4 research outputs found

    Design of asynchronous microprocessor for power proportionality

    Get PDF
    PhD ThesisMicroprocessors continue to get exponentially cheaper for end users following Moore’s law, while the costs involved in their design keep growing, also at an exponential rate. The reason is the ever increasing complexity of processors, which modern EDA tools struggle to keep up with. This makes further scaling for performance subject to a high risk in the reliability of the system. To keep this risk low, yet improve the performance, CPU designers try to optimise various parts of the processor. Instruction Set Architecture (ISA) is a significant part of the whole processor design flow, whose optimal design for a particular combination of available hardware resources and software requirements is crucial for building processors with high performance and efficient energy utilisation. This is a challenging task involving a lot of heuristics and high-level design decisions. Another issue impacting CPU reliability is continuous scaling for power consumption. For the last decades CPU designers have been mainly focused on improving performance, but “keeping energy and power consumption in mind”. The consequence of this was a development of energy-efficient systems, where energy was considered as a resource whose consumption should be optimised. As CMOS technology was progressing, with feature size decreasing and power delivered to circuit components becoming less stable, the energy resource turned from an optimisation criterion into a constraint, sometimes a critical one. At this point power proportionality becomes one of the most important aspects in system design. Developing methods and techniques which will address the problem of designing a power-proportional microprocessor, capable to adapt to varying operating conditions (such as low or even unstable voltage levels) and application requirements in the runtime, is one of today’s grand challenges. In this thesis this challenge is addressed by proposing a new design flow for the development of an ISA for microprocessors, which can be altered to suit a particular hardware platform or a specific operating mode. This flow uses an expressive and powerful formalism for the specification of processor instruction sets called the Conditional Partial Order Graph (CPOG). The CPOG model captures large sets of behavioural scenarios for a microarchitectural level in a computationally efficient form amenable to formal transformations for synthesis, verification and automated derivation of asynchronous hardware for the CPU microcontrol. The feasibility of the methodology, novel design flow and a number of optimisation techniques was proven in a full size asynchronous Intel 8051 microprocessor and its demonstrator silicon. The chip showed the ability to work in a wide range of operating voltage and environmental conditions. Depending on application requirements and power budget our ASIC supports several operating modes: one optimised for energy consumption and the other one for performance. This was achieved by extending a traditional datapath structure with an auxiliary control layer for adaptable and fault tolerant operation. These and other optimisations resulted in a reconfigurable and adaptable implementation, which was proven by measurements, analysis and evaluation of the chip.EPSR

    A survey of new research directions in microprocessors

    No full text
    Current microprocessors utilise the instruction-level parallelism by a deep processor pipeline and the superscalar instruction issue technique. VLSI technology offers several solutions for aggressive exploitation of the instruction-level parallelism in future generations of microprocessors. Technological advances will replace the gate delay by on-chip wire delay as the main obstacle to increase the chip complexity and cycle rate. The implication for the microarchitecture is that functionally partitioned designs with strict nearest neighbour connections must be developed. Among the major problems facing the microprocessor designers is the application of even higher degree of speculation in combination with functional partitioning of the processor, which prepares the way for exceeding the classical dataflow limit imposed by data dependences. In this paper we survey the current approaches to solving this problem, in particular we analyse several new research directions whose solutions are based on the complex uniprocessor architecture. A uniprocessor chip features a very aggressive superscalar design combined with a trace cache and superspeculative techniques. Superspeculative techniques exceed the classical dataflow limit where even with unlimited machine resources a program cannot execute any faster than the execution of the longest dependence chain introduced by the program’s data dependences. Superspeculative processors also speculate about control dependences. The trace cache stores the dynamic instruction traces contiguously and fetches instructions from the trace cache rather than from the instruction cache. Since a dynamic trace of instructions may contain multiple taken branches, there is no need to fetch from multiple targets, as would be necessary when predicting multiple branches and fetching 16 or 32 instructions from the instruction cache. Multiscalar and trace processors defin
    corecore