamics ẋ = f (x). The convex

relaxation proposed for invalidation/safety verification (Theorem 1 in [163]), strives

to construct an artificial “density” ξ = ξr (x, t) satisfying three conditions, viz. (i)

ξr (x, 0) > 0, ∀ x ∈ X0, (ii) ξr (x, T ) 6 0, ∀ x ∈ XT , and (iii) ∇x · (ξrf) > 0, ∀x ∈

φt (X0) , t ∈ (0, T ). From (4.27), such a construction results a “sign-based invali-

dation”, and is only sufficient unless a Slater-like condition [165] is satisfied. On

the other hand, the “validation in probability” framework proposed in this paper,

relies on Liouville PDE-based exact arithmetic computation of ξ, and is a direct

simulation-based non-deductive formulation. In this approach, model invalidation

equals violation of (4.27), not just the sign-mismatch of its left-hand and right-

hand side, and hence is necessary and sufficient. As shown in this subsection,

for Liouville-integrable nonlinear vector fields (not necessarily semi-algebraic), our

framework can recover the deductive falsification inference while bypassing the ad-

ditional conservatism due to SOS-based computation.

4.6 Chapter Summary

In this Chapter, we considered the following question: for the purpose of model

validation, what should be the metric for comparing observed and model predicted

PDFs? To address this issue, we first laid down the axiomatic requirements that the

validation metric must inherit. Then we showed that various pointwise notions of

distances, defined on the space of probability densities, fail to satisfy these require-

ments. Next, we propose to use quadratic Wasserstein distance of order 2, which is

an integral notion of distance on the space of probability densities, as a V&V met-

ric. We discuss the computation of the metric in our general context of comparing

dynamical systems, and in particular for the case, when the model predicted PDFs
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are computed using the algorithms developed in previous two Chapters. The latter

amounts to solving a linear program at each instance of measurement availability,

whose computational complexity is discussed in detail. Next, we describe the con-

struction of validation certificates to account the case when the initial PDF is not

known exactly. Several examples are given to demonstrate the ideas, and to compare

the proposed framework with existing nonlinear model falsification techniques.
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Figure 4.6: Starting with ξ0 = U ([−π, π]× [−π, π]), the solid line shows time history
of 2W2 measured between the joint state PDFs for (4.19) and its linearization about
the origin. The dashed line shows the same between (4.20) and its linearization about
the origin. The dash-dotted line shows the stationary 2W2 between known η∞ and η̂∞
(contours in the inset plot), given by (4.21) and (4.22) respectively, and is computed
by solving the optimal transport LP between their MCMC samples (scattered points
in the inset plot). All computations were done with 1000 Halton samples [2] from ξ0

and 50 eigenfunctions in noise KL expansion.
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Figure 4.7: Starting with ξ0 = N (0, σ2
0I2), transient Wasserstein time histories,

measured between the joint state PDFs for (4.19) and its linearization about the
origin. In this case, increasing σ0 increases 2W2 at all times. Further, notice that

2W2 trajectories with larger σ0, converges to higher asymptotic values. This is due to

the fact that the stationary density of (4.19) is of the form η∞(y) =
5∑

i=1

m?
i δ (y − y?i ),

and hence depends on ξ0, as explained in Section 4.2.3 and fourth row of Table
4.1. The shaded area shows user-specified tolerance level {γj}40

j=1, from which PRVC
(dashed line) can be computed. In this case, PWVC is simply the 2W2 trajectory
corresponding to σ0 = 1.4.
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Figure 4.8: This plot illustrates how Prajna’s barrier certificate-based invalidation
result can be recovered in our probabilistic model validation framework. To show
X̃T is not reachable from the set X̃0 in time T = 4, we sample X̃0 uniformly and
propagate that uniform ensemble subject to the proposed model dynamics till T =
4. The samples are gray-scale color coded (white = high probability, black = low
probability) according to the value of the joint PDF at that location. Here, the
model is invalidated since the pair of joint PDFs at initial and final time, does not
satisfy the Liouville transport PDE corresponding to the model dynamics, as proved
in Theorem 11.
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5. CASE STUDY: F-16 CONTROLLER ROBUSTNESS VERIFICATION

In this chapter, we will apply the probabilistic V&V formulation developed so

far, to the problem of controller verification. This application set up is a slight mod-

ification of the model validation problem in the sense that the open loop dynamics

is now well-known owing to a good understanding of the first principle physics; how-

ever, given a candidate controller, the closed loop performance remains to be verified

against uncertainties present in the system. Thus, the problem is essentially that of

ensuring probabilistic robustness of a controller.

5.1 Background on Probabilistic Robustness

In recent times, the notion of probabilistic robustness [166, 167, 168, 169, 170,

156, 171], has emerged as an attractive alternative to classical worst-case robust con-

trol framework. Probabilistic robustness formulation offers a promising alternative

to address these challenges. Instead of the interval-valued structured uncertainty

descriptions, it adopts a risk-aware perspective to analyze robustness, and hence,

explicitly accounts the distributional information associated with unstructured un-

certainty. Furthermore, significant progress have been made in the design and anal-

ysis of randomized algorithms [172, 173] for computations related to probabilistic

robustness. These recent developments are providing impetus to a transition from

“worst-case” to “distributional robustness” [174, 175].

In order to fully leverage the potential of distributional robustness, the associ-

ated computation must be scalable and of high accuracy. However, numerical imple-

mentation of most probabilistic methods rely on Monte Carlo like realization-based

algorithms, leading to high computational cost for implementing them to nonlinear

systems. In particular, the accuracy of robustness computation depends on the nu-
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merical accuracy of histogram-based piecewise constant approximation of the PDF

that evolves spatio-temporally over the joint state and parameter space, under the

action of closed-loop nonlinear dynamics. Nonlinearities at trajectory level cause

non-Gaussianity at PDF level, even when the initial uncertainty is Gaussian. Thus,

in Monte Carlo approach, at any given time, a high-dimensional nonlinear system

requires a dense grid to sufficiently resolve the non-Gaussian PDF, incurring the

‘curse of dimensionality’ [94].

This is a serious bottleneck in applications like flight control software certification

[176], where the closed loop dynamics is nonlinear, and linear robustness analysis sup-

ported with Monte Carlo, remains the state-of-the art. Lack of nonlinear robustness

analysis tools, coupled with the increasing complexity of flight control algorithms,

have caused loss of several F/A-18 aircrafts due to nonlinear “falling leaf mode”

[177], that went undetectable [178] by linear robustness analysis algorithms. On the

other hand, accuracy of sum of squares optimization-based deterministic nonlinear

robustness analysis [176, 177] depends on the quality of semi-algebraic approxima-

tion, and is still computationally expensive for large-scale nonlinear systems. Thus,

there is a need for controller robustness verification methods, that does not make

any structural assumption on nonlinearity, and allows scalable computation while

accommodating stochastic uncertainty.

Rest of this Chapter is structured as follows. In next Section, we describe the

nonlinear open-loop dynamics of F-16 aircraft in longitudinal flight, followed by the

synthesis of linear quadratic regulator (LQR) and gain-scheduled linear quadratic

regulator (gsLQR) – the two controllers whose state regulation performances are

being compared. The proposed framework is detailed next and consists of closed-loop

uncertainty propagation and optimal transport to trim. Numerical results illustrating

the proposed method, are presented in the end.
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5.2 F-16 Flight Dynamics

5.2.1 Longitudinal Equations of Motion

The longitudinal equations of motion for F-16 considered here, follows the model

given in [179, 180, 181], with the exception that we restrict the maneuver to a

constant altitude (h = 10, 000 ft) flight. Further, the north position state equation

is dropped since no other longitudinal states depend on it. This results a reduced

four state, two input model with x = (θ, V, α, q)>, u = (T, δe)
>, given by

θ̇ = q, (5.1a)

V̇ =
1

m
cosα

[
T −mg sin θ + qS

(
CX +

c

2V
CXqq

)]

+
1

m
sinα

[
mg cos θ + qS

(
CZ +

c

2V
CZqq

)]
, (5.1b)

α̇ = q − sinα

mV

[
T −mg sin θ + qS

(
CX +

c

2V
CXqq

)]

+
cosα

mV

[
mg cos θ + qS

(
CZ +

c

2V
CZqq

)]
, (5.1c)

q̇ =
qSc

Jyy

[
Cm +

c

2V
Cmqq +

(
xref

cg − xcg

)

c

(
CZ +

c

2V
CZqq

)]
. (5.1d)

The state variables are second Euler angle θ (deg), total velocity V (ft/s), angle-of-

attack α (deg), and pitch rate q (deg/s), respectively. The control variables are thrust

T (lb), and elevator deflection angle δe (deg). Table 5.1 lists the parameters involved

in (5.1). Furthermore, the dynamic pressure q = 1
2
ρ (h)V 2, where the atmospheric

density ρ (h) = ρ0 (1− 0.703× 10−5h)
4.14

= 1.8× 10−3 slugs/ft3 remains fixed.

5.2.2 Aerodynamic Coefficients

The aerodynamic force and moment coefficients CX , CZ , and Cm are functions

of α and δe, expressed as look-up table from wind tunnel test data [179, 180, 181].
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Table 5.1: Parameters in (5.1)
Description of parameters Values with dimensions
Mass of the aircraft m = 636.94 slugs
Acceleration due to gravity g = 32.17 ft/s2

Wing planform area S = 300 ft2

Mean aerodynamic chord c = 11.32 ft
Reference x-position of c.g. xref

cg = 0.35 c ft
True x-position of c.g. xcg = 0.30 c ft
Pitch moment-of-inertia Jyy = 55, 814 slug-ft2

Nominal atmospheric density ρ0 = 2.377× 10−3 slugs/ft3

Similarly, the stability derivatives CXq , CZq , and Cmq are look-up table functions of

α. We refer the readers to above references for details.

5.3 Controller Synthesis

We consider two controllers: LQR and gsLQR, as shown in Fig. 5.1 and 5.2

respectively, with the common objective of regulating the state to its trim value.

Here, w denotes the actuator disturbance. Both controllers minimize the infinite-

horizon cost functional

J =

∫ ∞

0

(
x(t)>Q x(t) + u(t)>R u(t)

)
dt, (5.2)

with Q = diag (100, 0.25, 100, 10−4), and R = diag (10−6, 625). The control satura-

tion shown in the block diagrams, is modeled as

1000 lb 6 T 6 28, 000 lb, −25◦ 6 δe 6 +25◦. (5.3)
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Figure 5.1: Block diagram for LQR closed-loop system.

Figure 5.2: Block diagram for gsLQR closed-loop system.
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5.3.1 LQR Synthesis

The nonlinear open loop plant model was linearized about xtrim, utrim, using

simulink linmod command. The trim conditions were computed via the nonlinear

optimization package SNOPT [182], and are given by

xtrim =
(
2.8190 deg, 407.8942 ft/s, 6.1650 deg, 6.8463× 10−4 deg/s

)>
, (5.4)

utrim = (1000 lb, −2.9737 deg)> . (5.5)

The LQR gain matrix K, computed for this linearized model, was found to be

K =




7144.9 −400.58 −1355.8 2002.8

0.7419 −0.0113 −0.2053 0.3221


 . (5.6)

As observed in Fig. 5.3 (a), both open-loop and LQR closed-loop linear systems are

stable.

5.3.2 Gain-scheduled LQR Synthesis

As shown in Fig. 5.2 (b), V and α are taken as the scheduling states. We generate

100 grid points in the box

100 ft/s 6 V 6 1000 ft/s, −10◦ 6 α 6 +45◦, (5.7)

and compute trim conditions {xjtrim, ujtrim}100
j=1, using SNOPT, for each of these grid

points. Next, we synthesize a sequence of LQR gains {Kj}100
j=1, corresponding to the

linearized dynamics about each trim. For the closed-loop nonlinear system, the gain

matrices at other state vectors are linearly interpolated over {Kj}100
j=1. As shown in

Fig. 5.3 (b), depending on the choice of the trim conditions corresponding to the
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Figure 5.3: (a) The open-loop (circles) and LQR closed-loop (stars) eigenvalues
shown in the complex plane, for the linearized model. (b) For gsLQR synthesis,
maximum of the real parts of open-loop (circles) and closed-loop (stars) eigenvalues
for each of the j = 1, . . . , 100 linearizations are plotted. Depending on the trim con-
dition, some open-loop linearized plants can be unstable but all closed-loop synthesis
are stable.

grid-points in scheduling subspace, some open-loop linearized plants are unstable but

all closed-loop synthesis are stable.

5.4 Optimal Transport to Trim

5.4.1 Probabilistic Robustness of State Regulation Performance As Optimal

Transport

We assume that the uncertainties in initial conditions (x0) and parameters (p)

are described by the initial joint PDF ξ0 (x0, p), and this PDF is known for the

purpose of performance analysis. For t > 0, under the action of the closed-loop dy-

namics, ξ0 evolves over the extended state space, defined as the joint space of states

and parameters, to yield the instantaneous joint PDF ξ (x(t), p, t). We use (2.9)

for MOC computation of ξ (x(t), p, t). Notice that the divergence computation in
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(2.9) can be done analytically offline for our case of LQR and gsLQR closed-loop

systems, provided we obtain function approximations for aerodynamic coefficients.

However, there are two drawbacks for such offline computation of the divergence.

First, the accuracy of the computation will depend on the quality of function ap-

proximations for aerodynamic coefficients. Second, for nonlinear controllers like

MPC [183], which numerically realize the state feedback, analytical computation for

closed-loop divergence is not possible. For these reasons, we implement an alterna-

tive online computation of divergence in this paper. Using the Simulink R© command

linmod, we linearize the closed-loop systems about each characteristics, and obtain

the instantaneous divergence as the trace of the time-varying Jacobian matrix. Then,

the uncertainty propagation follows the generic structure of Algorithm 1 in Chapter

2.

To provide a quantitative comparison for LQR and gsLQR controllers’ perfor-

mance, we need a notion of “distance” between the respective time-varying state

PDFs and the desired state PDF. Since the controllers strive to bring the state

trajectory ensemble to xtrim, hence we take ξ∗ (xtrim), a Dirac delta distribution at

xtrim, as our desired joint PDF. For this purpose, we use the Wasserstein metric

2W2 introduced in Chapter 4. Recall that the Wasserstein distance computation

from its definition leads to solving an infinite dimensional LP associated with the

Monge-Kantorovich optimal transport. As we have seen in Section 4.3, the discrete

version of this problem is a large but finite-dimensional LP, which though consistent,

is not easy to implement in generic solvers. For example, an MOC with 1000 samples

leads to an LP with one million decision variables, even after sparseness is exploited.

This issue, in general, leads to numerical accuracy versus storage capacity trade off.

Next, we show that for state regulation performance considered in this Chapter, this

computational burden can be reduced significantly.
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Table 5.2: Admissible state perturbation limits
xpert Interval
θpert ∈

[
θmin

pert, θ
max
pert

]
[−35◦,+35◦]

Vpert ∈
[
V min

pert , V
max

pert

]
[−65 ft/s,+65 ft/s]

αpert ∈
[
αmin

pert, α
max
pert

]
[−20◦,+50◦]

qpert ∈
[
qmin

pert, q
max
pert

]
[−70 deg/s,+70 deg/s]

5.4.2 Reduction of Storage Complexity

For our purpose of computing W (ξ (x (t) , t) , ξ∗ (xtrim)), the storage complexity

can be reduced by leveraging the fact that ξ∗ (xtrim) is a stationary Dirac distribution.

Hence, it suffices to represent the joint probability mass function (PMF) of ξ∗ (xtrim)

as a single sample located at xtrim with PMF value unity. This trivializes the optimal

transport problem, since

W (t) , W (ξ (x (t) , t) , ξ∗ (xtrim)) =

√√√√
n∑

i=1

‖ xi (t)− xtrim ‖2
2 γi, (5.8)

where γi > 0 denotes the joint PMF value at sample xi (t), i = 1, . . . , n. Conse-

quently, the storage complexity reduces to (nns + n+ ns), which is linear in number

of samples n.

5.5 Numerical Results

5.5.1 Robustness Against Initial Condition Uncertainties

5.5.1.1 Stochastic Initial Condition Uncertainty

We first consider analyzing the controller robustness subject to initial condition

uncertainties. For this purpose, we let the initial condition x0 to be a stochastic per-

turbation from xtrim, i.e. x0 = xtrim +xpert, where xpert is a random vector with prob-
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ability density ξpert = U
([
θmin

pert, θ
max
pert

]
×
[
V min

pert , V
max

pert

]
×
[
αmin

pert, α
max
pert

]
×
[
qmin

pert, q
max
pert

])
,

where the perturbation range for each state, is listed in Table 5.2. Consequently, x0

has a joint PDF ξ0 (x0). For this analysis, we assume no actuator disturbance.

5.5.1.2 Simulation Set Up

We generated pseudo-random Halton sequence [2] in
[
θmin

pert, θ
max
pert

]
×
[
V min

pert , V
max

pert

]
×

[
αmin

pert, α
max
pert

]
×
[
qmin

pert, q
max
pert

]
, to sample the uniform distribution ξpert, and hence ξ0

supported on the four dimensional state space. With 2000 Halton samples for ξ0, we

propagate joint state PDFs for both LQR and gsLQR closed-loop dynamics via MOC

ODE (2.9), from t = 0 to 20 seconds, using fourth-order Runge-Kutta integrator with

fixed step-size ∆t = 0.01 s.

We observed that the linmod computation for evaluating time-varying divergence

along each trajectory, takes the most of computational time. To take advantage of

the fact that computation along characteristics are independent of each other, all

simulations were performed using 12 cores with NVIDIA R© Tesla GPUs in MATLAB R©

environment. It was noticed that with LQR closed-loop dynamics, the computational

time for single sample from t = 0 to 20 s, is approx. 90 seconds. With sequential for-

loops over 2000 samples, this scales to 50 hours of runtime. The same for gsLQR

scales to 72 hours of runtime. In parallel implementation on Tesla, MATLAB R©

parfor-loops were used to reduce these runtimes to 4.5 hours (for LQR) and 6 hours

(for gsLQR), respectively.

5.5.1.3 Density Based Qualitative Analysis

Fig. 5.4 shows the evolution of univariate marginal error PDFs. All marginal

computations were performed using algorithms given in [38]. Since ξ0 and its marginals

were uniform, Fig. 5.4(a) shows similar trend for small t, and there seems no visible

difference between LQR and gsLQR performance. As t increases, both LQR and
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Figure 5.4: Snapshots of univariate marginal error PDFs for each state, with LQR
(blue, dashed) and gsLQR (red, solid) closed loop dynamics.

gsLQR error PDFs shrink about zero. By t = 20 s (Fig. 5.4(d)), both LQR and

gsLQR controllers make the respective state marginals ξj(t), j = 1, . . . , 4, converge

to the Dirac distribution at xjtrim, although the rate of convergence of gsLQR error

marginals is faster than the same for LQR.

Thus, Fig. 5.4 qualitatively show that both LQR and gsLQR exhibit comparable

immediate and asymptotic performance, as far as robustness against initial condition

uncertainty is concerned. However, there are some visible mismatches in Fig. 5.4(b)

and 5.4(c), that suggests the need for a careful quantitative investigation of the
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transient performance.

The insights obtained from Fig. 5.4 can be verified against the MC simulations

(Fig. 5.5). Compared to LQR, the MC simulations reveal faster regulation perfor-

mance for gsLQR, and hence corroborate the faster rate of convergence of gsLQR

error marginals observed in Fig. 5.4. From Fig. 5.5, it is interesting to observe that

by t = 20 s, some of the LQR trajectories do not converge to trim while all gsLQR

trajectories do. For risk aware control design, it is natural to ask: how probable is

this event, i.e. can we probabilistically assess the severity of the loss of performance

for LQR? To address this question, in Fig. 5.6, we plot the time evolution of the peak

value of LQR joint state PDF, and compare that with the joint state PDF values

along the LQR closed-loop trajectories that don’t converge to xtrim by 20 s. Fig. 5.6

reveals that the probabilities that the LQR trajectories don’t converge, remain at

least an order of magnitude less than the peak value of the LQR joint PDF. In other

words, the performance degradation for LQR controller, as observed in Fig. 5.5(a), is

a low-probability event. This conclusion can be further verified from Fig. 5.7, which

shows that for gsLQR controller, both maximum and minimum probability trajec-

tories achieve satisfactory regulation performance by t = 20 s. However, for LQR

controller, although the maximum probability trajectory achieves regulation perfor-

mance as good as the corresponding gsLQR case, the minimum probability LQR

trajectory results in poor regulation. Furthermore, even for the maximum prob-

ability trajectories (Fig. 5.7, top row), there are transient performance mismatch

between LQR and gsLQR, for approximately 3–8 s.

5.5.1.4 Optimal Transport Based Quantitative Analysis

From a systems-control perspective, instead of performing an elaborate qualita-

tive statistical analysis as above, one would like to have a concise and quantitative
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(a) State error vs. time for LQR controller

(b) State error vs. time for gsLQR controller

Figure 5.5: MC state error (∆xj (t) , xj (t) − xjtrim, j = 1, . . . , 4) trajectories for
LQR and gsLQR closed-loop dynamics.
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Figure 5.6: Time evolution of maximum value of joint PDF ξLQR (x(t), t) (red solid)
and ξLQR (x(t), t) along the diverging trajectories (blue dashed), as seen in Fig. 5.5(a).
The plots are in log-linear scale.
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Figure 5.7: Time evolution of the most likely (top row) and least likely (bottom row)
state errors for LQR (blue dashed) and gsLQR (red solid) closed-loop dynamics.
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robustness analysis tool, enabling the inferences of the previous subsection. We now

illustrate that the Wasserstein distance introduced in Section 4, serves this need.

In this formulation, a controller is said to have better regulation performance if it

makes the closed-loop state PDF converge faster to the Dirac distribution located at

xtrim. In other words, for a better controller, at all times, the distance between the

closed-loop state PDF and the Dirac distribution, as measured in 2W2, must remain

smaller than the same for the other controller. In this Chapter, for notational ease,

we drop the subscripts from the Wasserstein distance notation 2W2, and denote it

simply by W . Thus, we compute the time-evolution of the two Wasserstein distances:

WLQR (t) , W (ξLQR (x (t) , t) , ξ∗ (xtrim)) , (5.9)

WgsLQR (t) , W (ξgsLQR (x (t) , t) , ξ∗ (xtrim)) . (5.10)

The schematic of this computation is shown in Fig. 5.8. Fig. 5.9 indeed confirms

Figure 5.8: Schematic of probabilistic robustness comparison for controllers based on
Wasserstein metric. The “diamond” denotes the Wasserstein computation by solving
the Monge-Kantorovich optimal transport. The internal details of LQR and gsLQR
closed-loop dynamics blocks are as in Fig. 5.1 and Fig. 5.2.
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the qualitative trends, observed in the density based statistical analysis mentioned

before, that LQR and gsLQR exhibit comparable immediate and asymptotic perfor-

mance. Furthermore, Fig. 5.9 shows that for t = 3 − 8 seconds, WLQR stays higher

than WgsLQR, meaning the gsLQR joint PDF ξgsLQR (x(t), t) is closer to ξ∗ (xtrim),

compared to the LQR joint PDF ξLQR (x(t), t). This corroborates well with the tran-

sient mismatch observed in Fig. 5.4(c). As time progresses, both WLQR and WgsLQR

converge to zero, meaning the convergence of both LQR and gsLQR closed-loop joint

state PDFs to the Dirac distribution at xtrim.
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Figure 5.9: Comparison of time histories of W (ξLQR(t), ξ∗) (blue dashed, star) and
W (ξgsLQR(t), ξ∗) (red solid, triangle).
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Remark 10. At this point, we highlight a subtle distinction between the two ap-

proaches of probabilistic robustness analysis presented above: (1) density based qual-

itative analysis, and (2) the optimal transport based quantitative analysis using

Wasserstein distance. For density based qualitative analysis, controller performance

assessment was done using Fig. 5.4 that compares the asymptotic convergence of the

univariate marginal state PDFs. However, this analysis is only sufficient since con-

vergence of marginals does not necessarily imply convergence of joints. Conversely,

the optimal transport based quantitative analysis is necessary and sufficient since Fig.

5.9 compares the Wasserstein distance between the joint PDFs. We refer the readers

to Appendix C (Theorem 26) for a precise statement and proof.

Further, since WLQR (t) → 0 for large t, we can affirmatively say that the di-

vergent LQR trajectories are indeed of low-probability, as hinted by Fig. 5.6 and

5.7. Otherwise, WLQR (t) would show a steady-state error. Thus, the optimal trans-

port theoretic Wasserstein distance is shown to be an effective way of comparing the

robustness of controllers.

5.5.2 Robustness Against Parametric Uncertainties

5.5.2.1 Deterministic Initial Condition with Stochastic Parametric Uncertainty

Instead of the stochastic initial condition uncertainties described in above, we

now consider uncertainties in three parameters: mass of the aircraft (m), true x-

position of c.g. (xcg), and pitch moment-of-inertia (Jyy). The uncertainties in these

geometric parameters can be attributed to the variable rate of fuel consumption

depending on the flight conditions. For the simulation purpose, we assume that

each of these three parameters has ±∆% uniform uncertainties about their nominal

values listed in Table 5.1. To verify the controller robustness, we vary the parametric

uncertainty range by allowing ∆ = 0.5, 2.5, 5, 7.5 and 15. As before, we set the
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actuator disturbance w = 0.

5.5.2.2 Simulation Set Up

We let the initial condition be a deterministic vector: x0 = xtrim + xpert, where

xpert = [1.1803 rad, 5.1058 ft/s, 2.8370 rad, 10−4 rad/s]
>

. We keep the rest of the

simulation set up same as in the previous case. Notice that since ṗ = 0, the charac-

teristic ODE for joint PDF evolution remains the same. However, the state trajec-

tories, along which the characteristic ODE needs to be integrated, now depend on

the realizations of the random vector p.

5.5.2.3 Density Based Qualitative Analysis

Due to parametric uncertainties in p , [m, xcg, Jyy]
>, we now have ns = 4, np =

3, and hence the joint PDF evolves over the extended state space x̃(t) , [x(t), p]> ∈

R7. Since we assumed x0 to be deterministic, both initial and asymptotic joint

PDFs ξ0 and ξ∞ are degenerate distributions, supported over the three dimen-

sional parametric subspace of the extended state space in R7. In other words,

ξ0 = ξp (p) δ (x− x0), and ξ∞ = ξp (p) δ (x− xtrim), i.e. the PDFs ξ0 and ξ∞ dif-

fer only by a translation of magnitude ‖ x0 − xtrim ‖2=‖ xpert ‖2. However, for any

intermediate time t ∈ (0,∞), the joint PDF ξ (x̃(t), t) has a support obtained by

nonlinear transformation of the initial support. This is illustrated graphically in Fig.

5.10.

The MC simulations in Fig. 5.11 show that both LQR and gsLQR have similar

asymptotic performance, however, the transient overshoot for LQR is much larger

than the same for gsLQR. Hence, the transient performance for gsLQR seems to be

more robust against parametric uncertainties. Similar trends were observed for other

values of ∆.
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Figure 5.10: A schematic of how the support of a joint PDF evolves in the extended
state space under parametric uncertainty. For ease of understanding, we illustrate
here a case for one state x and one parameter p. Since x0 is deterministic but p
is random, the initial joint PDF ξ0 is simply the univariate parametric PDF ξp(p)
translated to x = x0. Consequently, ξ0 is supported on a straight line segment (one
dimensional subspace) in the two dimensional extended state space, as shown in
the left figure. For 0 < t < ∞, due to state dynamics, the samples (denoted as
circles) on that line segment move in the horizontal (x) direction while keeping the
respective ordinate (p) value constant, resulting the instantaneous support to be a
curve (middle figure). If the system achieves regulation, then limt→∞ x(t) = xtrim,
∀p in the parametric uncertainty set, resulting the asymptotic joint PDF ξ∞ to be
supported on a straight line segment (right figure) at x = xtrim.
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(a) State error vs. time for LQR controller

(b) State error vs. time for gsLQR controller

Figure 5.11: MC state error (∆xj (t) , xj (t) − xjtrim, j = 1, . . . , 4) trajectories
for LQR and gsLQR closed-loop dynamics, with ±2.5% uniform uncertainties in
p = [m, xcg, Jyy]

>, i.e. p = pnominal (1±∆%), where ∆ = 2.5, and pnominal values are
listed in Table 5.1.
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5.5.2.4 Optimal Transport Based Quantitative Analysis

Here, we solve the LP (4.12) with cost

cij = n
n∑

i=1

‖ xi(t)− xtrim ‖2
2 +

n∑

i=1

n∑

j=1

np=3∑

k=1

(pk (i)− pk (j))2 , (5.11)

with ςi being the joint PMF value at the ith sample location x̃i(t) = [xi(t), p(i)]
>,

and ς̂j being the trim joint PMF value at the jth sample location [xtrim, p(j)]
>. Fig.

5.12(a) and 5.12(b) show W (t) vs. t under parametric uncertainty for LQR and

gsLQR, respectively. For both the controllers, the plots confirm that larger paramet-

ric uncertainty results in larger transport efforts at all times, causing higher value of

W . In both cases, the deterministic (no uncertainty) W curves (dashed lines in Fig.

5.12(a) and 5.12(b)) almost coincide with those of ±0.5% parametric uncertainties.

Notice that in the deterministic case, W is simply the Euclidian distance of the cur-

rent state from trim, i.e. convergence in W reduces to the classical `2 convergence

of a signal.

It is interesting to compare the LQR and gsLQR performance against parametric

uncertainty for each fixed ∆. For 0−3 s, the rate-of-convergence for W (t) is faster for

LQR, implying probabilistically faster regulation. However, the LQR W curves tend

to flatten out after 3 s, thus slowing down its joint PDF’s rate-of-convergence to ξ∞.

On the other hand, gsLQR W curves exhibit somewhat opposite trend. The initial

regulation performance for gsLQR is slower than that of LQR, but gsLQR achieves

better asymptotic performance by bringing the probability mass closer to ξ∞ than

the LQR case, resulting smaller values of W . Further, one may notice that for large

(±15%) parametric uncertainties, the W curve for LQR shows a mild bump around

3 s, corresponding to the significant transient overshoot observed in Fig. 5.11(a).
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(a) Time evolution of Wasserstein distance for LQR, with
varying levels of ∆.
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(b) Time evolution of Wasserstein distance for gsLQR, with
varying levels of ∆.

Figure 5.12: Time evolution of Wasserstein distances for LQR and gsLQR, with
parametric uncertainties.
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This can be contrasted with the corresponding W curve for gsLQR, that does not

show any prominent effect of transient overshoot at that time. The observation is

consistent with the MC simulation results in Fig. 5.11(b). Thus, we can conclude

that gsLQR is more robust than LQR, against parametric uncertainties.

5.5.3 Robustness Against Actuator Disturbance

5.5.3.1 Stochastic Initial Condition Uncertainty with Actuator Disturbance

Here, in addition to the initial condition uncertainties described in Section 5.5.1,

we consider actuator disturbance in elevator. Our objective is to analyze how the ad-

ditional disturbance in actuator affects the regulation performance of the controllers.

5.5.3.2 Simulation Set Up

We let the initial condition uncertainties to be described as in Table 5.2, and

consequently the initial joint PDF is uniform. Further, we assume that the elevator

is subjected to a periodic disturbance of the form w(t) = 6.5 sin (Ωt). The simulation

results of Section 5.1.1 corresponds to the special case when the forcing angular

frequency Ω = 0. To investigate how Ω > 0 alters the system response, we first

perform frequency-domain analysis of the LQR closed-loop system, linearized about

xtrim. Fig. 5.13 shows the variation in singular value magnitude (in dB) with respect

to frequency (rad/s), for the transfer array from disturbance w(t) to states x(t). This

frequency-response plot shows that the peak frequency is ω? ≈ 2 rad/s.

5.5.3.3 Density Based Qualitative Analysis

To compare the LQR and gsLQR performance under peak frequency excitation

(as per linearized LQR analysis), we set Ω = ω? = 2 rad/s, and evolve the initial

uniform joint PDF over the LQR and gsLQR closed-loop state space. Notice that the

LQR closed-loop dynamics is nonlinear, and the extent to which the linear analysis
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Figure 5.13: Singular values for the LQR closed-loop dynamics, linearized about
xtrim, computed from the 4 × 1 transfer array corresponding to the disturbance to
states.
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would be valid, depends on the robustness of regulation performance. Fig. 5.14(a)

shows the LQR state error trajectories from the MC simulation. It can be observed

that after t = 10 s, most of the LQR trajectories exhibit constant frequency oscilla-

tion with ω = 2 rad/s. This trend is even more prominent for the gsLQR trajectories

in Fig. 5.14(b), which seem to settle to the constant frequency oscillation quicker

than the LQR case.

5.5.3.4 Optimal Transport Based Quantitative Analysis

We now investigate the effect of elevator disturbance w(t) = 6.5 sin (2t) and

initial condition uncertainties, via the optimal transport framework. In this case,

the computation of Wasserstein distance is of the form (5.8).

For the LQR closed-loop system, Fig. 5.15(a) compares the Wasserstein distances

for no actuator disturbance, i.e. Ω = 0 rad/s (circles), actuator disturbances with

Ω = 2 rad/s (solid line) and Ω = 100 rad/s (dashed line), respectively. It can be seen

that the Wasserstein curves for Ω = 0 rad/s and Ω = 100 rad/s are indistinguish-

able, meaning the LQR closed-loop nonlinear system rejects high frequency elevator

disturbance, similar to the linearized closed-loop system, as observed in Fig. 5.13.

For Ω = 2 rad/s, the Wasserstein curve reflects the effect of closed-loop nonlinearity

in joint PDF evolution till approximately t = 10 s. For t > 10 s, we observe that

the LQR Wasserstein curve itself settles to an oscillation with ω = 2 rad/s. This is

due to the fact that by t = 10 s, the joint probability mass comes so close to xtrim,

that the linearization about xtrim becomes a valid approximation of the closed-loop

nonlinear dynamics. This observation is consistent with the MC simulations in Fig.

5.14(a).

For the gsLQR closed-loop system, Fig. 5.15(b) compares the Wasserstein dis-

tances with Ω = 0, 2, 100 rad/s. It is interesting to observe that, similar to the LQR
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(a) State error vs. time for LQR controller

(b) State error vs. time for gsLQR controller

Figure 5.14: MC state error (∆xj (t) , xj (t) − xjtrim, j = 1, . . . , 4) trajectories for
LQR and gsLQR closed-loop dynamics, with periodic disturbance w(t) = 6.5 sin (2t)
in the elevator, and initial condition uncertainties.
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(a) Time evolution of Wasserstein distance for LQR, with elevator
disturbance w(t) = 6.5 sin (Ωt).

(b) Time evolution of Wasserstein distance for gsLQR, with ele-
vator disturbance w(t) = 6.5 sin (Ωt).

Figure 5.15: Time evolution of Wasserstein distance for LQR and gsLQR, with initial
condition uncertainties and elevator disturbance.
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Figure 5.16: Time history of the difference between WLQR and WgsLQR, with initial
condition uncertainties and elevator disturbance with Ω = 2 rad/s.
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case, gsLQR closed loop system rejects the high frequency elevator disturbance, and

hence the Wasserstein curves for Ω = 0 rad/s and Ω = 100 rad/s look almost identi-

cal. Further, beyond t = 10 s, the gsLQR closed-loop response is similar to the LQR

case, and hence the respective Wasserstein curves have similar trends. However, if

we compare the LQR and gsLQR Wasserstein curves for Ω = 2 rad/s, then we ob-

serve that gsLQR transient performance is slightly more robust than LQR, resulting

lower values of Wasserstein distance for approximately 3− 5 seconds. This transient

performance difference between LQR and gsLQR, can also be seen in Fig. 5.16 that

shows the time evolution of WLQR −WgsLQR.

5.6 Chapter Summary

This Chapter is a case study to demonstrate the efficacy of the proposed density

based V&V method. The case study concerns the controller performance verification

for F-16 longitudinal flight dynamics. The objective is to ascertain which, among

two given controllers, one LQR and another gain-scheduled LQR, has better regula-

tion performance in the presence of probabilistic uncertainties in initial conditions,

parameters and actuator disturbance. Since the open-loop flight dynamics is non-

linear, this amounts to verifying the controllers’ nonlinear robustness of the state

regulation performance. It is shown that the quantitative results obtained by the

proposed V&V framework, are in unison with the qualitative predictions made by

Monte Carlo and the uncertainty propagation algorithm developed in Chapter 2.
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6. SYSTEMS THEORETIC RESULTS FOR PROBABILISTIC V&V

In the previous chapters, we have developed a density based model validation

framework in time domain. The computational aspects have been covered in detail,

and several examples and case studies have been worked out to demonstrate its appli-

cability for nonlinear dynamical systems. In this chapter, we focus on investigating

the systems-theoretic interpretations of the proposed V&V framework. In particu-

lar, we would like to understand the meaning of two linear systems being close in

Wasserstein sense. This chapter provides two results in this direction. First, we con-

sider a deterministic LTI system and its approximation (another deterministic LTI

system), both being excited by Gaussian white noise (GWN). Then, we show that

the asymptotic Wasserstein gap can be characterized in terms of the average gains

of the systems under comparison. Next, we consider the linear model discrimination

problem, i.e. finding the initial PDF which maximizes the Wasserstein gap between

the systems under comparison. We provide geometric intuitions for the solutions of

both these problems.

6.1 Wasserstein Gap Between Deterministic Linear Systems Driven By Gaussian

White Noise

6.1.1 Frequency Domain Formulae for Asymptotic 2W2

In this chapter, the asymptotic Wasserstein distance lim
t→∞ 2W2 (t) is denoted as

W∞. We next derive formulae for W∞ for the single input single output (SISO),

multiple input single output (MISO), and multiple input multiple output (MIMO)

LTI systems.
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6.1.1.1 SISO Case

Theorem 12. Consider two stable LTI systems with transfer functions Gi, i = 1, 2,

both excited by stationary Gaussian input u (t) ∼ N (µu, σ
2
u), with power spectral

density (PSD) Su (ω). Then the asymptotic Wasserstein gap W∞ between them, is

given by

W∞ (G1, G2) =

√
µ2
u (G1 (0)−G2 (0))2 + (σ1 − σ2)2, (6.1)

with σi =
√∫ +∞

−∞ |Gi (jω)|2Su (ω) dω − µ2
uG

2
i (0), i = 1, 2.

Proof. Let yi (t), i = 1, 2, denote the sample paths of the respective stationary

outputs, with densities N (µi, σ
2
i ). If Ryi (τ) are the respective autocorrelations with

τ being the corresponding correlation window, then stationarity implies

Ryi (τ) = E [yi (t+ τ) yi (t)]⇒ Ryi (0) = E
[
(yi (t))

2]

⇒
∫ +∞

−∞
Syi (ω) dω =

∫ +∞

−∞
|Gi (jω)|2Su (ω) dω = µ2

i + σ2
i , (6.2)

where Syi (ω) are the auto-PSDs, defined as the inverse Fourier transform of the re-

spective auto-correlations, and we have used the well-known [184] SISO PSD relation

Syi (ω) = |Gi (jω)|2Su (ω). On the other hand,

µi = E [yi (t)] = E
[∫ +∞

−∞
hi (τ)u (t− τ) dτ

]
,

where hi (.) are the respective impulse response functions. By changing the order of

integrals, and using the fact that E [u (t− τ)] = E [u (t)] (due to stationarity), we get

µi = µu

∫ +∞

−∞
hi (τ) e−j.0.τdτ = µuGi (0) . (6.3)
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Notice that (6.2) and (6.3) yield four equations in four unknowns µi, σi, i = 1, 2.

Since Wasserstein distance between two univariate Gaussians N (µi, σ
2
i ) is given by

[138]

W∞ =

√
(µ1 − µ2)2 + (σ1 − σ2)2, (6.4)

the result follows from (6.2) and (6.3). The input PSD Su (ω) is a function of σu,

depending on the temporal properties of the stochastic process u (t). �

Corollary 13. If u (t) is Gaussian white noise, then µu = 0, Su (ω) = σ2
u = constant.

Consequently, W∞ is the difference between the respective H2 norms, up to scaling

by the strength of input disturbance, i.e.

W∞ =
√

2πσu

∣∣∣∣ ||G1 (jω)||2 − ||G2 (jω)||2
∣∣∣∣. (6.5)

The proof follows immediately from the definition of SISO H2 norm: ||Gi||2 :=√
1

2π

∫ +∞

−∞
G∗i (jω)Gi (jω) dω, i = 1, 2. Notice that, in the definitions of Fourier

transform pairs auto-correlation and PSD, the factor 1√
2π

is usually omitted in the

signal processing community [184, 104], and we have adopted the same convention

in proving Theorem 12. Thus, by scaling the variance of the input noise, one can

normalize the factor
√

2πσu in (6.5), a condition we will assume in most derivations

without loss of generality.

In the remaining of this section, we will derive the results assuming the input to

be Gaussian white noise. Given the input auto and cross-PSDs, how to handle more

general cases, will become apparent from the proofs.
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6.1.1.2 MISO Case

Theorem 14. Consider two stable LTI systems with m inputs and single output,

having transfer arrays G and Ĝ, each being a row vector of size 1 ×m. If both the

systems are excited by Gaussian white noise vector u (t) ∼ N (0m×1, diag (σ2
u)), then

the asymptotic Wasserstein gap W∞ between them, is given by the scaled difference

between respective H2 norms:

W∞

(
G, Ĝ

)
=
√

2πσu

∣∣∣∣ ||G (jω)||2 − ||Ĝ (jω)||2
∣∣∣∣. (6.6)

Proof. Like the SISO proof, we still have
∫ +∞
−∞ Sy (ω) dω = σ2, since µ = µ̂ = 0,

due to whiteness of the input. This equation holds for both pairs (Sy (ω) , σ2) and

(Sŷ (ω) , σ̂2). For the general correlated stationary input, the MISO PSD relation is

known [184] to be

Sy (ω) =
m∑

i=1

m∑

k=1

G∗i (jω)Gk (jω) Suiuk (ω)︸ ︷︷ ︸
input PSD matrix

dω. (6.7)

Now, for white input vector, each dimension is an independent white noise process,

implying the dimensions are mutually uncorrelated. Hence, Ruiuk (τ) , Suiuk (ω) =

0, ∀i 6= k. Thus, for Gaussian white vector u (t) ∼ N (0m×1, diag (σ2
i )), (6.4) results

W =

∣∣∣∣∣

√√√√
∫ +∞

−∞

m∑

i=1

|Gi (jω)|2σ2
ui
dω −

√√√√
∫ +∞

−∞

m∑

i=1

|Ĝi (jω)|2σ2
ui
dω

∣∣∣∣∣

which reduces to (6.6) for spherical Gaussian case, since theH2 norm for multivariate

case, is defined as ||G||2 :=

√
1

2π

∫ +∞

−∞
tr
(
GH (jω)G (jω)

)
dω. �
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6.1.1.3 MIMO Case

Theorem 15. Consider two stable LTI systems with m inputs and p outputs, having

transfer matrices G and Ĝ. If both the systems are excited by Gaussian white noise

vector u (t) ∼ N (0m×1, diag (σ2
u)), then the asymptotic Wasserstein gap W∞ between

them, is given by

W∞

(
G, Ĝ

)

=
√

2πσu

(
||G (jω)||22 + ||Ĝ (jω)||22 − 2 tr

[(
1

2π

∫ +∞

−∞
GH (jω)G (jω) dω

)1/2

(
1

2π

∫ +∞

−∞
ĜH (jω) Ĝ (jω) dω

) (
1

2π

∫ +∞

−∞
GH (jω)G (jω) dω

)1/2
]1/2




1/2

.

(6.8)

Proof. In this case, the output correlation matrices of size p × p satisfy Ry (0) =
∫ +∞
−∞ Sy (ω) dω = Σy. Similar equation holds for the “hat” system.

Let the (i, k)th elements Gik, Ĝik, of the transfer matrices relate the response from

ith input to the respective kth output. Then the MIMO PSD relation [185] becomes

Sy (ω) = GH (jω) Su (ω)︸ ︷︷ ︸
Input PSD matrix

G (jω) , (6.9)

where for Gaussian white input, we have

Su (ω) = σ2
uIm×m ⇒ Sy (ω) = σ2

uG
H (jω)G (jω) . (6.10)

Thus, Σy = σ2
u

∫ +∞
−∞ GH (jω)G (jω) dω. Hence, tr (Σy) = 2πσ2

u||G||22; tr (Σŷ) =

2πσ2
u||Ĝ||22. Since µy = µŷ = 0, the Wasserstein distance between y (t) ∼ N (µy,Σy)
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and ŷ (t) ∼ N (µŷ,Σŷ) is given by [138]

W =

√
tr (Σy) + tr (Σŷ)− 2 tr

[√
ΣyΣŷ

√
Σy

]1/2

. (6.11)

Substituting for Σy and Σŷ in (6.11), in terms of G and Ĝ, we arrive at (6.8). �

6.1.2 Bounds for MIMO Case

Following results provide simpler and easier-to-interpret bounds for W∞ in the

MIMO case.

6.1.2.1 Lower Bound

Lemma 4. Given stable transfer matrices G and Ĝ, the asymptotic Wasserstein

distance for MIMO case, is lower bounded by the corresponding expression for SISO

or MISO case, i.e.
∣∣||G||2 − ||Ĝ||2

∣∣ 6 W∞.

Proof. Since the stationary covariances Σy and Σŷ are positive semi-definite, they

satisfy (p. 527, Fact 8.12.20, [186])

tr
(√

ΣyΣŷ

√
Σy

)1/2

6
√

tr (Σy) tr (Σŷ). (6.12)

Since tr (Σy) = ||G||22 and tr (Σŷ) = ||Ĝ||22, we get

tr (Σy) + tr (Σŷ)− 2 tr
(√

ΣyΣŷ

√
Σy

)1/2

︸ ︷︷ ︸
W 2
∞

>
(
||G||2 − ||Ĝ||2

)2

. (6.13)

Hence the result. �

6.1.2.2 Upper Bound

Lemma 5. If Σy and Σŷ are the stationary output covariance matrices corresponding

to stable transfer matrices G and Ĝ respectively, then we have the following upper
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bound for MIMO Wasserstein distance: W 6
∣∣∣∣√Σy −

√
Σŷ

∣∣∣∣
F

.

Proof. It is known (Fact 8.19.21, [186]) that for 0 6 p 6 1, we have

tr
(

Σp
yΣ

p
ŷ

)
6 tr

(
Σ

1/2
ŷ ΣyΣ

1/2
ŷ

)p
. (6.14)

Setting p = 1
2

results

tr
(√

Σy

√
Σŷ

)
6
(√

ΣŷΣy

√
Σŷ

) 1
2

=
(√

ΣyΣŷ

√
Σy

) 1
2
, (6.15)

where the last equality follows from the symmetry of Wasserstein distance, and can be

separately proved by noting that tr
(√

MM>
)

= tr
(√

M>M
)

for M =
√

Σy

√
Σŷ.

Since tr (Σy) = ||G||22 and tr (Σŷ) = ||Ĝ||22, we obtain

W 6
(

tr (Σy) + tr (Σŷ)− 2 tr
(√

Σy

√
Σŷ

))1/2

︸ ︷︷ ︸
||
√

Σy−
√

Σŷ ||F

. (6.16)

�

6.1.3 Sensitivity of W∞ in Frequency Domain

One may interpret the frequency domain formulae for W derived above, as the

difference between average gains of the two systems. Following are some observations

regarding the same.

6.1.3.1 Scaling

W∞ is sensitive to scaling. For example, if we set Ĝ = kG, where k is some

non-zero scaling constant, then (6.5), (6.6) and (6.8) yields W∞ = |1 − k| ||G||2
(assuming σu = 1/

√
2π). Thus a linear relative amplification between two stable

LTI systems, results a linear amplification of the Wasserstein gap. This can be
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contrasted with some recent works [30, 29] in the literature, on defining gap between

dynamical systems, where a gap was shown to be either insensitive [30] to scaling,

or a nonlinear function [29] of the scaling constant. As pointed out in [187], which

one is a desirable property depends on the application.

6.1.3.2 Minimum versus Non-minimum Phase Systems

The frequency domain expressions for W∞ depend only on the magnitudes of

transfer functions. Thus, if we compare stable transfer functions of the form G± =∏nz
i=1 (s± zi)∏np
k=1 (s+ pk)

with np > nz, and Re (pk) > 0 ∀k, then W∞ (G+, G−) = 0. This result

is intuitively consistent (see the discussion at p. 1592 in [29]). However, the non-

minimum phase zeros are related to H2 norms of the respective transfer functions

via Poisson-Jensen half-plane formula (Appendix C.8.2 in [188]).

6.1.3.3 SISO Invariance Properties

Being a function of magnitudes only, the asymptotic Wasserstein distance, like

the chordal metric [189], remains invariant under complex conjugate transformation,

i.e. W∞

(
G, Ĝ

)
= W

(
G∗, Ĝ∗

)
. However, unlike chordal metric, W∞

(
G, Ĝ

)
6=

W∞

(
1
G
, 1

Ĝ

)
, in general.

6.1.4 Geometric Interpretation of the SISO Formula and Comparison with ν-gap

Metric

The ν-gap metric [190, 191, 192], was introduced as an important tool for lin-

ear model validation with good robustness properties. It is natural to ask how the

Wasserstein distance, proposed in time domain [41, 45] for both linear and nonlinear

systems, relate with ν-gap. Like the SISO ν-gap, we look for a geometric interpre-

tation of the SISO formula (6.5), which may be helpful for comparison between the

metrics.
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6.1.4.1 SISO ν-gap and W∞

Given two transfer functions G1 and G2, let Gi = NiM
−1
i = M̃−1

i Ñi, i =

1, 2, denote the normalized right and left coprime factorizations [193], respectively.

Further, let Γi (s) := {Ni (s) Mi (s)}>, and Γ̃i (s) := {M̃i (s) − Ñi (s)}. If

wno(det (Γ∗2 (jω) Γ (jω))) 6= 0, then the SISO ν-gap metric δν is given by

δν = sup
ω∈R∪{∞}

|G1 (jω)−G2 (jω)|√
1 + |G1 (jω)|2

√
1 + |G2 (jω)|2

, (6.17)

and lies between 0 to 1. When the winding number condition is not satisfied, then

δν := 1. Geometrically, ν-gap measures the largest chordal distance κ (ω) between

the Nyquist plots of G1 and G2, projected on the Riemann sphere (Fig. 6.1). On

the other hand, (6.5) can be geometrically interpreted as the difference between the

lengths of the r.m.s. distances to the Nyquist plots of G1 and G2, measured from

the origin (Fig. 6.1).

One difficulty in directly comparing W and δν is that (6.17) is normalized, but

(6.5) is not. Hence we can either compare (6.5) with the “un-normalized equivalent”

of (6.17), or we can normalize (6.5) and then compare with (6.17). In the latter case,

as of yet, it is not clear what should be the intrinsic normalization factor. However,

as we show next, the geometric insight will guide us to answer both.

6.1.4.2 Comparison on the Complex Plane

Let κproj (ω) be the projection of κ (ω) to the extended complex plane. For given

transfer functions G and Ĝ, sup
ω
κproj (ω) is the largest pointwise distance between the

two Nyquist plots, and can be taken as an “un-normalized analogue” of the largest

normalized chord length δν .

Theorem 16. Given two stable LTI transfer functions G and Ĝ, the difference
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2W2

G (jω)

Ĝ (jω)

||G||2

||Ĝ||2

Re (s)

Im (s)

κ (ω) ϕ(Ĝ)

ϕ(G)

κproj(ω)

Figure 6.1: The stereographic projection ϕ : C∪{∞} 7→ S, where S is the Riemann
sphere of unit diameter, with south pole at the origin of the extended complex plane.
κproj (ω) (dotted green) is the projection of the chordal distance κ (ω) (solid green) to
the plane. The dotted black lines on the plane denote the H2 norms, which measure
the r.m.s. distances of the respective Nyquist plots (solid black) from the origin.
The solid red arcs show the projections of the two H2 norms on the Riemann sphere.
The projected W is the difference between these arc-lengths. The dotted red arcs
show that values of the respective H2 norm projections can at most be π

2
, resulting

a normalization for projected W .
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between their r.m.s. lengths, is upper bounded by the maximum projected chordal

length, i.e. sup
ω
κproj (ω) > W .

Proof. The stereographic projection of a point (x, y) := x + jy on the plane, to the

point (ξ, η, ζ) on Riemann sphere, is given by [194]

ξ =
x

1 + x2 + y2
, η =

y

1 + x2 + y2
, ζ =

x2 + y2

1 + x2 + y2
. (6.18)

From Fig. 6.1, NG =
√

1 + |G|2, NĜ =

√
1 + |Ĝ|2. Since

Nϕ(G)

NG
=

1− ζ
1

=

1

1 + |G|2 , we have Nϕ(G) = (1 + |G|2)
−1/2

, and Nϕ(Ĝ) =
(

1 + |Ĝ|2
)−1/2

. Further,

Nϕ(G) NG = Nϕ(Ĝ) NĜ = 1 implies that triangles Nϕ(G)ϕ(Ĝ) and NGĜ are

similar. Consequently,
κ (ω)

κproj (ω)
=

Nϕ(Ĝ)

NG
=

1

(1 + |G|2)1/2
(

1 + |Ĝ|2
)1/2

. Thus,

κproj (ω) = |G− Ĝ|. Now, notice that

sup
ω
κproj (ω) = ||G− Ĝ||∞ > ||G− Ĝ||2 > | ||G||2 − ||Ĝ||2 |,

where the last step is the reverse triangle inequality. This completes the proof. �

6.1.4.3 Comparison on the Riemann Sphere

To make a stereographic projection of Wasserstein distance onto the Riemann

sphere, we first consider projections of the individual r.m.s. lengths given by the H2

norms of G and Ĝ. The following lemma is relevant in this regard.

Lemma 6. (p. 40, Theorem 2.5.1, [195]) Under stereographic projection, circlines

in the complex plane get projected to circles on the Riemann sphere and vice versa.

For straight lines on the plane, the corresponding circles on Riemann sphere pass

through the north pole.
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Corollary 17. The stereographic projection of H2 norm of any LTI transfer function

can be of length at most π
2
.

Proof. From Lemma 6, all straight lines on the complex plane, passing through ori-

gin, must go through both north and south poles, i.e. will be meridians on Riemann

sphere. Points on such straight lines, situated infinite extent away from the origin,

under stereographic projection, approach the north pole from both sides of the Rie-

mann sphere. Thus, a ray on the complex plane, with fixed end at the origin, projects

to half meridian of circumference at most π
2
. This completes the proof. Notice that,

half-meridian arc length on the Riemann sphere will be exactly π
2

iff H2 norm is in-

finity, either due to unstable transfer function or due to non-zero feed-through. �

Theorem 18. Given two LTI transfer functions G and Ĝ, the normalized Wasser-

stein distance W S on the Riemann sphere S, is given by

W S

(
G, Ĝ

)
=

2

π

∣∣∣ arctan ||G||2 − arctan ||Ĝ||2
∣∣∣. (6.19)

Proof. If the H2 norm of the transfer function is finite, the stereographic projection

maps a line segment on complex plane (Fig. 6.1) to an arc of the half-meridian. The

infinitesimal lengths on the plane and on the sphere relate [195] by

dlS
dlC∪∞

=
1

1 + x2 + y2
. (6.20)

Taking infinitesimal elements dr and dr̂ along the H2 norms (Fig. 6.1), (6.20) yields

the half-meridial arc lengths

s =

∫ ||G||2
0

dr

1 + r2
= arctan ||G||2, (6.21)
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ŝ =

∫ ||Ĝ||2
0

dr̂

1 + r̂2
= arctan ||Ĝ||2. (6.22)

Since 0 6 ||G||2, ||Ĝ||2 6 ∞ ⇒ 0 6 s, ŝ 6 π
2
, therefore |s − ŝ| 6 π

2
. Assuming the

scaling
√

2πσu = 1 in (6.5), we get the projected Wasserstein distance WS = |s− ŝ| =
∣∣ arctan ||G||2 − arctan ||Ĝ||2

∣∣, which can be normalized by π
2

to result W S . Notice

that, either of the H2 norms can be infinity. �

The following theorem provides an indirect comparison between W S and δν . It

presents only sufficiency condition.

Theorem 19. Given stable LTI transfer functions G and Ĝ, let P and P̂ be the points

on the respective Nyquist plots corresponding to their H2 norms. Let γ2 := ∠NPS,

γ̂2 := ∠NP̂S. Similarly, define angles γ (ω) and γ̂ (ω), for generic points G (jω) and

Ĝ (jω). If
∣∣ ||cos γ sin γ̂||2 − ||sin γ cos γ̂||2

∣∣ > 2
π

∣∣γ2 − γ̂2

∣∣, then δν > W S .

Proof. We observe that

δν = sup
ω

|G− Ĝ|
√

1 + |G|2
√

1 + |Ĝ|2
=

∣∣∣∣
∣∣∣∣

|G− Ĝ|
√

1 + |G|2
√

1 + |Ĝ|2

∣∣∣∣
∣∣∣∣
∞
,

>

∣∣∣∣
∣∣∣∣

|G− Ĝ|
√

1 + |G|2
√

1 + |Ĝ|2

∣∣∣∣
∣∣∣∣
2

,

>

∣∣∣∣
∣∣∣∣
∣∣∣∣

|G|
√

1 + |G|2
√

1 + |Ĝ|2

∣∣∣∣
∣∣∣∣
2

−
∣∣∣∣
∣∣∣∣

|Ĝ|
√

1 + |G|2
√

1 + |Ĝ|2

∣∣∣∣
∣∣∣∣
2

∣∣∣∣,

(15)

where the last step follows from triangle difference inequality for H2 norms.

Notice that, γ2 and γ̂2 are the angles subtended by the respective H2 norms with

its stereographic projections. Clearly, 0 6 γ2, γ̂2 6 π
2
, and we can rewrite (6.19)

as 2
π

∣∣γ2 − γ̂2

∣∣. Likewise, we define the running angles γ and γ̂ as functions of ω,
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associated with points G (jω) and Ĝ (jω) (see Fig. 6.1). Further, notice that

cos γ =
|G|√

1 + |G|2
, sin γ̂ =

1√
1 + |Ĝ|2

, (6.23)

cos γ̂ =
|Ĝ|√

1 + |Ĝ|2
, sin γ =

1√
1 + |G|2

, (6.24)

and consequently, (6.23) can be written as the difference between the r.m.s. values

of cos γ sin γ̂ and sin γ cos γ̂. Hence the result. �

6.2 Linear Model Discrimination in Wasserstein Metric

In predictive modeling applications like systems biology, an important problem is

of model discrimination [196, 197], where one looks for an initial PDF that maximizes

the gap between two models, which seem to exhibit comparable performance. The

motivation for model discrimination comes from the fact that the presence of un-

certainties “mask” the difference between a family of completing models or between

model prediction and physical observation. Thus, the idea is similar to optimal input

design for system identification.

The main result of this section is that the initial PDF that maximizes Wasserstein

distance, depends on the model and true dynamics. In particular, we show that for

a linear dynamics pair, the gap is oblivious beyond the first two moments of ξ0. We

restrict ourselves to scalar dynamics for this analysis.

6.2.1 Tools for Analysis

Definition 5. (Quantile function) Consider the probability space (Ωy,F ,P) for

the output random variable Y . Let y := Y (ωy), for ωy ∈ Ωy. The quantile function
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Qy : Ωy 7→ [0, 1], is defined as the generalized inverse of the CDF for Y , i.e.

Qy (ς) := inf (y ∈ Ωy : ς ≤ P (Y ≤ y)) . (6.25)

Here ς ∈ [0, 1] denotes probability mass.

Proposition 5. (Quantile transport PDE)[198] Consider the scalar SDE dx (t) =

f (x) dt + g (x) dβ, where β is the standard Wiener process. Then the quantile

Fokker-Planck equation (QFPE), given by

∂tQ = f (Q, t)− 1

2
∂Q (g (Q, t))2 +

1

2
(g (Q, t))2 ∂ςςQ

(∂ςQ)2 , (6.26)

describes the transport of quantile function Q (ς, t) for the process x(t).

Proposition 6. (Quantile transformation rule)[199] For an algebraic map y =

h (x), we have

Qy (ς) =





h ◦Qx (ς) if h(·) is non-decreasing,

h ◦Qx (1− ς) if h(·) is non-increasing.

(6.27)

Next, we work out some specific results by imposing structural assumptions on

the true and model dynamics.

6.2.2 Discriminating Deterministic Linear Systems

Let the dynamics of the two systems be

ẋi = aix, yi = cix, ai < 0, ci > 0, i = 1, 2. (6.28)

Theorem 20. For any initial density ξ0 (x0), the Wasserstein gap between the sys-
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tems in (6.28), is given by

2W2 (t) =
√
m20

∣∣∣c1e
a1t − c2e

a2t
∣∣∣, (6.29)

where m20 = µ2
0 + σ2

0, is the second raw moment of ξ0 (x0), while µ0 and σ0 are its

mean and standard deviation, respectively.

Proof. For (6.28), Qyi = ciQxi , and the QFPE reduces to a linear PDE ∂tQxi = aiQxi ,

yielding Qxi (ς, t) = Q0 (ς) eait, where Q0 is the initial quantile function corresponding

to ξ0. Thus, we have

( 2W2 (t))2 =

∫ 1

0

(Qy1 (ς, t)−Qy2 (ς, t))2 dς

=
(
c1e

a1t − c2e
a2t
)2
∫ 1

0

(Q0 (ς))2 dς. (6.30)

Since the quantile function maps probability to the sample space, hence x0 = Q0 (ς),

and dς = ξ0 (x0) dx0. Consequently, we can rewrite (6.30) as

( 2W2 (t))2 =
(
c1e

a1t − c2e
a2t
)2
∫ ∞

−∞
x2

0 ξ0 (x0) dx0

︸ ︷︷ ︸
m20

. (6.31)

Taking square root to both sides, we obtain the result. It’s straightforward to check

that m20 = µ2
0 + σ2

0, relating the central moments with m20. �

Remark 11. ( 2W2 has limited dependence on ξ0) The above result shows that

the Wasserstein gap between scalar linear systems, depends on the initial density up

to mean and variance. Any other aspect (skewness, kurtosis etc.) of ξ0, even when

it’s non-Gaussian, has no effect on 2W2 (t). The next example demonstrates that our

result: “the initial PDF with maximum second raw moment, maximizes Wasserstein
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distance” (Fig. 6.2), may be counterintuitive in some situations.

Example 1. (Uniform initial PDF may not maximize 2W2) For (6.28),

let the set of admissible initial PDFs be S0 := {ξ0 : supp (ξ0) = [a, b] , ξ0 (x0) =

1
(b−a)α+β−1B(α,β)

(x0 − a)α−1(b − x0)β−1, α > 0, β > 0}, i.e. the set of all scaled beta

PDFs supported on [a, b]. One can readily compute that µ0 = αb+βa
α+β

, and σ2
0 =

αβ(b−a)2

(α+β)2(α+β+1)
. For α = β = 1, ξ0 = U ([a, b]), and for α = β = 1

2
, ξ0 = A ([a, b]).

Thus, we have

m20 (U [a, b]) =
1

3

(
a2 + b2 + ab

)
, (6.32)

m20 (A[a, b]) =
1

8

(
3a2 + 3b2 + 2ab

)
, (6.33)

and hence m20 (A[a, b]) > m20 (U [a, b]), ∀b > a. From Theorem 20, 2W2(t) trajectory

for uniform initial PDF, stays below the same for arcsine initial PDF, as shown in

Fig. 6.3.

Remark 12. (Discrete-time linear systems) Consider the true and model maps

x
(k+1)
i = aix

(k)
i , y

(k)
i = cix

(k)
i , i = 1, 2, where k ∈ N ∪ {0}, denotes the discrete time

index. From linear recursion, one can obtain a result similar to (6.29): W (k) =

√
m20

∣∣∣c1a
k
1 − c2a

k
2

∣∣∣.

Remark 13. (Linear Gaussian systems) For the linear Gaussian case, one can

verify (6.29) without resorting to the QFPE. To see this, notice that if ξ0 (x0) =

N (µ0, σ
2
0), then the state PDFs evolve as ξxi (xi, t) = N

(
µxi (t) , σ2

xi
(t)
)
, where

µxi (t) and σ2
xi

(t) satisfy their respective state and Lyapunov equations, which, in

the scalar case, can be solved in closed form. Since ηyi (yi, t) = N
(
ciµxi (t) , c2

iσ
2
xi

(t)
)
,

and 2W2 between two Gaussian PDFs is known [138] to be
√

(µy1 − µy2)2 + (σy1 − σy2)2,

the result follows.
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Figure 6.2: The results of Section 6.2 can be summarized through a graphical algo-
rithm illustrated above. For scalar linear systems, given a set of admissible initial
PDFs over state space, we construct concentric circles centered at origin, over the
two dimensional (µ0, σ0) subspace of the (infinite-dimensional) moment space. From
(6.29), ξ0 corresponding to the circle with largest radius, maximizes 2W2(t), ∀t > 0.
For affine systems, (6.34) implies a similar construction in (µ0, σ0) subspace, with

circles centered at
(
− q(t)
p(t)
, 0
)

. The direction of this translation along µ0 axis, depends

on parameters (ai, bi, ci, di), i = 1, 2, of the systems under comparison.
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Figure 6.3: Wasserstein time histories between linear system pair (6.28) with ξ0 as
A ([a, b]) and U ([a, b]), respectively. Here a = −3, b = 3, and we set sampling
interval ∆tk = 0.5. We observe that the Wasserstein gap for ξ0 = A ([a, b]) remains
above the same for ξ0 = U ([a, b]), as predicted by Theorem 20. The solid lines are
direct computation from (6.29), while the dashed lines are Monte Carlo estimates of

2W2 using (4.3).

Remark 14. (Affine dynamics) Instead of (6.28), if the dynamics are given by

ẋi = aix + bi, yi = cix + di, i = 1, 2, then by variable substitution, one can derive

that Qxi (ς, t) = Q0 (ς) eait +
bi
ai

(
eait − 1

)
. Hence, we get

2W2 (t) =

√
(p (t))2m20 + 2p (t) q (t)m10 + (q (t))2, (6.34)

where m10 = µ0, p (t) := (c1e
a1t − c2e

a2t), and q (t) :=
b1c1

a1

(
ea1t − 1

)
−b2c2

a2

(
ea2t − 1

)
+
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(d1 − d2).

6.2.3 Discriminating Stochastic Linear Systems

Consider two stochastic dynamical systems with linear drift and constant diffusion

coefficients, given by

dxi = aix dt+ bi dβ, yi = cix, i = 1, 2, (6.35)

where β is the standard Wiener process.

Theorem 21. For any initial density ξ0 (x0), the Wasserstein gap 2W2 (t) between

the systems in (6.35), is given by

2W2 (t) =

√
(p (t))2m20 + 2p (t) r (t) s (F0) + (r (t))2, (6.36)

where r (t) :=
|b1|c1√

2a1

√
e2a1t − 1− |b2|c2√

2a2

√
e2a2t − 1, and

s (F0) :=
√

2 E
[
x0 erf−1 (2F0 (x0)− 1)

]
, (6.37)

F0 being the CDF of x0.

Proof. For systems (6.35), quantile functions for the states evolve as (p. 102, [198])

Qxi (ς, t) = Q0 (ς) eait + |bi|QN (ς)

√
e2ait − 1

2ai
, (6.38)

where QN (ς) :=
√

2 erf−1 (2ς − 1), is the standard normal quantile. Thus, the

Wasserstein distance becomes

( 2W2 (t))2 =

∫ 1

0

(c1Qx1 (ς, t)− c2Qx2 (ς, t))2 dς
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= (p (t))2

∫ 1

0

(Q0 (ς))2 dς

+ 2p (t) r (t)

∫ 1

0

Q0 (ς)QN (ς) dς

+ (r (t))2

∫ 1

0

(QN (ς))2 dς. (6.39)

Notice that the first and third integrals are m20 and 1, respectively. Since ς = F0 (x0),

the second integral becomes

∫ ∞

−∞
x0 F

−1
N ◦ F0 (x0) ρ0 (x0) dx0

=
√

2 E
[
x0 erf−1 (2F0 (x0)− 1)

]
= s (F0) . (6.40)

This completes the proof. �

Remark 15. (Gaussian case) Consider the special case when ξ0 (x0) = N (µ0, σ
2
0).

Then Q0 (ς) = µ0 + σ0QN (ς), and hence the second integral equals σ0. Thus, if the

initial density is normal, then

2W2 (t) =

√
(p (t))2m20 + 2p (t) r (t)σ0 + (r (t))2, (6.41)

a function of µ0 and σ0, which can be verified otherwise by solving the mean and

variance propagation equations.

6.3 Chapter Summary

In this Chapter, we provided two systems-theoretic results pertaining to the pro-

posed V&V framework. First, we showed that the asymptotic Wasserstein gap be-

tween two deterministic single output linear systems, excited by Gaussian white

noise, is the difference between their average gains, up to a scaling by the strength

of the noise excitation. This gives an intuitive systems-theoretic interpretation of
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Wasserstein gap. Similar formula was derived for the multi input, multi output case.

The single output asymptotic Wasserstein gap was shown to admit an intrinsic nor-

malization, thus allowing a geometric comparison between the proposed Wasserstein

gap and the conventional ν-gap metric. The second result concerns linear model

discrimination in Wasserstein metric. It was shown that given a set of initial PDFs,

the one that maximizes the Wasserstein gap between two scalar linear systems, has

maximum second raw moment.
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7. PROBABILISTIC MODEL REFINEMENT

The previous chapters have introduced a probabilistic V&V framework based on

the theory of optimal transport. Given a model and experimentally measured data,

we have discussed how to compute the probability that the proposed model is valid

at any given time. In this chapter, we focus on the next step that a modeler can

take after such V&V inference has been obtained, i.e. model refinement.

The motivation of model refinement comes from the fact that most physics based

models perform well against some, but not all temporal segments of the observed

data. For example, a model may be able to make excellent asymptotic prediction, as

substantiated by the observed data, but there may be significant prediction vs. ob-

servation mismatch in the transient regime. The hard invalidation methods available

in the literature simply discards such a model. In contrast, we propose here that

probabilistic V&V information can be utilized in a constructive manner to refine the

model. The purpose of this chapter is to lay the foundation of probabilistic model

refinement in the optimal transport framework we have set so far. After introduc-

ing the main ideas, we will show that how the proposed refinement formulation can

be used for finite-time control of PDFs, a problem that is of independent practical

interest. To embark on this pursuit, we revisit the optimal transport problem and

review its equivalent formulations.

7.1 Background on Optimal Transport

7.1.1 Primal Formulation

The optimal transport theory originated in 1781 when Gaspard Monge consid-

ered [200] the problem of moving a pile of soil from an excavation to another site

that entails minimum work. This idea went mostly unnoticed for 160 years until
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Leonid Kantorovich provided a modern treatment [201] of this subject in 1942 (the

English translation [202] appeared in 1958), which eventually led to the Nobel prize

in economics in 1975. In the theory of Monge-Kantorovich optimal transport, one

defines a distance, called Wasserstein distance, between two given PDFs ρ and ρ̂,

that measures the shape difference between them.

The Wasserstein distance and the associated infinite dimensional LP, as we intro-

duced in Section 4.1 and 4.2, are the primal formulation for the Monge-Kantorovich

optimal transport problem. We restate this definition here for clarity of exposition

and notational consistency.

Definition 6. (Wasserstein distance) The L2 Wasserstein distance of order 2

(henceforth referred simply as Wasserstein distance W ), between two d-dimensional

random vectors y ∼ ρ, and ŷ ∼ ρ̂, is defined as

W (ρ, ρ̂) ,


 inf
%∈P2(ρ,ρ̂)

E
[
‖ y − ŷ ‖2

`2(Rd)

]

︸ ︷︷ ︸
J1(%)




1
2

, (7.1)

where the E [·] is taken with respect to the joint PDF % (y, ŷ) that makes the cost

function achieve the infimum. The symbol P2 (ρ, ρ̂) denotes the set of all joint PDFs

supported over R2d, having finite second moments, whose first marginal is ρ, and

second marginal is ρ̂.

Computation for our V&V formulation so far has relied exclusively on this for-

mulation of optimal transport. Next, we list equivalent formulations of optimal

transport, which may be more amenable from model refinement perspective.
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7.1.2 Spatial Variational Formulation for Optimal Transport Map

Instead of solving the infinite dimensional LP (7.1) , one could directly solve for

the the optimal transport map β : Rd 7→ Rd, that satisfies y = β (ŷ), by solving

inf
β(·)

∫

Rd
‖ β (ŷ)− ŷ ‖2

`2(Rd)
ρ̂ (ŷ) dŷ

︸ ︷︷ ︸
J2(β)

, subject to ρ = β ] ρ̂. (7.2)

Remark 16. Since there are infinite ways to morph ρ̂ to ρ, (7.2) looks for an opti-

mal push-forward map β? (·) that would require minimum amount of transport effort

among all possible push-forward maps β (·). Then the map β? (·) characterizes the

optimal transport.

Remark 17. In a seminal paper [203], Brenier proved the existence and uniqueness

of β? (·). Further, his polar factorization theorem [203] proved that the unique vector

function β? (·) can be written as a gradient of a scalar function, i.e. β? = ∇ψ.

Furthermore, the scalar function ψ is convex. The optimal transport map β? is also

known as the Brenier map.

Remark 18. Although the cost function in (7.2) is quadratic in β (·), the push-

forward constraint is nonlinear and non-convex in β (·). Thus, a direct numerical

optimization is not straight-forward. As shown in the second row of Table 7.1, [204]

used the fact that β? (·) is curl-free, to formulate a regularized sequential quadratic

program (SQP) to solve (7.2) as

inf
β(·)

J̃2 (β) , subject to c (β) = 0, (7.3)

where J̃2 (β) , J2 (β) + α

∫

Rd
‖ ∇ × β ‖2

`2(Rd)
dŷ, and α > 0 is a regularization

parameter. The constraint c (β) , |det (∇β)| ρ ◦ β (ŷ)− ρ̂ (ŷ).
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7.1.3 Spatial PDE Formulation for Optimal Transport Map

From Remark 17, we can substitute β = ∇ψ in the push-forward constraint

c (β) = 0. Then it follows that ψ must solve

|det (Hess (ψ (ŷ)))| ρ (∇ψ (ŷ)) = ρ̂ (ŷ) . (7.4)

This is a second order, nonlinear, stationary, elliptic PDE, known as the Monge-

Ampère equation, to be solved for ψ as a function of ŷ. In principle, if we can solve

(7.4), then ∇ψ would yield the optimal transport map. However, as mentioned in

the third row of Table 7.1, numerically solving the PDE (7.4) remains a research

challenge.

7.1.4 Benamou-Brenier Space-time Variational Formulation

Benamou and Brenier proposed [207] a dynamic reformulation of the static opti-

mization problem (7.2) by introducing a synthetic notion of time, which we denote

as s ∈ [0, τ ]. Their main result is that the spatial optimization problem (7.2), is

equivalent to solving the following space-time optimization problem:

W 2 = τ inf
(ϕ,v)

∫

Rd

∫ τ

0

ϕ (ŷ, s) ‖ v (ŷ, s) ‖2
`2(Rd)

dŷ ds, (7.5)

subject to
∂ϕ

∂s
+∇ · (ϕv) = 0, ϕ (·, 0) = ρ̂, ϕ (·, τ) = ρ. (7.6)

Remark 19. It is important to understand the meaning of solving the optimization

problem (7.5)-(7.6). Notice that the spatial and temporal integrals in the cost function

can be interchanged. Thus, if we fix s, then the cost is the instantaneous kinetic

energy of the ensemble during transport, where each sample moves according to the

deterministic ODE
d

ds
ŷ = v (ŷ(s), s), corresponding to the Liouville PDE in Chapter
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2:
∂ϕ

∂s
+∇ · (ϕv) = 0, appearing in the constraint. Hence, the cost function in (7.5)

is equal to the total kinetic energy up to time τ . Consequently, W 2 equals total work

done during the transport process. The optimization is over a pair of vector field v

and joint PDF ϕ, and is convex in both.

Remark 20. It can be shown [132] that the minimizing vector field v? (ŷ, s) in

the above optimization problem, is a pressureless potential flow. In other words,

v? (ŷ, s) = ∇φ (ŷ, s), where the scalar function φ (ŷ, s) solves the Hamilton-Jacobi

equation

∂φ

∂s
+

1

2
‖ ∇φ ‖2

`2(Rd)
= 0. (7.7)

Remark 21. In p. 384 of [207], using Legendre transform, (7.5)-(7.6) was further

converted to a saddle point optimization problem, which was numerically solved using

the augmented Lagrangian technique [208]. Recently, an improved numerical method

to solve (7.5)-(7.6) has been proposed [206] via proximal operator splitting. We will

use this technique later in this chapter for numerical simulations.

7.1.5 Wasserstein Geodesics on the Manifold of PDFs

One merit of the Benamou-Brenier approach described above is that it constructs

the transportation path, which is a geodesic connecting the source and target PDFs,

and yields the intermediate PDFs satisfying McCann’s displacement interpolation

[3]. In particular, the following results [132] hold.

1. Without loss of generality, let the synthetic time s ∈ [0, 1], i.e. in the notation

of Section 7.1.4, set τ = 1. Then the Benamou-Brenier vector field constructs
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the geodesic curve between (ρ̂, ρ) : s ∈ [0, 1] 7→ ϕ (s). Recall that the PDF ρ̂ is

the source PDF, and ρ is the target PDF. In other words, ϕ has the variational

characterization

ϕ (s) = argmin
ϕ

(1− s)W 2 (ρ̂, ϕ) + sW 2 (ρ, ϕ) , (7.8)

and it lies on the geodesic curve connecting ρ̂ and ρ. The Wasserstein distance

W (ρ̂, ρ) is the length of this geodesic curve on the manifold of PDFs.

2. As a corollary of the above result, the intermediate optimal transport map βs

that satisfies ϕ (s) = βs ] ρ̂, is obtained via linear interpolation between the

identity map Id and β, i.e.

βs = (1− s) Id + sβ. (7.9)

Also, the intermediate Wasserstein distance is obtained via linear interpolation:

W (ρ̂, ϕ (s)) = s W (ρ̂, ρ) , (7.10)

W (ρ, ϕ (s)) = (1− s) W (ρ̂, ρ) . (7.11)

However, the intermediate PDF is obtained via nonlinear (displacement) in-

terpolation:

ϕ (s) = βs ] ρ̂ = [(1− s) Id + sβ] ] ρ̂, (7.12)

= β1−s ] ρ = [s Id + (1− s)β] ] ρ. (7.13)
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7.2 Model Refinement Through Brenier Map

In this section, we consider refining a baseline model against experimental data.

We first formulate the model refinement problem as that of finding the optimal

transport map introduced in Section 7.1.2.

7.2.1 Problem Formulation

We formulate the model refinement problem (Fig. 7.1) as the natural successor of

the density based model validation formulation presented in the previous chapters.

Figure 7.1: The block diagram for proposed model refinement formulation. Here
ξ0 (x̃) refers to the joint PDF supported on the space of initial conditions and pa-
rameters, u(t) is an open-loop control command, and the true and model dynamics
can be affected by different noises.

In the validation problem, the model predicted output PDF η̂ is compared with
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the experimentally observed output PDF η, at each instance of measurement avail-

ability tj, j = 0, 1, . . . ,M , and an inference is made by looking at the prediction-

observation gap quantified via W (tj). The key insight behind our refinement formu-

lation is that usually there is no specific requirement on the structure of the refined

model, as long as we can make the refined dynamics track the observed output PDFs.

This provides us the freedom to formulate the model refinement problem over the

model’s output map while keeping the model’s state equation intact. This has two

implications: (i) the refinement algorithm will involve the output dimension no, typ-

ically less than the state dimension, and (ii) both state and output modeling errors

would be accounted by updating the model’s output map. To make the ideas precise,

we give the model refinement problem statement for a model whose output map is

given by ŷ = ĥ (x̂), where x̂ and ŷ are model-predicted state and output vectors.

At t = tj, let us introduce ŷ−j , ŷj, and denote ĥ− (·) , ĥ (·). We want to find

the Brenier map βj (·) for updating the predicted output, i.e. ŷ+
j = βj

(
ŷ−j
)
, where

ŷ+
j ∼ ηj and ŷ−j ∼ η̂j. In other words, find βj (·) such that ηj = βj ] η̂j. Clearly,

this problem is underdetermined since there are many ways to morph η̂j to ηj. Then

we must look for an optimal push-forward map β?j (·) that would require minimum

amount of transport effort among all possible push-forward maps βj (·), i.e. we solve

(7.2). Once β?j (·) has been found, the refined model is given by augmenting the

model’s state equation with the new output map:

ŷj = β?j ◦ ĥ (x̂) . (7.14)

7.2.2 Refining Linear Model against Gaussian Measurements

In this subsection, we work with an example where a discrete time linear model

is given. Further the true data is generated by evolving an initial Gaussian joint
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PDF ξ0, subject to a true (and hence unknown to the modeler) discrete time linear

system.

Suppose, the true data being generated by the discrete-time LTI system xj+1 =

Axj, yj = Cxj, that is unknown to the modeler. The proposed model is x̂j+1 = Âx̂j,

ŷj = Ĉx̂j. In this linear Gaussian case, both the spatial variational formulation

(Section 7.1.2), and the space-time variation formulation (Section 7.1.4 and 7.1.5)

are computationally tractable. Hence, we demonstrate both for this problem. In

our case, the result from the first formulation, can be summarized in the following

proposition.

Proposition 7. Consider the true dynamics

xj+1 = Axj, yj = Cxj, (7.15)

and model dynamics

x̂j+1 = Âx̂j, ŷj = Ĉx̂j, (7.16)

and an initial PDF ξ0 = N (µ0,Σ0). Suppose that the true data at time tj is generated

as y (tj) ∼ N (µj,Σj) under the action of (7.15). From (7.16), the model predicted

output PDF is given by ŷ (tj) ∼ N
(
µ̂j, Σ̂j

)
. Then, the refined model is

x̂j+1 = Âx̂j, ŷj = TjĈx̂j + τj, (7.17)

where the matrix-vector pair (Tj, τj) is given by

Tj = Σ
1/2
j

(
Σ

1/2
j Σ̂jΣ

1/2
j

)−1/2

Σ
1/2
j , (7.18)

τj = µj − µ̂j. (7.19)
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Proof. The proof can be adapted from [209, 210] by noting that

µj = CAjµ0, Σj = CAjΣ0

(
CAj

)>
, (7.20)

µ̂j = ĈÂjµ0, Σ̂j = ĈÂjΣ0

(
ĈÂj

)>
. (7.21)

We skip the details here, and direct the interested readers to above cited references.

�

While the above result is obtained by solving the spatial variational formulation

(Section 7.1.2) for Brenier map, it does not provide the refinement path. Next, we

show that the space-time variational formulation (Section 7.1.4 and 7.1.5) allows the

same.

To give a concrete example, we take the Schur-Cohn stable matrices A and Â to

be

A =




0.4 −0.1

2 0.6


 , Â =




0.2 −0.7

−0.7 0.1


 , (7.22)

and the output matrices as

C =



−1 0.03

−0.2 0.8


 , Ĉ =




1 0

0 1


 . (7.23)

Starting from the initial Gaussian state PDF ξ0 = N (µ0, P0) with µ0 = {1, 3}>,

P0 =




10 6

6 7


, we refine the model at three instances of measurement availability:

j = 1, 2, and 3. The results for the model refinement algorithm are shown in Fig. 7.2.

181



To illustrate how the results of Section 7.1.5 are applied in this particular refinement

problem, we provide the following Theorem.

Theorem 22. (sth synthetic time PDF at jth physical time) Let s ∈ [0, 1] and

consider the above linear Gaussian refinement problem with initial PDF N (µ0, P0).

At the jth instance of measurement availability, the intermediate PDF during refine-

ment is a Gaussian PDF N (µŷ→y (s) ,Σŷ→y (s)) where

µŷ→y (s) =
[
(1− s) ĈÂj + s CAj

]
µ0, (7.24)

Σŷ→y (s) = [(1− s) I + s Γ (j)]

((
ĈÂj

)
P0

(
ĈÂj

)>)
[(1− s) I + s Γ (j)] ,(7.25)

where

Γ (j) ,
√

(CAj)P0 (CAj)>
(√

(CAj)P0 (CAj)>
(
ĈÂj

)
P0

(
ĈÂj

)>

√
(CAj)P0 (CAj)>

)−1/2√
(CAj)P0 (CAj)>. (7.26)

Proof. We know that µy (j) = Cµx (j) = CAjµ0, and similarly, µ̂ŷ (j) = ĈÂjµ0.

On the other hand, we have Σy (j) = CΣx (j)C> = CAjP0 (Aj)
>
C>, and similarly,

Σ̂ŷ (j) =
(
ĈÂj

)
P0

(
ĈÂj

)>
.

From (7.12), we get µŷ→y (s) = (1− s) µ̂ŷ (j)+sµy (j) =
[
(1− s) ĈÂj + s CAj

]
µ0.

Similarly, Σŷ→y (s) = [(1− s) I + s Γ (j)] Σ̂ŷ(j) [(1− s) I + s Γ (j)], where Γ(j) =
√

Σy(j)
(√

Σy(j) Σ̂ŷ(j)
√

Σy(j)
)− 1

2 √
Σy(j) (from (7.18)). Substituting the covari-

ance matrix formulae in terms of the respective system matrices, the result fol-

lows. �
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Figure 7.2: Shown here is the refinement process of the linear model
(
Â, Ĉ

)
at

times j = 1, 2 and 3, so that the model predicted output PDFs match with the true
PDF, generated by (A,C) at each j. Since both processes are Gaussian, the top
row shows 1-σ ellipses of the respective normal PDFs (red = model predicted, blue
= true). At every fixed j, we also plot intermediate Gaussians generated during
the refinement process. The color of these intermediate 1-σ ellipses are interpolated
from red to blue, to show the notion of synthetic time s ∈ [0, 1], as the physical time
index j remains zero-order hold. This also shows that the Gaussian-to-Gaussian
refinement happens via Gaussians, i.e. the set of Gaussian PDFs is geodesically
convex. The bottom row shows that although the PDFs over synthetic time gets
nonlinearly interpolated (McCann’s displacement interpolation [3]), the Wasserstein
distance W (s) gets linearly interpolated, as predicted by (7.10).
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7.2.3 Nonlinear Model Refinement via Proximal Operator Splitting

Nonlinear models result non-Gaussian PDF evolution, and hence explicitly solv-

ing the Brenier map from the spatial variation formulation of Section 7.1.2 is rarely

possible. Even numerical computation of the same is difficult due to the reasons

discussed in Remark 18, Section 7.1.2. A comparatively tractable computation re-

sults if we resort think of the model refinement problem in the space-time variational

context of Section 7.1.4, as follows.

We think of the Brenier map β? (·) in (7.14), as the flow of some synthetic ODE.

Computing β? (·), then amounts to computing the ODE over simulation time s,

whose Liouville PDE would satisfy the two point boundary PDF constraints: model

predicted PDF at simulation time s = 0, and observed PDF at simulation time

s = 1. This way, model refinement transcribes to solving the optimization problem

(7.5)-(7.6), which was [206] shown to be amenable via proximal operator splitting

techniques. We refer the readers to [206] for details of this computation. We will use

this technique in next section.

7.3 Case Studies

We provide here two case studies. The first shows how the model refinement ideas

can be applied to solve PDF tracking problem. This is illustrated for linear Gaus-

sian case, using the spatial variational formulation of Section 7.1.2. The next case

study concerns reduced order data driven modeling, using the space-time variational

formulation of Section 7.1.4, solved by proximal operator splitting techniques.

7.3.1 Feedback Control for Linear Gaussian PDF Tracking

Consider a linear system xj+1 = Axj + Buj, xj ∈ Rd, uj ∈ Rm, with a se-

quence of Gaussian PDFs ηj = N (µj,Σj), j = 0, 1, . . . ,M . The objective is to
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find state feedback u?j , u? (xj) over each time interval ∆tj , [tj, tj+1), such that

xj ∼ ηj = N (µj,Σj), while guaranteeing minimal transportation cost. We transcribe

the problem of finding optimal control u?j to that of finding the optimal transport

map (a.k.a. Brenier map) β?j : xj 7→ xj+1, where

β?j , β? (xj) = argmin
β(.)

∫

Rd
‖ β (xj)− xj ‖2

`2(Rd)
ηj dxj, (7.27)

subject to the constraints (C1) xj ∼ ηj, (C2) β (xj) ∼ ηj+1, and (C3) ηj+1 = β ] ηj.

Then we have the following result.

Theorem 23. Consider the discrete-time Gaussian PDF control problem under LTI

structure, and let ηj = N (µj,Σj), where ker (Σj) ∩ Im (Σj+1) = {0}. Further, let

Sj+1 be given by the discrete-time LTI structure: xj+1 = Axj+Buj, ∀j = 0, 1, . . . ,M .

Then the state feedback u?j , u? (xj) that minimizes the transportation cost (7.2), has

the following properties.

1. The optimal state feedback, if exists, must be affine.

2. Optimal state feedback u?j exists iff (Γj − A) , γj ∈ ker
(
I −BB†

)
, where

Γj =
√

Σj+1

(√
Σj+1 Σj

√
Σj+1

)− 1
2
√

Σj+1, (7.28)

γj = µj+1 − µj . (7.29)

3. If exists, then the optimal state feedback is given by the pair (Kj, κj), i.e.

u?j = Kjxj + κj, where Kj = B† (Γj − A) −
(
I −BB†

)
R, and κj = B†γj −

(
I −BB†

)
r, for arbitrary real matrix-vector pair (R, r) of appropriate dimen-
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sions.

4. If B is full rank, then the optimal state feedback is unique, and is given by

Kj = B−1 (Γj − A), κj = B−1γj.

Proof. Given, ker (Σj) ∩ Im (Σj+1) = {0}, we know [209, 210] that β?j satisfying

N (µj+1,Σj+1) = β?j ]N (µj,Σj) , (7.30)

is a unique affine transformation z 7→ Γjz + γj. Since the optimal transport is

xj+1 = Γjxj + γj, the optimal controller, if exists, must be affine, i.e. of the form

u?j = Kjxj + κj, where Kj and κj solve the linear matrix equations

A+BKj = Γj, Bκj = γj. (7.31)

Now, from Lemma 2.4 in [211], there exists Kj solving the equation BKj = (Γj − A)

iff

BB† (Γj − A) = (Γj − A)⇔
(
I −BB†

)
(Γj − A) = 0

⇔ (Γj − A) ∈ ker
(
I −BB†

)
. (7.32)

On the other hand, the matrix-vector equation Bκj = γj admits solution iff

BB†γj = γj ⇔ γj ∈ ker
(
I −BB†

)
. (7.33)

When (Γj − A) , γj ∈ ker
(
I −BB†

)
, then the (non-unique) solution is given by [211]:

Kj = B† (Γj − A) −
(
I −BB†

)
R, and κj = B†γj −

(
I −BB†

)
r, for arbitrary real
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matrix-vector pair (R, r) of appropriate dimensions. If B is full rank, then B−1 exists

and
(
I −BB†

)
= 0, resulting the unique solution. �

Remark 22. It is easy to see that the above Theorem generalizes when the LTI pair

(Aj, Bj) are different for different horizons.

7.3.2 Data Driven Reduced Order Modeling: Duffing Oscillator

In this subsection, we consider the problem of interpolating observed distribu-

tional data by identifying dynamical models over each finite horizon, in the absence

of a priori structural knowledge (unlike the previous case study) about the mod-

els. The only choice the modeler can make is to decide whether a discrete-time or

continuous-time model is apt. Once this choice is made, a deterministic trajectory-

level model is desired that satisfies the two point boundary value problem in the

output PDF level, at the beginning and end of the horizon length. Notice that we

restrict ourselves to derive a deterministic flow or map, even though the observed

PDFs may have been generated by a true but unknown state dynamics governed by

PDE or SDE. In this sense, the modeling problem can be thought of as a sequence

of finite-horizon distributional realization problems.

Consider the case when the true dynamics is given by the Duffing oscillator

ẋ1 = x2, ẋ2 = −αx3
1 − βx1 − δx2, y = {x1, x2}>, (7.34)

where α = 1, β = −1, δ = 0.5. One can verify that for these values of the parameters

α, β, δ, the dynamics (7.34) has three equilibria: (0, 0),

(
±
√
−β
α
, 0

)
. Linear stabil-

ity analysis tells that the origin is a saddle node while the remaining two equilibria

are stable foci. We use (7.34) only to generate synthetic data and assume that the

knowledge of this true vector field is unavailable to the modeler.
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To generate the true distributional PDFs, we assume that the initial joint state

PDF ξ0 (x0) = U
(
[−2, 2]2

)
. We generate 500 samples from this uniform PDF, and

evaluate them at ξ0. Starting from these samples, we evolve the joint state PDF

ξ (x1(t), x2(t), t) subject to (7.34) by solving the Liouville PDE ∂ξ
∂t

+ ∇ · (ξf) = 0,

where f (x1, x2) is the Duffing vector field. We perform this uncertainty propagation

by solving the method-of-characteristics ODE corresponding to the Liouville PDE,

detailed in Chapter 2. This procedure results scattered colored data (Fig. 7.3) at

every time tj, j = 1, 2, . . . , 10, where the location of the samples are determined

from the dynamics while the color value at a sample location indicates the exact

(unlike Monte Carlo histograms) joint PDF value at that sample location, at that

time. Since y = {x1, x2}>, hence Fig. 7.3 depicts the sequence {tj, ηj}10
j=1.

Let Fig. 7.3 be the distributional data observed by the modeler. A continuous-

time model is sought over each horizon: t ∈ [tj, tj+1). To solve this problem, we

employ the Benamou-Brenier space-time optimization formulation of Section 7.1.4,

resulting a vector field vj (x1(t), x2(t), t) per horizon, which solves the two point Liou-

ville boundary value problem (guaranteeing end-point PDF matches) while incurring

minimum amount of work over each [tj, tj+1). For this purpose, we take the two end

point scattered data representation of ηj and ηj+1, and interpolate the data over

a regular grid, followed by Douglas-Rachford proximal operator splitting algorithm

[206] to solve the ensuing non-smooth convex optimization (7.5)-(7.6), resulting the

vector field vj (x1(t), x2(t), t). Fig. 7.4 and 7.5 show the gridded observed PDFs and

the intermediate PDF reconstructions for (t1, η1) → (t2, η2), and (t8, η8) → (t9, η9),

respectively, superimposed with their respective Benamou-Brenier vector fields (black

arrows). In Fig. 7.6, we compare the PDF transportation paths for t ∈ [t1, t2) in

W , for the true Duffing dynamics (7.34) and the optimal transport dynamics. In

view of Remark 20, this plot shows that unlike the Brenier-Benamou gradient vector
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Figure 7.3: The distributional scattered data {tj, ηj}10
j=1 obtained by solving Liouville

PDE for Duffing dynamics. The color value indicates the magnitude (red = high,
blue = low) of the joint PDF ηj. In our simulation, tj = j

2
, where j = 1, 2, . . . , 10.
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field, (7.34) does not result into geodesic PDF transport. This is not surprising, since

∇× f (x1, x2) = (−3αx2
1 − β − 1) k̂ = −3x2

1 k̂, i.e. Duffing vector field has non-zero

vorticity everywhere except x1 = 0, thus causing a clockwise rotational flow that

requires more transportation effort than what could be achieved by a gradient flow.

Figure 7.4: (a) The gridded PDFs η1 and η2; (b) The background color (red =
high, blue = low) shows optimal transport reconstructions for PDF η (t), t ∈ [t1, t2),
superimposed with Benamou-Brenier vector field v?1 (black arrows). The interval
[t1, t2) was subdivided into 60 divisions, denoted by the index s above, i.e. s = 0⇔ t1,
s = 60⇔ t2. Notice that the vector field vanishes at t2.

7.4 Chapter Summary

In this Chapter, we showed that the optimal transport map can be used for

automatically refining a proposed model. Such model refinement is consistent with

the V&V formulation proposed in the previous Chapters in the sense that the model

refinement at every time occurs in a way to drive the instantaneous Wasserstein

gap to zero. Several equivalent formulations are pointed out and it is shown that
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Figure 7.5: (a) The gridded PDFs η8 and η9; (b) The background color (red =
high, blue = low) shows optimal transport reconstructions for PDF η (t), t ∈ [t8, t9),
superimposed with Benamou-Brenier vector field v?8 (black arrows). Like Fig. 7.4,
s = 0⇔ t8, s = 60⇔ t9. Again, the vector field vanishes at t9.

closed form solutions can be obtained for refining linear model against Gaussian

measurements. For nonlinear model refinement, a non-smooth convex optimization

framework was found to be more amenable for numerical implementation. Two case

studies were provided: one showing how these ideas can enable feedback control for

linear Gaussian PDF tracking, and the other showing data driven nonlinear reduced

order modeling.
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Figure 7.6: Comparison of optimal transport (Benamou-Brenier dynamics) with
Duffing transport (true dynamics) for t ∈ [t1, t2).
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8. CONCLUSIONS

8.1 Summary of Contributions

In the 2010 U.S. Air Force Report on Technology Horizons [212], it was clearly

pointed out that “It is possible to develop systems having high levels of autonomy,

but it is the lack of suitable V&V methods that prevents all but relatively low levels

of autonomy from being certified for use.” Indeed, the convergence of communica-

tion, control and computation in all vistas of the 21st century lifestyle, has brought

the question of systems safety and performance reliability at the forefront of techno-

logical challenges. As systems are getting more interconnected and the underlying

estimation-control software, and the communication protocols are getting increas-

ingly sophisticated, the need for a “systems level V&V science” is becoming acute.

In this dissertation, we have presented a unifying V&V framework that can be

used for performance certification of both deterministic and stochastic dynamical

systems with uncertainties. The motivation for a probabilistic V&V methodology

was outlined in Chapter 1, and the scope of this work in the context of existing

systems-control literature was pointed out. The proposed framework is built on novel

methods of uncertainty propagation subject to nonlinear dynamics, and hence Chap-

ter 2 and 3 were devoted in developing new algorithms for uncertainty propagation.

Since this is a topic of independent research interest, various case studies were pre-

sented to illustrate the practical utility of these uncertainty propagation algorithms,

in the context of risk assessment and nonlinear estimation. In Chapter 4, based on

axiomatic requirements for model validation, we argued that the Wasserstein met-

ric related to optimal mass transport, is a natural notion of distance between the

observed and model predicted concentration or “density” of trajectories, and hence
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between the plant and model under comparison. It was shown that the resulting

computation amounts to solving an LP at each time of measurement availability,

and was demonstrated to fit naturally with the meshless uncertainty propagation

algorithms developed in earlier chapters. Illustrative numerical examples were given,

and ideas from the analysis of randomized algorithms were used to give probabilistic

guarantees on the V&V inference. Chapter 5 provided a case study on controller ro-

bustness verification for F-16 aircraft. In Chapter 6, we focused on comparing linear

systems in the proposed V&V framework. We showed that closeness of two linear

systems in Wasserstein sense, means closeness in their average gains. Also, it was

found that among a set of given initial PDFs, the one that best discriminates two

linear systems, has maximum second raw moment. Chapter 7 extended the V&V

framework to enable automatic model refinement and it was shown that the same

ideas can be used for finite time PDF tracking in minimum effort sense.

8.2 Scope for Future Research

Below we outline the research directions that can be pursued based on the results

of this dissertation.

8.2.1 Compositionality in Probabilistic V&V

The ideas presented in this dissertation, are envisioned for component level V&V

applications in the presence of uncertainties. The final goal is to enable “trust in

autonomy” through certifiable V&V. This brings forth the notion of compositionality

in V&V. The key idea here is to perform V&V only at the component level, but such

exercise should come with the guarantee of system performance when connected with

other systems. The need for this compositionality has been long recognized [212]:

“In effect, the number of possible input states that such systems can be presented

with is so large that not only is it impossible to test all of them directly, it is not even
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possible to test more than an insignificantly small fraction of them. Development of

such systems is thus inherently unverifiable by todays methods, and as a result their

operation in all but comparatively trivial applications is uncertifiable.”

Some specific research questions in this regard, are listed below.

1. When does open loop validation (in Wasserstein sense) implies closed loop vali-

dation? In particular, it will be of interest to investigate the following scenario.

Suppose a model has been (open loop) validated with γ level of Wasserstein

closeness. Then, if a controller is designed for that model with some notion of

“goodness”, such as stabilizing controller, does it imply that the same notion

of “goodness” gets translated when the designed controller is commissioned to

the actual plant? A positive answer to this question, even for a given class of

models/controllers, would mean that there will be no need for repeating the

V&V exercise for the final closed-loop implementation. In other words, the

performance would be “certifiably correct by construction”. Different notions

of “goodness” for the controller can be investigated, e.g. H2/H∞ controllers,

passivity etc. Also, different notions of interconnections can be investigated,

for a given choice of controller.

2. Another direction is to generalize the systems-theoretic results of Section 6.1,

for different input classes, e.g. bounded energy input signal u(t) having finite

L2 [0, T ] norm. In particular, we would like to understand the connection be-

tween finite-time incremental stochastic L2 gain and the magnitude of Wasser-

stein distance. It is envisaged that such a pursuit would reveal a connection

between dissipativity, small gain theorem, and the phrase “2W2 (t) ≤ γ”. In ef-

fect, this would help in answering “what does the value of Wasserstein distance

mean for a nonlinear system?”
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8.2.2 Nonlinear Model Reduction via Optimal Transport

A promising way to extend ideas of Section 7 is to use Brenier-Benamou space-

time variational formulation to derive gradient nonlinear models from data, which are

naturally reduced order (ODE over output space). We plan to compare such optimal

transport theoretic nonlinear model reduction with popular linear model reduction

algorithms, such as POD and DMD. Also, it would be interesting to consider such

nonlinear model reduction in the context of preserving desirable quantities, such as

passivity, stability, controllability and observability, which are currently accounted

through “balanced” variants of POD and DMD. On a similar vein, one could design

nonlinear controllers for the piecewise gradient models derived from data via Brenier-

Benamou algorithm, then guarantee the closed-loop performance. The fact that

reduced order models are piecewise gradient, could lead to controller design using

piecewise Lyapunov functions.

8.2.3 Connections with Formal Verification

A direction which we have not explored in this dissertation, is how to bring

together formal V&V methods such as the linear temporal logic specifications, with

the probabilistic V&V ideas presented here. Connections with ideas from computer

science community, such as probabilistic model checking and bisimulation, could be

investigated.

8.2.4 Application to Fault Detection, Isolation, and Reconfiguration

Another potential research direction could be applying the optimal transport

based V&V formulation for density based fault detection, isolation and reconfigura-

tion. The detection could be based on the Wasserstein distance computation, while

the reconfiguration strategy could be thought of as Brenier map. In most applica-
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tions, fault scenarios are enumerable (e.g. by constructing a fault tree), and if the

faults are assumed to occur randomly, due to execution level uncertainties, then the

fault isolation could be interpreted as the mode estimation problem for a stochastic

jump system.
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F. Allgöwer, and E. D. Gilles, “A benchmark for methods in reverse engineer-

ing and model discrimination: problem formulation and solutions,” Genome

Research, vol. 14, no. 9, pp. 1773–1785, 2004.

[198] G. Steinbrecher and W. T. Shaw, “Quantile mechanics,” European Journal of

Applied Mathematics, vol. 19, no. 2, pp. 87–112, 2008.

[199] W. Gilchrist, Statistical Modelling with Quantile Functions. CRC Press, Boca

Raton, Florida, 2000.
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APPENDIX A

STATISTICS OF LTI SYSTEM

A.1 Deterministic LTI Flow

Consider the deterministic LTI system with open-loop control signal u(t), given

by

ẋ (t) = Ax (t) +Bu (t) , x (0) = x0, (A.1a)

y (t) = Cx (t) +Du (t) , (A.1b)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny . One can solve for the state flow x (t)

by solving the ODE (A.1a) via computing the homogeneous solution and particular

integral, and then adding the two. This results the state flow

x (t) = eAtx0

︸ ︷︷ ︸
homogeneous solution

+

∫ t

0

eA(t−τ)Bu (τ) dτ

︸ ︷︷ ︸
particular integral

, (A.2)

which together with (A.1b) yields the output flow y (t) as

y (t) = CeAtx0 + CeAt
∫ t

0

e−AτBu (τ) dτ +Du (t) . (A.3)
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A.1.1 Mean Flow

Taking E [·] to both sides of the state flow (A.2), we get the flow for the mean of

the state vector:

µx (t) = eAtµx0 +

∫ t

0

eA(t−τ)Bu (τ) dτ, (A.4)

which shows that even if we choose µ0 to be zero, µx (t) need not be zero at t > 0,

due to the control forcing. Thus, the open-loop control signal u (t) contributes to

the average drift of the state ensemble. Alternatively, this result could be derived by

directly taking E [·] to both sides of (A.1a), thus resulting an ODE for state mean:

µ̇x (t) = Aµx (t) +Bu (t) , µ (0) = E [x (0)] = E [x0] = µ0, (A.5)

and then solving the linear ODE (A.5) akin to (A.1a).

Now, taking E [·] to both sides of (A.1b) and substituting (A.4), we get the flow

for the mean of the output vector:

µy (t) = Cµx (t) +Du (t) = CeAtµx0 + CeAt
∫ t

0

e−AτBu (τ) dτ +Du (t) , (A.6)

which we could also obtain by taking E [·] to both sides of (A.3).

A.1.2 Covariance Flow

The state covariance Px (t) is given by

Px (t)

, E
[
(x(t)− µx (t)) (x(t)− µx (t))>

]
, (A.7)

= E
[
eAt (x0 − µ0) (x0 − µ0)>

(
eAt
)>]

, (substituting (A.2) and (A.4)) (A.8)
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= eAt E
[
(x0 − µ0) (x0 − µ0)>

] (
eAt
)>
, (A.9)

= Φ (t) P0 (Φ (t))> , (A.10)

where Φ (t) , eAt is the state-transition matrix. Equation (A.10) tells that the flow

of the state covariance matrix is a congruence transformation by the state-transition

matrix. Notice that the state covariance flow, unlike the state mean flow, does not

depend on u (t), thanks to the cancelation of the particular integral in (A.8).

One can also obtain an ODE for Px (t) as follows:

d

dt
Px (t) =

d

dt


Φ (t) P0︸ ︷︷ ︸

U

(Φ (t))>︸ ︷︷ ︸
V


 , (from (A.10)) (A.11)

= U
dV

dt
+
dU

dt
V, (by chain rule) (A.12)

= (Φ (t) P0)
d

dt
(Φ (t))> +

(
d

dt
(Φ (t) P0)

)
(Φ (t))> , (A.13)

= (Φ (t) P0) eA
>t

︸︷︷︸
(Φ(t))>

A> +


Φ (t)

dP0

dt︸︷︷︸
0

+
dΦ

dt︸︷︷︸
AeAt

P0


 (Φ (t))> , (A.14)

= Φ (t) P0 (Φ (t))> A> + A eAt︸︷︷︸
Φ(t)

P0 (Φ (t))> , (A.15)

= Px (t) A> + A Φ (t) P0 (Φ (t))> , (using (A.10)) (A.16)

= Px (t) A> + A Px (t) . (A.17)

Using (A.1b), we can compute the output covariance Py (t) from the state covariance

Px (t), as follows:

Py (t) = C Px (t) C>. (A.18)
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A.2 Stochastic LTI Flow

Derivations similar to above can be done for the stochastic LTI system

dx(t) = Ax(t) dt+Bu(t) dt+G dW , (A.19)

resulting the state mean update equation µ̇x(t) = Aµx(t) + Bu(t), which is same as

the corresponding equation for deterministic LTI flow case, i.e. equation (A.5). The

covariance propagation equation (A.17) generalizes to

d

dt
Px (t) = APx (t) + Px (t)A> +GQG>, (A.20)

where Q is the covariance of the process noise W , which is assumed to be a Wiener

process.

A.3 Stochastic LTI Map

For general stochastic case

x (k + 1) = Ax (k) +Bu (k) +GW (k) , (A.21)

the sample path becomes

x (k) = Akx0 +
k−1∑

j=0

Ak−j−1 (Bu (j) +GW (j)) . (A.22)

The mean evolves as µx (k + 1) = Aµx (k) +Bu (k), and hence

µx (k) = Akµx0 +
k−1∑

j=0

Ak−j−1Bu (j) . (A.23)

226



The covariance evolves as Σx (k + 1) = AΣx (k)A> +GQG>, and hence

Σx (k) = AkΣx0

(
Ak
)>

+
k−1∑

j=0

Ak−j−1GQG>
(
Ak−j−1

)>
. (A.24)
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APPENDIX B

SOME RESULTS ON DISTRIBUTIONAL COMPARISON

B.1 Computing 2W2 (B (α, β) ,B (β, α))

We denote I−1
t (α, β) as the inverse of the beta CDF, Ix (α, β) ,

B (x;α, β)

B (α, β)
as

the regularized incomplete beta function, and B (x;α, β) ,
∫ x

0

zα−1 (1− z)β−1 dz as

the incomplete beta function.

Theorem 24. 2W2 (B (α, β) ,B (β, α)) =

√
α (α + 1) + β (β + 1)

(α + β) (α + β + 1)
− 2

(
β

α + β
− J

)
,

where J , 1

β + 1

∫ 1

0

(
I−1
t (α, β)

)1−α (
1− I−1

t (α, β)
)1−β (

I−1
t (β, α)

)β+1

2F1

(
β + 1, 1− α; β + 2; I−1

t (β, α)
)
dt.

Proof. From (4.3), we have

2W
2
2 (B (α, β) ,B (β, α)) =

∫ 1

0

(
I−1
t (α, β)− I−1

t (β, α)
)2
dt. (B.1)

The following identities, stated without proof, will be useful for the evaluation of

(B.1).

Property 1.

∫
I−1
t (a, b) dt =

(
I−1
t (a, b)

)a+1

(a+ 1)B (a, b)
2F1

(
a+ 1, 1− b; a+ 2; I−1

t (a, b)
)

+ constant.

Property 2.

∫ (
I−1
t (a, b)

)2
dt =

(
I−1
t (a, b)

)a+1

(a+ 1)B (a, b)

(
2F1

(
a+ 1, 1− b; a+ 2; I−1

t (a, b)
)
−
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2F1

(
a+ 1,−b; a+ 2; I−1

t (a, b)
))

+ constant.

Property 3.

I−1
0 (a, b) = 0, and I−1

1 (a, b) = 1.

Property 4. (Gauss Theorem)

2F1 (A,B;C; 1) =
Γ (C) Γ (C − A−B)

Γ (C − A) Γ (C −B)
.

Property 5.

d

dt
I−1
t (a, b) = B (a, b)

(
I−1
t (a, b)

)1−a (
1− I−1

t (a, b)
)1−b

.

Using Properties 2 and 3, we get

∫ 1

0

(
I−1
t (α, β)

)2
dt =

1

(α + 1)B (α, β)
[ 2F1 (α + 1, 1− β;α + 2; 1) −

2F1 (α + 1,−β;α + 2; 1)] . (B.2)

Recalling that Γ (k + 1) = kΓ (k), Property 4 results

2F1 (α + 1, 1− β;α + 2; 1) =
Γ (α + 2) Γ (β)

Γ (α + β + 1)
, (B.3)

2F1 (α + 1,−β;α + 2; 1) =
Γ (α + 2) βΓ (β)

(α + β + 1) Γ (α + β + 1)
. (B.4)

Substituting the above expressions in (B.2), we obtain

∫ 1

0

(
I−1
t (α, β)

)2
dt =

α (α + 1)

(α + β) (α + β + 1)
, and

∫ 1

0

(
I−1
t (β, α)

)2
dt =

β (β + 1)

(α + β) (α + β + 1)
. (B.5)
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Thus, (B.1) simplifies to

2W
2
2 (B (α, β) ,B (β, α)) =

α (α + 1) + β (β + 1)

(α + β) (α + β + 1)
− 2

∫ 1

0

I−1
t (α, β) I−1

t (β, α) dt.(B.6)

To evaluate the remaining integral in (B.6), we employ integration-by-parts with

f (t) := I−1
t (α, β) as the first function and g (t) := I−1

t (β, α) as the second. Now,

we know that
∫ 1

0
f (t) g (t) dt equals

[
f (t)

∫
g (t) dt

] ∣∣∣∣
t=1

t=0︸ ︷︷ ︸
I

−
∫ 1

0

(
f ′ (t)

∫
g (t) dt

)
dt

︸ ︷︷ ︸
J

. (B.7)

From Properties 1 and 3, we get

I =

[
1

(β + 1)B (α, β)
I−1
t (α, β)

(
I−1
t (β, α)

)b+1
2F1 (b+ 1, 1− a; b+ 2; 1)

] ∣∣∣∣∣

t=1

t=0

=
2F1 (β + 1, 1− α; β + 2; 1)

(β + 1)B (α, β)
=

β

α + β
. (B.8)

Further, Properties (1) and (5) yield

J =
1

β + 1

∫ 1

0

(
I−1
t (α, β)

)1−α (
1− I−1

t (α, β)
)1−β

(
I−1
t (β, α)

)β+1
2F1

(
β + 1, 1− α; β + 2; I−1

t (β, α)
)
dt. (B.9)

Combining (B.6), (B.7), (B.8) and (B.9), the result follows. �

B.2 On the Stationary Density of A Deterministic Nonlinear System with

Multiple Isolated Stable Equilibria

Theorem 25. Consider a nonlinear dynamical system ẋ(t) = f (x(t)), having mul-

tiple isolated stable equilibria {x?i }n
?

i=1. Let us assume that the system does not admit
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any invariant set other than these stable equilibria. Also, let Ri be the region-of-

attraction for the ith equilibrium point. If the dynamics evolves from an initial PDF

ξ0, then its stationary PDF is given by

ξ∞(x) =
n?∑

i=1

m?
i δ (x− x?i ) , (B.10)

where m?
i =

∫

supp(ξ0)∩Ri
ξ0 (x0) dx0.

Proof. Since {x?i }n
?

i=1 is the unique set of attractors, it is easy to verify that the

stationary PDF is of the form (B.10); however, it remains to determine the weights

m?
i . We observe that either supp (ξ0) ⊆ Ri, for some i = 1, . . . , n?, or supp (ξ0)

intersects multiple Ri.

Now, recall that Ri , {x0 : ẋ(t) = f (x(t)) , x(0) = x0, limt→∞ x (t) = x?i }.

Thus, if supp (ξ0) ⊆ Ri, then m?
i =

∫
supp(ξ0)

dm0 =
∫

supp(ξ0)
ξ (x0) dx0 = 1, and

consequently, m?
j = 0, ∀j = 1, . . . , n?, j 6= i, since

∫
ξ∞ (x) dx = 1. In this case,

notice that supp (ξ0) = supp (ξ0) ∩Ri.

On the other hand, if supp (ξ0) intersects multipleRi, then only for x0 ∈ supp (ξ0)∩

Ri, the integral curves of ẋ(t) = f (x(t)) , x(0) = x0, will satisfy limt→∞ x (t) = x?i . In

other words, only the set supp (ξ0)∩Ri contributes tom?
i , i.e. m?

i =
∫

supp(ξ0)∩Ri dm0 =
∫

supp(ξ0)∩Ri ξ (x0) dx0 < 1.

Combining the above two cases, we conclude m?
i =

∫

supp(ξ0)∩Ri
ξ0 (x0) dx0. �

B.3 Derivation of Stationary PDF (4.21)

We re-write the Itô SDE (4.20) as




dx1

dx2





=





x2

− ∂

∂x1

U (x1)− cx2





dt+





0

1





dW, (B.11)
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with U (x1) := 1
2

(ax2
1 − b cos 2x1). An Itô SDE with drift nonlinearity of the form

(B.11), admits [213] stationary PDF η∞ (x1, x2) ∝ exp
(
− c
Q
H (x1, x2)

)
, where the

Hamiltonian function H (x1, x2) := U (x1) + 1
2
x2

2.
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APPENDIX C

WASSERSTEIN CONVERGENCE OF MARGINALS

The purpose of this appendix is to prove that convergence of joint PDFs imply

convergence in respective univariate marginals, but the converse is not true. Here,

the convergence of PDFs is measured in Wasserstein metric 2W2, hereafter simply

denoted as W , for notational ease. We first prove the following preparatory lemma

that leads to our main result in Theorem 26.

Lemma 7. Let ξi1 and ξi2 be the respective ith univariate marginals for d-dimensional

joint PDFs ξ1 and ξ2, supported on Rx1 ×Rx2 × . . .×Rxd, and Ry1 ×Ry2 × . . .×Ryd.

Let Wi , W (ξi1, ξ
i
2), i = 1, . . . , d, and W , W (ξ1, ξ2); then

d∑

i=1

W 2
i 6 W

2
. (C.1)

Proof. Notice that supp (ξi1) = Rxi , and supp (ξi2) = Ryi , ∀ i = 1, . . . , d. For d-

dimensional vectors x = (x1, . . . , xd)
>, y = (y1, . . . , yd)

>, by definition

W
2

= inf
%∈M(ξ1,ξ2)

∫

R2d

‖ x− y ‖2
2 % (x, y) dx dy

=

∫

R2d

‖ x− y ‖2
2 %? (x, y) dx dy, (C.2)

where %? (x, y) is the optimal transport PDF supported on R2d. Clearly,

ξi1 =

∫

R2d−1

%? (x, y) dx1 . . . dxi−1dxi+1 . . . dxddy1 . . . dyd, (C.3)
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ξi2 =

∫

R2d−1

%? (x, y) dx1 . . . dxddy1 . . . dyi−1dyi+1 . . . dyd. (C.4)

Thus, we have

W 2
i = inf

ϕ∈M(ξi1,ξi2)

∫

R2

(xi − yi)2 ϕ (xi, yi) dxi dyi,

=

∫

R2

(xi − yi)2 ϕ? (xi, yi) dxi dyi,

6
∫

R2

(xi − yi)2 %̃? (xi, yi) dxi dyi, (C.5)

where %̃? (xi, yi) is the (i, i)th bivariate marginal of %? (x, y). Since
d∑

i=1

(xi − yi)2 =‖

x− y ‖2
2, the result follows from (C.5), after substituting

%̃? (xi, yi) =

∫

R2d−2

%? (x, y) dx1 . . . dxi−1dxi+1 . . . dxd dy1dyi−1dyi+1 . . . dyd. (C.6)

This completes the proof. �

Theorem 26. Convergence of Joint PDFs in Wasserstein metric, implies conver-

gence of univariate marginals. Converse is not true.

Proof. Using the notation of Lemma 7, when the joints ξ1 and ξ2 converge, then

W = 0. Hence from (C.1),
d∑

i=1

W 2
i = 0 ⇒ Wi = 0, ∀ i = 1, . . . , d. However,

Wi = 0⇒ W > 0. Hence the result. �
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