1,091,042 research outputs found

    A survey of information-based complexity

    Get PDF
    AbstractWe survey some recent results in information-based complexity. We focus on the worst case setting and also indicate some average case results

    Quantum Proofs

    Get PDF
    Quantum information and computation provide a fascinating twist on the notion of proofs in computational complexity theory. For instance, one may consider a quantum computational analogue of the complexity class \class{NP}, known as QMA, in which a quantum state plays the role of a proof (also called a certificate or witness), and is checked by a polynomial-time quantum computation. For some problems, the fact that a quantum proof state could be a superposition over exponentially many classical states appears to offer computational advantages over classical proof strings. In the interactive proof system setting, one may consider a verifier and one or more provers that exchange and process quantum information rather than classical information during an interaction for a given input string, giving rise to quantum complexity classes such as QIP, QSZK, and QMIP* that represent natural quantum analogues of IP, SZK, and MIP. While quantum interactive proof systems inherit some properties from their classical counterparts, they also possess distinct and uniquely quantum features that lead to an interesting landscape of complexity classes based on variants of this model. In this survey we provide an overview of many of the known results concerning quantum proofs, computational models based on this concept, and properties of the complexity classes they define. In particular, we discuss non-interactive proofs and the complexity class QMA, single-prover quantum interactive proof systems and the complexity class QIP, statistical zero-knowledge quantum interactive proof systems and the complexity class \class{QSZK}, and multiprover interactive proof systems and the complexity classes QMIP, QMIP*, and MIP*.Comment: Survey published by NOW publisher

    Around Kolmogorov complexity: basic notions and results

    Full text link
    Algorithmic information theory studies description complexity and randomness and is now a well known field of theoretical computer science and mathematical logic. There are several textbooks and monographs devoted to this theory where one can find the detailed exposition of many difficult results as well as historical references. However, it seems that a short survey of its basic notions and main results relating these notions to each other, is missing. This report attempts to fill this gap and covers the basic notions of algorithmic information theory: Kolmogorov complexity (plain, conditional, prefix), Solomonoff universal a priori probability, notions of randomness (Martin-L\"of randomness, Mises--Church randomness), effective Hausdorff dimension. We prove their basic properties (symmetry of information, connection between a priori probability and prefix complexity, criterion of randomness in terms of complexity, complexity characterization for effective dimension) and show some applications (incompressibility method in computational complexity theory, incompleteness theorems). It is based on the lecture notes of a course at Uppsala University given by the author

    Non-locality and Communication Complexity

    Get PDF
    Quantum information processing is the emerging field that defines and realizes computing devices that make use of quantum mechanical principles, like the superposition principle, entanglement, and interference. In this review we study the information counterpart of computing. The abstract form of the distributed computing setting is called communication complexity. It studies the amount of information, in terms of bits or in our case qubits, that two spatially separated computing devices need to exchange in order to perform some computational task. Surprisingly, quantum mechanics can be used to obtain dramatic advantages for such tasks. We review the area of quantum communication complexity, and show how it connects the foundational physics questions regarding non-locality with those of communication complexity studied in theoretical computer science. The first examples exhibiting the advantage of the use of qubits in distributed information-processing tasks were based on non-locality tests. However, by now the field has produced strong and interesting quantum protocols and algorithms of its own that demonstrate that entanglement, although it cannot be used to replace communication, can be used to reduce the communication exponentially. In turn, these new advances yield a new outlook on the foundations of physics, and could even yield new proposals for experiments that test the foundations of physics.Comment: Survey paper, 63 pages LaTeX. A reformatted version will appear in Reviews of Modern Physic

    Quantum Hamiltonian Complexity

    Full text link
    Constraint satisfaction problems are a central pillar of modern computational complexity theory. This survey provides an introduction to the rapidly growing field of Quantum Hamiltonian Complexity, which includes the study of quantum constraint satisfaction problems. Over the past decade and a half, this field has witnessed fundamental breakthroughs, ranging from the establishment of a "Quantum Cook-Levin Theorem" to deep insights into the structure of 1D low-temperature quantum systems via so-called area laws. Our aim here is to provide a computer science-oriented introduction to the subject in order to help bridge the language barrier between computer scientists and physicists in the field. As such, we include the following in this survey: (1) The motivations and history of the field, (2) a glossary of condensed matter physics terms explained in computer-science friendly language, (3) overviews of central ideas from condensed matter physics, such as indistinguishable particles, mean field theory, tensor networks, and area laws, and (4) brief expositions of selected computer science-based results in the area. For example, as part of the latter, we provide a novel information theoretic presentation of Bravyi's polynomial time algorithm for Quantum 2-SAT.Comment: v4: published version, 127 pages, introduction expanded to include brief introduction to quantum information, brief list of some recent developments added, minor changes throughou

    Determination of mechanical properties of historical paper based on NIR spectroscopy and chemometrics - a new instrument

    Get PDF
    Due to sampling restrictions in the analysis of cultural heritage materials, non-destructive approaches are intensively sought for. While NIR spectrometry has rarely been used for this purpose due to the complexity of the spectra, chemometric methods can be used to extract the necessary information. For the purpose of determination of mechanical properties of historical paper, partial least squares approach was used and it is shown that tensile strength, and tensile strength after folding, can be estimated based on NIR spectra. As the mechanical properties of paper-based objects define their accessibility, a new dispersive portable instrument was built, which will enable us to rapidly survey the condition of library and archival collections

    Encoding for the Blackwell Channel with Reinforced Belief Propagation

    Full text link
    A key idea in coding for the broadcast channel (BC) is binning, in which the transmitter encode information by selecting a codeword from an appropriate bin (the messages are thus the bin indexes). This selection is normally done by solving an appropriate (possibly difficult) combinatorial problem. Recently it has been shown that binning for the Blackwell channel --a particular BC-- can be done by iterative schemes based on Survey Propagation (SP). This method uses decimation for SP and suffers a complexity of O(n^2). In this paper we propose a new variation of the Belief Propagation (BP) algorithm, named Reinforced BP algorithm, that turns BP into a solver. Our simulations show that this new algorithm has complexity O(n log n). Using this new algorithm together with a non-linear coding scheme, we can efficiently achieve rates close to the border of the capacity region of the Blackwell channel.Comment: 5 pages, 8 figures, submitted to ISIT 200
    corecore