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Abstract. We survey aspects of approximation and complexity theory and their application 
to the numerous computer vision problems that require an approximate solution because only 
partial infonnation is available. \Ve consider ill-posed computer vision problems and the meth­
ods that can be employed towards reformulating them as well-posed. We are particularly 
interested in the surface reconstruction problem that is encountered in the construction of the 
2 t-D sketch, and which has been fonnulated and solved using different methods. We ap­
ply regularization theory, infonnation-based complexity, and other methods to the solution of 
this problem. Finally, the shape from shadows problem is formulated and the optimal error 
algorithm is constructed and analyzed. 

1. Introduction. 

In this paper we address the application of various theoretical methods to computer vision. 

There are many problems in low- and middle-level computer vision that are currently solved 

by a variety of ad hoc methods. These methods are not guaranteed to work, nor do they 

provide any means of assessing the quality of the solution. 

Many computer vision problems can be modelled as instances of the following general 

approximation problem. Assume we have a space of functions X and a function f from this 

space. Also assume that we are given partial information about the function f. \Ve want 

to approximate the result of applying a known operator S to f. 
There are many advantages to modelling computer vision problems as approximation 

problems. First, questions about the existence and uniqueness of the solution can often be 

answered. Second, upper and lower bounds on the error of the solution can be calculated. 

These bounds are often sharp. Finally, we can calculate complexity bounds. 



We will illustrate in -this paper the applicability of mathematical modelling to low- and 

middle-level computer vision. Towards this end we will start by surveying approximation 

theory methods. We will show how information-based complexity provides a general unified 

approach to the solution of many problems studied by other means. The methodology 

proposed by this theory also provides a framework sui table to the modelling of new problems. 

Computer vision problems that have been solved using information-based complexity will 

be reviewed. vVe will also look into other problems that have been formulated and solved 

using regularization theory methods, and we will contrast these two approaches. 

Motivation for this survey has been given by the surface reconstruction problem and the 

'various different methods used for its solution. Surface reconstruction is a very important 

step in the image recovery process, and has appeared extensively in a variety of different 

formulations. Because of its importance, the surface reconstruction problem will be used 

as the prime example throughout this paper. To further support the applicability of the 

proposed modelling we will show how the surface reconstruction problem can be modelled 

and solved under the completely new formulation of shape from shadows. 

The rest of the paper will be organized as follows : 

We will begin by describing the various theoretical frameworks that exist in approximation 

theory. In section 2 we will discuss some of the more widely known numerical analysis and 

approximation theory approaches to the solution of the interpolation and approximation 

problems. 

In section 3 we will discuss the general framework of information-based complexity. This 

theory can be used to model many different problems using one general formulation. Optimal 

algorithms for the solution of the various modelled problems can often be derived. vVe will 

show a number of problems that can be solved using this approach (see sections 5 and 6.) 

In section 4 we review the concept of an ill-posed problem. We will discuss many computer 

vision problems and show why most of them are ill-posed. Furthermore we will describe 

how these can be transformed into well-posed problems, and consequently how they can be 

solved by applying the methods proposed by regularization theory. 

In section 5 we will elaborate on a particular class of problems that deal with surface 

reconstruction. We will review the recent work done on the subject and see how this is 

related to the work described in sections 3 and 4. We will compare the solutions obtained 

using regularization theory and information-based complexity principles. 

In concluding this paper, we will describe, in section 6, the shape from shadows problem, 
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which belongs in the class of surface reconstruction problems. This problem is different from 

the ones analyzed in section 5, because it uses the shadows cast on a surface, to extract 

data. The surface is recovered solely from the information contained in these shadows. The 

use of shadows is a new form of information that has not been used until now. An algorithm 

for the solution of this problem will be given, and its performance will be analyzed. 

2. Classical approaches. 

vVe will begin this section by describing methods that recover real functions of one real 

variable, f: IR -- IR, and then proceed to discuss methods for recovering functions of two 

variables. There is a huge amount of work on the topic of approximating functions. It is not 

feasible to discuss all of them. Instead we will focus on methods that are widely known and 

that can be used to illustrate the progress towards the general theory that will be discussed 

in section 3. 

2.1 The Bernstein polynomials. 

\Ve first state the Weierstraft Approximation Theorem. For an arbitrary continuous func­

tion f, we can obtain a polynomial approximation whose error is not larger than f, for any 

given arbitrarily small E [45, 48]. In particular, it holds. 

THEOREM 2.1. Ha function f is continuous on a finite interval [a, b] tben'Vf > 0 :3n = n(f) 

and a polynomial Pn of degree n sucb tbat, 

If(x) - Pn(x)1 < E, 'Vx E [a, b]. (2-1) 

The proof is due to Bernstein [6] and consists of constructing polynomials of the form, 

xE[O,l]. (2-2) 

It can be shown that the sequence BI/(x) converges uniformly to f(x). 
One might be tempted to infer from theorem 2.1 that the problem of approximating a 

given function by a polynomial has been solved. Unfortunately, this is not the case for 

many reasons. The polynomials B 1/ that are constructed in the proof given by Bernstein 

are usually of a much higher degree than the degree n of Pn(x) [48]. Therefore, the cost 

of a solution that uses the polynomials BI/ is high. At the same time it is known that 

polynomials of a high degree oscillate. We would like to keep this oscillation as small as 

possible. 
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For these reasons, the practicality of the Bernstein polynomials is limited. This does not 

reduce the importance of theorem 2.1, that shows the existence of a polynomial approxi­

mation. Such approximations are often desirable, because polynomials are simple and easy 

to compute. Therefore, we will now attempt to find methods that yield better polynomial 

approximations. 

2.2 Lagrange and piecewise Lagrange interpolation. 

Lagrange and Newton interpolation are among the best known methods for interpolating 

a set of data. They both result in the same interpolating polynomial and yield the same 

error. The uniqueness of the interpolating polynomial is given by the following theorem 

[45J. 

THEOREM 2.2. Let {xdi=O.l.. .. ,n be any set ofn+ 1 distinct points in tbe interval [a, bJ and 

let f: [a, b] --;. X ~ IR be an (n + 1) times continuously differentiable function. Tben 3! 

polynomial P E Pn that satisfies P(Xj) = f(xj), Vi = 0,1, ... , n. 

The proof is based on constructing the polynomial, 

n 

P(X) = Lf(xk)lk(x), 

where 

k=O 

lk(x) = IT (x - xi) , 
i=o (Xk - xi) 
j#k 

x E [a,bJ. 

The error of the unique interpolating polynomial is given by, 

f(n+l)(e) n 

e(x) = If(x) - P(x)1 = ( )1 II(x - xi), 
n+ 1 .. 

)=0 

(2-3) 

(2-4) 

(2-5) 

Although Lagrange interpolation has been widely used, it has certain shortcomings. For 

a sample of n + 1 points we require that f(n+l)(x) exists and is continuous Vx E [a, bJ. We 

would like to relax this assumption so that we can approximate functions of a lower regular­

ity. Additionally, the degree of the interpolating polynomial P will be high. Furthermore, 

P will oscillate wildly [50] which, as we already mentioned, is often undesirable. To rectify 

these problems we are led to use a piecewi3e polynomial approximation method. Piece­

wise Lagrange interpolating polynomials of some fixed degree can be easily constructed. 
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Piecewise methods have only one shortcoming. The resulting approximations tend to be 

discontinuous at the points where the polynomial pieces are joined together, and hence do 

not model the approximated functions very well. 

2.3 Spline interpolation. 

To achieve a given smoothness using piecewise polynomials of a given low degree we 

will use spline functions. Spline functions have been extensively dealt with in classical 

approximation theory [1, 9, 47, 49, 50]. More general definitions of splines in normed linear 

spaces can also be found in [3, 4, 5, 10, 11, 57, 58, 60, 61, 72, 73]. We will discuss the 

classical work in this section and the more recent work in section 3. 

Given certain boundary conditions and the required degree of smoothness, the interpo­

lating spline can be uniquely determined [1]. A general definition of the spline interpolant 

S( x) is given in [45] and is, 
n+k 

S(x) = L f(Xi)Bi(X), (2-6) 
i=l 

where f(Xi) are the data, i.e. the evaluations of the approximated function at the points 

Xi, with Xl < X2 < ... < Xn+k, k is the degree of the interpolant, and Bi(X) are the ba"i,s 

splines which form a basis of the space W k of spline functions of degree k [9, 45, 47], and 

are given by, 

(2-7) 

where (x - Xj)~ = (x - Xj)k for x > Xj and 0 otherwise. It can be seen that Bi(X) = 0 for 

x ~ (Xi, Xi+k+d. 

In the above definition, and in all methods discussed until now, we assumed information 

consisting of function values. In DeBoor [9] the definition of spline functions is generalized 

to include the use of information consisting of evaluations of functionals. 

THEOREM 2.3. Let {B j } j=1, ... ,n be a basis of the space Wk of spline functions of degree k 

and let P,;} i=l, ... ,n be a set of functionals .Ai: X -- IR, where X is the space of functions 

we are approximating. The interpolating spline S( x) can then be constructed and is given 

by, 
n 

S(X) = LOiBi(X), (2-8) 
i=1 
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where {adi=l, ... ,n are the solutions of the system A Q = iJ with A = {Ai(B j )}7
j
=1 and 

,8 = [A 1 (f), ... ,An(f)]T. 

The spline functions (2-8) have some very interesting properties. 

(1) They are piecewise polynomials of a relatively low degree, and therefore do not oscil­

late wildly. Their degree now depends on k and not on the number of sample points 
n. 

(2) They have given fixed regularity over their entire domain. 

(3) They are simple to construct and they minimize certain norms or semi-norms. 

These properties are very useful, and will be discussed again in the following sections. 

2.4 Lagrange and piecewise Lagrange interpolation for functions in IR 2 • 

In tIllS section we will discuss methods for the approximation of real functions of two 

variables, f : [a, b] x [c, d] ----+ IR. Straightforward generalization of sections 2.2 and 2.3 

is not always possible. For data arbitrarily scattered on some planar region, the Lagrange 

interpolating polynomial does not always exist [46], and the result is not unique. Further­

more, it is possible in most cases to find a polynomial of lower degree solving the same 

interpolation problem. Additional problems are encountered if a piecewise method is used. 

The problems lie in the choice of the area of support/domain of each piece and the choice 

of the common boundaries between pieces [46, 47]. To overcome these problems we will 

assume rectangular grids. 

A rectangular grid is defined as II = {(Xi, Yj), 0 ~ i ~ n, 0 ~ j ~ m}. The Lagrange 

interpolating polynornial defined on II is derived from the Lagrange interpolating polynomial 

in each direction. Its existence is given by the following theorem [47]. 

THEOREM 2.4. Let f : [a, bj x [c, d] ----+ IR and information consisting of function values 

{f(Xi, Yj), 0 ~ i ~ n, 0 ~ j ~ m}. Then, 3! polynomial P(x, y) of degree n, in the 

x-direction, and degree m, in the y-direction, solving the interpolation problem P(Xi, Yj) = 

f(Xi,Yj). 

The Lagrange interpolating polynomial is given by 

P(X, y) L f(Xi, yj) lij(x, y). 
O<i<n 
0-5j~m 

(2-9) 

P( X, y) is the aproximating polynomial of degree m + n that interpolates the given function 

values, and lij(x, y) = li(x)lj(Y) where li(x), lj(Y) are as defined in (2-4). 
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The uniqueness of the interpolating polynomial has been obtained by imposing sampling 

on a rectangular grid. The following holds. 

THEOREM 2.5. Let I E c(n+l),(m+l) [a, b] x [c, dJ be a real function of two real variables. 

Then, the error of the Lagrange polynomial (2-9) is given by, 

e(x, y) = /3 max{hx , hy}, (2-10) 

where hx = maxi=O, ... ,n(Xi+l - Xi), hy = maxj=o, ... ,m(Yj+l - Yj), and /3 depends on the 
partial derivatives of I in each direction. 

The shortcomings of Lagrange interpolation in two dimensions are similar to the short­

comings of the one-dimensional version. Some of them can be overcome by using a piecewise 

method, which is defined as follows. 

DEFINITION 2.1. Given a rectangular grid II which can be divided into subgrids IInm each 

one containing n x m information points, the piecewise Lagrange interpolant is given by, 

where ljj(x, y) are denned in (2-9). 

L I(Xi, Yj) ljj(x, Y), 
O<i<n 
O$j~m 

(2-11) 

If we cover the whole domain with pieces of the form (2-11), we obtain the required 

approximation to our function. The error of this approximation is the maximwn of the 

errors of the individual pieces, ep(x, y) = max{enm(x, y)}. 

Two-dimensional piecewise Lagrange interpolation suffers from the same problems as the 

one-dimensional version. The partial derivatives of the interpolant do not exist at the 

boundaries between the pieces. 1 A different approach must be used when some degree of 

smoothness is required. 

2.5 Spline interpolation for functions in IR2. 

We will now define an interpolant that maintains a fixed degree of smoothness throughout 

the domain. This property is possessed by spline functions [1, 9, 47, 50] (see also sections 

3,4, and 5.) 

The interpolants in two dimensions are defined as sums of products of one-dimensional 

basis splines. From [9] we obtain the following definitions. 

1 The interpolant can even be discontinuous at the boundaries between the pieces. 
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DEFINITION 2.2. Let 6, V be linear spaces of functions 1 : K ~ JR ----4 JR. Then, \lu E U. 

\Iv E V, and for (x, y) E K x K the product w( x, y) = u( x )v( y) is called the tensor product 
of u and v and is symbolized by u ® v. 

DEFINITION 2.3. The tensor product of the linear spaces U and V is defined as, 

n 

U ® V = {w I w = L ai(ui ® Vi), ai E JR, Ui E U, Vi E V, n E IN}. (2-12) 
i=l 

Assume that U is the space generated by the basis splines {Bd i=l, ... ,n that solve the 

interpolation problem in the x-direction, and V is the space generated by {B j} ._ 
)-l, ... ,m 

solving the same problem in the y-direction. Then we have [9], 

THEOREM 2.6. Let U = span{Bdi=l ..... n, and V = span{Bj}j=l, ... ,m be the spaces of 

functions solving the problems of interpolating 1 E X, given {)'i(f)}i=l.. ... n' and 9 E Y, 

given {J.LAg)}j=l, ... ,m, respectively. Then 3S E U ® V solving the interpolation problem 

h = 1 ® 9 E X ® Y given vij(h) = )..i(f) J.Lj(g), Vi,j. S is given by, 

(2-13) 
i,j 

Other versions of theorem 2.6 can be found in [1, 47]. This work on splines has been 

extended to more general spaces in [4, 5, 10, 11, 37, 38, 39, 40, 57, 58, 72, 73]. 

2.6 Spline interpolation for functions in JR2 and noisy data. 

The problem of interpolating a set of noisy data has been addressed by vVahba in [60, 61]. 
The interpolating function minimizes the weighted sum, 

9(f) ~ (t (y; - I~t;, S;))') +,\ 11111, (2-14) 

for some (semi)-norm 11·11. The following theorem holds [61]. 

THEOREM 2.7. Let W be a semi-Hilbert space of real valued functions 1 defined on rn?, 
and equipped with a semi-norm II . 11m of the form, 

r ( amI )2 IIllim = in l L axka I dxdy. 
IR. k+l=m y 

(2-15) 
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Then the function minimizing the expression (2-14) is, 

n 2m(m+l) 

sex, y) = L CjKt;,Si(X, y) + 2: dFPj(x, y). (2-16) 
i=l j=l 

Kt;,s; is the reproducing kernel of the space lV and ¢>j the linearly independent polyno­

mials that produce the null-space of II . 11m. The reproducing kernel is given by, 

(2-17) 

where 8m = 2 m - 1 1r[lm-I)W' The coefficients Cj and dj are obtained by solving a system of 

linear equations. 

The above is similar to the work of Atteia, Duchon, and Meinguet on reproducing ker­

nel Hilbert spaces [3, 4, 5, 10, 11, 37, 38]. Reproducing kernel Hilbert spaces, and their 

applications, will be discussed in section 5. 

The parameter ..\ determines how close our approximation should be to the data. Its 

choice is not obvious and has been determined heuristically in many applications [52, 53]. 

\Ve will discuss some of those applications in sections 4 and 5. One of the methods that is 

used for calculating ..\ is the method of cross-validation [32, 64, 71]. 

2.7 Other approaches. 

There are many more methods that can be used for interpolating a set of data points on 

the plane. These methods have been developed for use in various disciplines, and can also 

be applied to computer vision. 

In particular, we have not discussed local spline methods. Local methods construct a 

different interpolant for every small subset of the data. The approximation to one set of data 

is completely independent from the approximation to the neighboring set. In this respect 

local spline methods are similar to the piecewise Lagrange methods, but they do usually 

guarantee some degree of smoothness. The methods developed by Akima and Shepard are 

local methods. The interested reader can find an excellent survey of those and other methods 

in [14]. 

3. Information-based complexity. 

In this section we will describe a framework under which we can solve a large number 

of problems. We will provide tools for the calculation of upper and lower bounds on the 
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computational compleXity of certain approximately solved problems as well as upper and 

lower bounds on the error of the algorithms used in obtaining solutions. The main core of 

work we will be describing will be from [57, 58, 69, 72, 73]; but see also the work of Michelli, 

Rivlin, and others [39, 40]. 

Information-based complexity obtains solutions to problems that have to be solved ap­

proximately, because only partial, or contaminated information about them is known. 

\Ve will discuss in this paper the worst caJe setting. It is defined as follows. 

1. Uncertainty is measured by a norm. 

11. Error and cost are measured for the worst possible case, i.e. for the elements in our 

spaces that maximize them. 

The worst case setting is not the only setting used in information-based complexity. The 

average and probabilistic settings are also studied. We will only briefly mention these areas 

in section 3.5. 

3.1 Problem formulation and information. 

Let F be a subset of a linear space H, and F2 a linear space equipped with a norm II . II. 
Let S be a mapping S : F ~ F2 • S is called the solution operator. 

Given € > 0, we want to compute an approximation Xf = x( €, f) E F2 to the image S(f) 

of an element f E F under the mapping S. We want, Xl to be as close to the element S(n 

as possible and definitely no more than € away. 

Formally, X f should satisfy 

(3-1) 

Formulation of a problem in the above notation consists of the definition of the spaces F, 

F2 , the norm II .", and the operator S. 
As mentioned before, the element f E F and its image S(n E F2 are not known. To 

obtain an approximation, some information about the element f must be known, else it is 

easy to show that we cannot solve the problem. Therefore, assume that we are allowed to 

compute L(f), for some functionals L : FI ~ IR. A natural choice for L are functionals of 

the form Lx : FI ~ IR which Vf E Fl return the value f(x) of the function f at the point 

x. The functionals Lx are widely used in practice. 

Assume now that we have a set of functionals {Ldi=l, ... ,n' Define the operator 

N : Fl ~ F3 ~ IRn that produces Vf E F the vector, 
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N(f) is all we know about the function f, except the a priori knowledge of the space F. 
N(f) is the information about f and is named the information operator. The number n is 

called the cardinality of information. 

The information N(f) is, in general, not sufficient for the exact recovery of the function 

f· This happens because the operator N is not 1-1. Intuitively, the higher the cardinality 

of the information n, the better approximation we can obtain. 2 On the other hand. the 

evaluation of Li(J) may be costly. Hence we would like to keep the cardinality n as small 

as possible when computing an t-approximation. 

vVe can define two types of information operators; Nnon and Na. The first is called 

non-adaptive information and is of the form mentioned above, 

(3-3) 

where Lj(f) are computed independently from each other. This means that the computation 

of the vector y = N(f) can be performed in parallel, a very useful and desirable property. 

The second type of information is called adaptive. Here, the computation of the value of 

Lj(f) depends on the values of L j(f), 'Vj < i. The adaptive information operator is of the 

form, 

(3-4) 

where Yi = Lj(J, Yl, ... , Yj-l). The operator Na has a richer structure than Nnon. This 

richer structure can be useful in many problems [57, 73]. On the other hand, for some 

problems and under certain assumptions, it can be shown that Na is not stronger than 

Nnon [57, 58, 68, 72J. 

3.2 Radius of information. 

\Ve have defined the problem and the information available for its solution. We define 

next the concept of the radiw of information. The radius of information measures the 

intrinsic uncertainty of the problem given information y = N(J). 

Assume that the computed information vector is y. The inverse image of y under N- 1 

is the set V(J) = {f E F : N(f) = N(f)} , the set of all the problem elements that are 

indistinguishable under the information y. The image of V(J) under the mapping S is 

S(V(f)) = U(f), (see Fig. 1.) 

2 Although there are cases when this does not hold (see [57].) 
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S 

11 = NU) 

Figure 1. 

Clearly, S(f) E U(f). Since the operator N is usually not 1-1, the set V(f) and conse­

quently the set U(f) are not singletons. 

We want the approximation X E to be as close to S(I) as possible. Since S(J) is not known 

and is only known to be in U(f), it can be seen that as U(f) gets smaller, the maximwn 

distance between X E and S(J) gets smaller. 

DEFINITION 3.1. [58} Let f E F, information N(f) and the set U(f) be as defined above. 

Then, the radius of information r(N, I) is, 

r(N, I) = sup rad(U(f)), 
yEN(f) 

where rad( A) is the radius of the smallest ball containing A. 

(3-5) 

The radius of information can be used as a measure of the best possible approximation. 

In particular, we can find an €-approximation Xf to every f E Fl if and only if r(N, I) ~ €. 

Intuitively, if r(N, I) ~ €, we can choose X t to be the center of the ball, in which case we 

are guaranteed to be no more than € away from S(f). This is not true if r(N, I) > €. A 

straightforward proof can be found in [58, 73J. 

3.3 Algorithms. 

We now discuss algorithms for obtaining an €-approximation. An algorithm is a mapping 

c.p : F3 - F2 that takes the information N(I) and computes an approximation X E = 

c.p (N(f)) to S(f).3 

3This is a very general definition of an algorithm and does not assume a particular model of computation. 
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The error of the algorithm cp given information N(f) is the distance between the value of 

cp(N(f)) and the unknown value S(f). Formally, 

e(cp,N) = sup IIS(f) -cp(N(f))II, 
fEF 

for some information operator N. 

(3-6) 

The radius of information is a sharp lower bound on the error of any algorithm that solves 

the problem using the given information N(f) [58, 73J. Namely, it holds: 

r(N, f) = inf e( cp, N). 
<p 

(3-7) 

The algorithm cp* that satisfies e( cp* ,N) = r( N) is called optimal error algorithm. 

The error of an algorithm is not the only issue we are facing when solving a problem. 

Another issue is the cost of the proposed solution. Expensive algorithms may be abandoned 

in favor of cheaper ones. 4 This can be seen in the following example. 

Assume that an algorithm CPI costs 3 times less than another algorithm 'P2 and makes 

twice the error, using the same information. Then, CPI using a sample that is twice as large, 

can have the same error as CP2 and still cost less. This difference between the costs of the two 

algorithms may permit the use by CPI of information of higher cardinality and thus result in 

a better approximation. 

3.4 Spline algorithms for linear problems. 

We ""rill now discuss a problem formulation where cheap optimal error algorithms [39, 57, 

58, 69, 72J can always be obtained. Assume that we have a linear mapping T : FI ~ F4 • 

Define Fo C FI to be, Fo = {f E FI : liT ill::; I}. The operator T that is used to restrict 

the space of elements is called the re.!triction operator. 

DEFINITION 3.2. Let F I , F2 , and F4 be linear spaces, S and T linear mappings, and infor­

mation N consisting of linear functionals. Tbe problem defined this way is called a linear 

problem. 

It is not feasible to cover all the known results about linear problems in this survey. We 

will mention only two interesting points. The reader is referred to [39, 40, 57, 58, 72] for 

further discussion of linear problems. 

4The cost is calculated assuming that information of fixed cardinality is used. 
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The first issue deals with adaptive versus non-adaptive information. It can be shown [57, 

58, 68] that for linear problems, 

(3-8) 

The inequality (3-8) means that adapt ion does not help, modulo a constant factor of 2, 

in the solution of linear problems. Furthermore, the simpler structure of Nnon allows the 

evaluation of the functionals Li(f) to be done in parallel and reduces the total cost of the 

approximation. 

The second issue deals with the existence of a linear optimal error algorithm. It can be 

shown, see [69], that in this formulation of the problem the spline algorithm is an optimal 

error algorithm. A spline is defined as follows [2, 3, 25]. 

DEFINITION 3.3. Let spaces F I , F2 and F4 and operators T and N be deEned as before, 

and information vector fi = N(J). Then, a spline a = a(fj) is an element of Fl such that, 

1. N(a) = y. 
ii. IITall = minfEF1 {IIT!II, N(f) = fi}. 

Thus, the spline a interpolates the information N(J), and minimizes the norm 11·11. This 

property will be very useful in sections 4 and 5. In contrast to the traditional definitions of 

splines given in section 2, definition 3.3 is non-constructive. Nevertheless, it can be seen that 

the splines defined in (2-6), (2-13) and (2-16) satisfy conditions i and ii for appropriately 

chosen spaces and operators. The following definition of a spline algorithm is taken from 

[58]. 

DEFINITION 3.4. An algorithm t.pll is called a spline algorithm ifit is of the formt.pIJ(N(!») = 

Sa(N(f)). 

The spline algorithm may take many different forms according to the problem definition. 

If T(Fd is a Hilbert space, and T(K er N) is closed, then c.pll is a linear algorithm and takes 

the form, 
n 

c.p1l(N(J») = LLi(J)S(9i), (3-9) 
i=l 

where Li are the information functionals that make N(f) = [L I (!), L2(J), ... , Ln(J)] and 

9i are the splines interpolating the unit vector [0, ... ,1, ... , O]T, for i = 1, ... , n. Spline 

algorithms in Hilbert space settings have been studied in [4, 5, 10, 11, 37, 38, 39, 41, 58, 

69]. The following optimality result holds [39, 58]. 
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THEOREM 3.1. Let T(Ft} be a Hilbert space, and let T(K er N) be closed. Then the spline 
algorithm (3-9) always exists, is unique and its error is equal to the radius of information. 

Spline algorithms are well behaved in terms of their error properties even in a non-Hilbert 
space setting, or when the problem is not linear. In that case, the error of the algorithm is 
larger than the radius of information, but it can be proven [57, 72] that, 

e('P!\N) ::; 2 r(N,f). (3-10) 

There are many papers dealing with the theoretical and practical aspects of splines. The 
optimality of spline algorithms was initially realized by Schonberg in [49]. Optimal spline 
algorithms have been developed for many different problems and formulations [1, 9, 15, 16, 
17, 18, 41, 69]. 

3.5 The average case model. 

The worst case model has been extensively discussed in this section, since it will be used for 
the applications that will be presented in the following sections. Average and probabilistic 
models have also been studied [65, 66, 67, 68, 70, 72, 73]. They differ from the worst case 
in the way errors and costs are measured. We will briefly discuss the average case model to 
illustrate the important differences in the definitions. 

In the average case, the error and the cost of an algorithm is measured for the average 
function f and not for the worst possible one. This is a plausible setting if we are interested in 
the expected behavior of the algorithm, or if we can assume that the worst possible function 
will be encountered with a very low probability. The space FI will now be equipped with a 
probability measure J..L which will measure the frequency of occurrence of any elements from 

Fl· 
The choice of the measure is not obvious and requires extensive consideration and study 

of the properties of the problem. This choice is as important in the attempt to correctly 
model the problem, as is the choice of the norm in the worst case. 

The average error of the algorithm is given by, 

(3-11) 

The average radius of information can now be defined accordingly. Many of the results 
that hold in the worst case setting have been shown to hold in the average (see [57, 65, 66, 
67, 70].) Also, there are relations between the average case setting and Bayesian statistics 
[32, 62, 63]. 

3.6 Advantages of information-based complexity. 

Information-based complexity provides methods for the derivation of optimal algorithms, 
optimal information, upper and lower bounds on the error of the solution of a problem, and 
upper and lower bounds on its complexity. These issues are of great interest to the study 
of problems requiring approximate solutions. Problems have to be solved approximately if 
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the available information is partial. Even when complete information is available we may 
choose to solve approximately if the cost of an exact solution is prohibitively high. 

There are many computer vision problems that have to be solved approximately. These 
include surface interpolation from sparse depth and orientation measurements, motion re­
covery, edge detection etc. We will review some of these problems in the following sections 
and discuss methods that can be used for their solution. Information-based complexity is 
one of these methods. 

All of the methods that will be discussed in sections 4, 5 and 6 investigate the existence 
and uniqueness of the solution, but not all of them address issues of optimality and com­
plexity. When these issues are important to the analysis of the problem, it is suggested that 
information-based complexity is employed. 

4. Modelling ill-posed problems. 

Consider the following optics problem. Given a 3-dimensional object, construct a 
2-dimensional image of this object. This problem is easily solved if we assume that we 
know certain parameters of the imaging system. In this case the solution always exists and 
IS uruque. 

Computer vision deals with the inverse problem of recovering a 3-dimensional object from 
its 2-dimensional image. It can be immediately seen that this is a more difficult problem, 
because during the imaging process the information contained in the third dimension is lost. 
In other words, the imaging process is in general not one to one, which means that there are 
many objects that could create the same image. Also note that the image is not continuous 
but a discrete sample of scene intensities. Thus the recovery process becomes even more 
difficult. 

4.1 vVhat is an ill-posed problem? 

Hadamard [21] gave the following definition of a well-posed problem (see also [55].) 

DEFINITION 4.1. A problem is well-posed iff its solution, 

1. Always exists. 
11. Is unique. 

111. Depends continuously on the input data. 

DEFINITION 4.2. A problem is ill-posed iff at least one of the conditions in definition 4.1 
does not hold. 

It can be seen from the discussion at the beginning of this section, that computer vision 
problems are usually ill-posed. This is, most of the time, due to the existence of many 
solutions. There are also certain problems that are ill-posed because their solution does not 
always exist, or does not depend continuously on the data. Some examples follow. 

1. Edge detection. 

In edge detection the boundaries of the imaged objects are reconstructed. One way of 
attacking this problem is to attempt to detect changes in the intensity of the image; this 
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process is similar to differentiation. Therefore, the procedure that detects those changes can 
be seen as numerical differentiation. The problem is ill-posed because the solution does not 
depend continuously on the input data [44, 56]. 

2. Motion. 

Assume that we want to recover the velocity of a point belonging to the contour of an 
object. The velocity vector has two components, one perpendicular to the contour and one 
parallel to it. Local measurements of the motion of points on the contour yield only the 
perpendicular component of the velocity field [23, 24]. The problem is ill-posed because 
there are many solutions that interpolate the data. The set of solutions contains all velocity 
vectors that have the perpendicular component equal to the sampled one and the one parallel 
to the contour equal to some arbitrary value. 

3. Surface reconstruction. 

The shape of a surface is recovered from different types of data, usually depth and ori­
entation measurements. The problem is ill-posed because there are many surfaces that 
interpolate the given set of data. On the other hand, if we combine data given by more 
than one process, and if the data are perturbed, then the problem may be overconstrained 
and not have a solution [53]. 

There are many more examples of ill-posed vision problems. We briefly mention some: 

(1) Shape from shading [27, 35]. 
(2) Optical flow [26, 33, 34]. 
(3) Structure from motion [59]. 
(4) Shape from texture [28]. 

A review can be found in [42, 43]. 

4.2 Restoring well-posedness - Regularization. 

Regularization theory [54, 55] deals with the solution of ill-posed problems. The problems 
are restated, so that they become well-posed, and then solved. This requires the definition 
of the solution space, as well as certain constraints that the solution must satisfy. These 
constraints are usually functionals that have to be minimized. 

Choosing the space of functions in which the solution and the function that created the 
data must lie, and choosing the functional to be minimized are difficult tasks. In particular, 
while we want our model to be mathematically correct, the physical plausibility of the 
solution is also important. Hence, the choice must be based on the physical properties of 
the problem, which must be modelled as closely as possible. 

The functiona!s that provide the constraints are (semi- )norms of various kinds, or gener­
alizations of (semi-) norms. For example: 

(1) Norms or semi-norms on Hilbert spaces [10, 11, 36, 37, 38]. 
(2) The Lp norm over some operator T [58], i.e. 

17 

( 4-1) 



(3) The Tikhonov stabilizers (53, 55] given by, 

P [r ' ( am () ) 2 1 IIull; = L ill Am(X) L . , m .. , it U X id dx 
m=O IRd it+".+id=m Jl ... ·)d· ax l ··. aXd 

(4-2) 

Assume that the space of functions has been defined, and the functional has been selected. 
Let y be the data, obtained from a problem Si, where 5 is a known operator. Also assume, 
that we do not require interpolation of the data, i.e. we permit y f. Si. We want to 
retrieve x. Then, the solution to the problem is obtained using one of the following three 
minimization methods, sometimes called regularization methods (43]. 

(1) Find i such that IITil1 ~ c holds for some fixed c and such that IISi - Y112 IS 

minimized. 
(2) Find i such that IISi - Yll ~ c holds for some fixed c and such that IITil12 IS 

minimized. 
(3) Find i such that IISi - Yll 2 + A IITil12 is minimized, for a given A 2: O. 

\Vhat is the meaning of these three methods? Using (1) we obtain as close an approxima­
tion to the data as possible while maintaining a fixed "regularity". In (2) we get a solution 
that is as smooth as possible while maintaining a fixed distance from the data, and (3) is a 
compromise between (1) and (2). The value of A determines the weight between the choices 
(1) and (2). For A close to zero the method is similar to (1), while for large A the method 
is close to (2). The appropriate choice of A is not an easy problem. In section 5, we will 
discuss work where a choice of A had do be done. 

4.3 Solution of some ill-posed problems. 

We now outline a method for the solution of some of the problems of section 4.1 (see [43].) 

1. Edge detection. 

As we said in the statement of the problem, we want to approximate the derivative!, of 
the function I. We choose IIT(')II to be: IITIII = II/"IIL2' We want to minimize. 

n 

8(!) = L (Yi - !'(Xi»)2 + A III"IIL, ( 4-3) 
i=1 

where Yi = !'(Xi) + fi are the given data, which we assume are perturbed by fi. The 
functional (4-3) corresponds to the third regularization method. 

2. Motion. 

We want to retrieve the velocity of a point, lying on the contour of the image of a moving 
object, only from the perpendicular component of the velocity vector. The parallel velocity 
component cannot be measured (See Fig. 2.) 

To turn the problem into a well-posed one, we choose IIT(. )11 to be: IITvll = II ~~ IIL2' where 
s is the direction parallel to the contour. We want to minimize IITvIl2. This is a functional 
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Figure 2. 

measuring the smoothness of the velocity field in the s-direction. The minimization of IITvl1 2 
corresponds to the second regularization method. 

If the data are noisy, we can choose to use the third regularization scheme. We must then 
minimize 8( u) = 2: (~~ (Sj, td - Uj)2 + >. IITvI12. 
3. Surface reconstruction. 

There are many different methods used in recovering a surface from depth and orientation 
data. The conventional ones involve minimizing a simpler form of the norm given by (4-2), 
which corresponds to the second regularization scheme. There are many other methods, 
which will be described in the next section. 

5. Survey of surface reconstruction methods. 

In section 4 we described ill-posed problems and we outlined work that has been done in 
formulating them as well-posed. One of these problems is that of surface reconstruction, 
which we discuss in this section. There are many reasons behind our choice of treating this 
particular topic in a more extensive manner. 

(1) Surface reconstruction is one of the major problems in computer vision. It is encoun­
tered as part of the object formation stage. 

(2) There has been extensive work done on this problem using a variety of methods, both 
formal and heuristic, and many different types of information. 

(3) It can be severely ill-posed. It does not usually have a unique solution. On the other 
hand, when the data come from many different sources, and are perturbed, they may 
overconstraint the problem. In this case there may not be any solution at all. 5 

We will now proceed to discuss various different approaches taken towards the solution 
of the surface reconstruction problem [7, 8, 29, 30, 34, 51, 52, 53]. 

5See discussion about surface reconstruction in the previous section. 
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5.1 Smoothness stabilizers and multigrid computation. 

In a series of papers [19, 20, 51. 52, 53J the regularization methods developed in [54. 55J 
have been used to make the surface reconstruction problem well-posed. In particular, the 
solution to the surface reconstruction problem has to minimize a series of energy functionals 
[19, 20, 52, 53J. 

Consider the generalized smoothness functionals of a function u(x, y) in IR?, 

(5-1) 

These functionals have been used in [l1J as (semi- ) norms of Hilbert spaces, in which case 
their minimization gives the solution to a reconstruction problem. 

Terzopoulos [52J assumes a space of functions with square integrable second partial deriva­
tives. He uses as the functional to be minimized. a convex combination of two functionals of 
the form (5-1) for m = 1 and m = 2 respectively. In particular he uses 

S,(u) = f.v { (:~)' + (:~n dxdy, (5-2) 

and 

(5-3) 

These two functionals have a physical interpretation. 51 (.) measures the potential energy 
of deformation of a membrane under tension, and 52 (.) measures the bending energy of a 
thin plate of infinite extent. In other words, (5-2) permits a rough surface that might have 
discontinuous derivatives, thus it may crack and crease. This could be desirable when the 
reconstructed surface is not very smooth, which is the case when we want to reproduce 
discontinuities. On the other hand, (5-3) imposes smoothness to the surface that minimizes 
it. This can be very useful for smoothing noisy data. Terzopoulos argues that both (5-2) 
and (5-3) are very well suited to modelling real world surfaces. Further evidence on the 
applicability of those can be found in [8, 50] where it is argued that humans can perceive 
smoothness up to regularity 2. It is further argued in [52J that only one of them is not 
sufficient. In particular, real world surfaces tend to be smooth throughout their interior, 
except for certain localities, in the boundaries, where they are discontinuous. If (5-2) were 
adopted, the discontinuities would be modelled but the interior would be unreasonably 
rough. If only (5-3) were adopted, the surface interior would be modelled correctly, but the 
discontinuities would be smoothed over. Furthennore, the reconstruction would oscillate in 
the vicinity of the discontinuity. 

Because of the above considerations, a combination 

T E [O,lJ (5-4) 
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has been proposed. For T = 0, S(u) = Sl(U) and for T = 1, S(u) = S2(U). For any other 
value of T the functional (5-4) permits a combination of the properties of the two functionals. 
vVe can choose whether to favor a smooth surface, or one that is less regular. 

Terzopoulos further proposes to have T vary across the domain, and by doing that he gives 
a variable character to S( u). This way, sudden changes in the data across discontinuities 
can be followed closely while the rest of the surface can retain its smoothness. To obtain 
this effect of a variable T on the same surface, he proposes T to be a function of the variables 
x and y, which would take a value of 0 near the discontinuities, and a value of 1 away 
from them, while changing gradually from the one value to the other. The functional S(u) 
with T(X, y), as defined above, is called a controlled smoothness stabilizer. Unfortunately, a 
method that can be used to obtain T( X, y) is not given. 

In [52] the conditions that make the problem of recovering S( u) well-posed are given. 
Furthermore, it is argued that these conditions always hold in the proposed formulation, 
hence the solution exists and is unique. Unfortunately, this solution does not have a closed 
form. To overcome this, it is proposed in [51, 52] that the problem be transformed into 
a discrete one, by using a finite element method. The discretization process involves con­
structing an approximate variational principle and minimizing the discrete version of the 
energy functionals. The whole discrete problem can then be written down as a system of 
linear equations, which can be solved to yield a solution. 

To speed up the process of solving the system of equations, a multigrid approach is 
proposed. The process starts with a coarse discretization, which results in a small system 
of equations. A few iterations, of a method that solves this system, are performed. Then, 
a finer discretization is made and the corresponding system is constructed. This system 
is solved with the same iterative method as before, using as an initial approximation the 
solution obtained from the coarse phase. Again few iterations are performed. This process 
is repeated until the grid is sufficiently fine, and then the system is solved to the required 
level of accuracy. 

5.2 Shape from stereo. 

Lee [34, 35] uses the framework of information-based complexity discussed in section 3 
to model a problem of surface reconstruction from sparse depth data. The data are given 
in the form of an information vector N(f) = [f(x}, yd, . .. , f(x n, Yn)]T, and the space of 
functions is taken to be F = {f : D ~ IR2 ~ IR, f has square integrable second partial 
derivatives}. The space F is equipped with the semi-norm, 

11/11 = l { (~~)' + 2 U:tJ + (!:n '} dxdy. (5-5) 

Lee chooses to work on a restriction Fo of F where Fo = {f E F : IIfll ::; I}. The optimal 
algorithm in this setting is the spline algorithm which is given by, 

n 

<;,11 (N(f)) = L f(Xi, Yi) O"i(X, Y), (5-6) 
i=} 
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where {O'di=l, ... ,n are the basis splines that were defined in section 3, and which must satisfy 
O'i(Xj, Yj) = Oij, Oij being the Kronecker delta. 

This formulation, proposed in [29, 30, 33, 34], yields a well-posed problem. It has been 
shown [10, 37, 39, 58] that the solution exists and is unique. It can also be seen that 
the solution depends continuously on the input data, although this point is not explicitly 
discussed in Lee's work. This work is an example where well-posedness is achieved as a 
necessary step towards the optimal solution. Therefore, it can be seen that an additional 
process that achieves well-posedness is not needed. 

To calculate the optimal spline function, two approaches are proposed. 
In the first, the basis splines approach, the coefficients of the basis splines are precomputed 

and stored. Basis splines are the splines interpolating the basis (0, ... ,1, ... , 0),6 of the 
space of permissible data vectors. They are constructed by using the reproducing kernel 
of the space F. The reproducing kernel K(x, Y; s, t) of a Hilbert space has the property 
(K(.,.;s,t),J( ... ») = f(s,t). It has been used in many applications [4,5,10,11,36.37, 
38]. (See also section 2.) 

Then, given the data f(Xi, Yi), the spline algorithm is constructed as a linear combination 
of the basis splines. Using this procedure the spline algorithm c.p5 is very easy and fast to 
construct. The only problem that might be encountered is lack of sufficient storage space 
for the coefficients of O'i, especially when the cardinality of the sampling is high. 

In the second approach the problem is remodelled in a quotient reproducing kernel setting 
similar to the one developed in [36, 37]. In this approach the space F is decomposed into 
two spaces FH and FN, so that F = FH EB FN. FN is the null space of the semi-norm 11·11, 
created in our case by lin{l, x, y}, and FH is now a Hilbert space with norm II . II. Then, 
the reproducing kernel of FH is given with respect to the reproducing kernel of F (see [34, 
36] and also [8J.) It is given by, 

KFH(X,y;s,t) = KF(X,y;s,t) 
d d 

- Lqj(x,y)KF(Xj,Yj;s,t) - Lqj(s,t)KF(X,y;Xj,Yj) 
~l ~l 

d d 

+ L L qi(X, y)qj(s, t)KF(Xi, Yi; x j, Yj), (5-7) 

j=l i=l 

where KF(X, Y; Xi, Yi) = [(X - Xi)2 + (y - yd2] log[(x - Xi)2 + (y - Yi)2], d = 3, q1 - 1, 
q2 = x, q3 = y, and {(x j, Yj) }._ 2 3 are any arbitrary non-colinear sample points. 

)-1 •• 
The spline function under this formulation is given by, 

n-d d 

O'(x, y) = L aiKFH(x, y; Xi, Yi) + L f(Xi, Yi)qi(Xi, Yi). (5-8) 

i=l i=l 

6 \Vhere 1 is located at the i-th position, Vi = 1, ... ,n. 
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The coefficients aj can be obtained by solving the system of equations, 

n-d d 

L ajKpH(x j, Yj; Xj, yd + L f(Xj, Yi)qi(Xj, yd = f(x j, Yj), j = 1, ... ,no (5-9) 
i=l j=l 

The matrix K = {kjj } ~j:l is dense, symmetric and positive definite. For the solution of 
the system (5-9) Choleski factorization is used in [34] which yields the solution at a cost of 
O(n3

). 

5.3 Reproducing kernel splines in surface reconstruction. 

Boult in [7, 8] extends the approach taken in [30, 33, 34]. He defines the space n-2 L2 of 
functions with square integrable second partial derivatives, and equips this space with the 
semi-norm given by (5-5). This setting is similar to the one discussed in [3, 4, 10, 11] and 
implicitly assumed in [51, 52, 53]. In contrast to the work of Terzopoulos, a direct solution 
is obtained without the need to resort to discretization. In particular, the actual norm is 
minimized instead of its discrete version. Furthermore, discretization into a finite element 
space is not performed, hence, further errors are avoided. 

The first problem addressed in [8] is semi-reproducing kernel interpolation of the data, 
where it is assumed that the data are exact, hence they are fitted. Then, the spline function 
is given by, 

n 

a(x, y) = L aiK(x, Y; Xi, Yi) + an +l X + an +2Y + an +3, 
i=l 

(5-10) 

where K(x, Y; Xi, Yi) = [(X - Xi? +(Y - Yi )2] log[(x - Xi)2 + (y - yd2] is the semi-reproducing 
kernel of the space F with semi-norm (5-5). 

The coefficients aj can be obtained by solving the system of equations, 

n 

L aiK(xj, Yj; Xi, Yi) + ai+l Xj + ai+2Yj + ai+3 = f(Xj, Yj), 
i=l 

n 

LajXi = 0, 
i=l 

n 

LaiYi = 0, 
i=l 
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The next problem ad.dresed in [8] is semi-reproducing kernel approximation, where it is 
assumed that the data are noisy, hence they are smoothed over_ In this approach, one tries 
to minimize the functional, 

n 

B(-) = A II-II + L IL i(·) - Li(f)12. (5-12) 
i=l 

where the data are given by N(f) = [L 1(f), ... , Ln(f)]T. 
Equation (5-12) is a compromise between closeness of fit to the data and smoothness, 

and the bias is determined by the value of the parameter A. This value can be viewed as 
our belief in the quality of the data. If the data are good they should be approximated 
as close as possible, whereas if the data are noisy they should be smoothed. The spline 
algorithm that minimizes (5-12) and solves the approximation problem is given by (5-10). 
The coefficients ai are obtained in a similar manner; only the system of equations is slightly 
different. In particular, 

n 

A C + L aJ{(x j, Yj; Xi, Yi) + ai+l X j + ai+2Yj + ai+3 = f(x j, Yj), 
i=l 

n 

L aj Xi = 0, 
i=l 

n 

Lai Yi = 0, 
i=l 

j = 1, ... ,n. 

( 5-13) 

where C is a constant depending on the choice of the model. Note that as A --+ ° the above 
system is the same as system (5-11), and the problem becomes similar to the interpolation 
problem. 

Boult further extended the above work to include more general spaces of the form D-m LP 
= {f: D ~ IR? --+ IR, f has p-th integrable m-th partial derivatives} which are then 
equipped with various (semi- ) norms. He consequently proceeds into solving the problem 
in a manner similar to the one described above. With this approach, surfaces with different 
regularity properties can be modelled. 

5.4 Other Approaches. 

The methods that were discussed in this section give a good indication of the work done 
in the area of surface reconstruction. They are by no means the only work available. In 
particular, in a series of papers [12, 13, 60, 61] the problem of interpolating a set of noisy 
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data has been addressed. This approach is similar to the reproducing kernel approximation 
discussed. in section 5.3 and has been covered in section 2.6 where we discussed. spline inter­
polation for noisy data. The minimization functional is given by (2-14) and the minimizing 
spline is given by (2-16). In many papers the spline that smoothes over the data is called. 
the smoothing spline. 

One interesting issue in the above approach, which is also relevant to the approaches of 
Grimson and Terzopoulos in [19, 20, 51, 52], is the choice of the parameter,X. One can 
choose ,x heuristically. A more elaborate mathematical method is cross-validation which is 
based on the statistical interpretation of the data. The properties of the data are analyzed 
to give a value for ,x. More information on cross-validation can be found in [32, 61, 64, 71]. 

There are many more methods used. for reconstructing a surface, known under the name 
of shape from ... methods. We could not possibly cover all of them in this survey, but we 
mentioned some in section 4 and discussed others in section 5. The discussion has been 
restricted to these problems that can be solved using regularization theory and information­
based complexity. To show that information-based complexity can be used for the solution 
of other computer vision problems, we will describe in the next section a new problem that 
is formulated and solved using the proposed. methodology. 

6. Shape from shadows. 

In this section we will define and propose a solution to the shape from shadow", problem. 
In this problem the shadows created by a light falling on a surface will be used. to recover 
the surface itself. 

Very little work has been done using shadows for the reconstruction of the surface shape. 
The only existing work we are aware of is the one proposed in [31] where the problem is 
solved using a relaxation method. A new approach to the solution of this problem is taken 
in [22]. That approach follows the ideas of the general theory discussed in section 3. 

Shadows are a very strong piece of information for many reasons. The process that 
uses shadows is not affected by texture or by surface reflectance. Furthermore, the imaging 
system does not need. a grey scale or color capabilities. It is sufficient to be able to distinguish 
between black and white. Also, noise in the form of bright spots inside a dark area or dark 
spots inside a light region can be filtered out easily. It is evident therefore that shadows 
yield a powerful tool to be used in the reconstruction process. 

6.1 Formulation of the problem. 

This problem is approached in [22] in the following way. A I-dimensional slice of a 2-
dimensional surface is approximated. A I-dimensional slice can be seen as a function of one 
variable 1 : B ~ IR -+ IR belonging in a space of functions Fo. Let, 

Fo = {III: [0,1]-- IR, !' absolutely cont., 11/"IIL2 ~ 1}, (6-1) 
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f(x) 

X· , 

Figure 3. 

be the space that contains the functions f that we want to approximate.7 •s The norm 1I·IIL
2 

is defined as IIfllL2 = J 10
1 

If(x)1 2 dx. 
Also, define the bilinear form (., .) to be such that 

(J, g) = 11 f"(x) g"(x) dx, (6-2) 

and II . II to be such that 
(6-3) 

Clearly (.,.) defined above is a semi-inner product and II . II is a semi-norm. If we pose 
the additional constraints f(O) = 0 and P(O) = 0, on the function f, then (.,.) becomes an 
inner product and II . II a norm. Consequently, Fo equipped with (-, .) is a semi-Hilbert or a 
Hilbert space respectively. 

The information contained in the shadows is derived as follows. Clearly, from the position 
of the light source, we can immediately obtain the derivative of the function f at the point 
Xi, Xi being the beginning of the shadow (see Fig. 3.) We can also obtain the difference, 
f( Xi) - f( Xi), between the two function values at the beginning and at the end of the shadow 
respectively. This difference can be obtained as follows. Denote by li(X) the straight line 
defined by the light ray creating the shadow and passing through the points Xi, Xi. We know 
the derivative of the line, IHxi) = P(Xi) and also that f(Xi) - f(Xi) = lj(xd - lj(xj). But 
lj(xd - lj(xj) = li(xd(xj - xd which is known, hence f(xj) - f(xj) is known. 

An additional piece of information can be obtained from each shadowed area. It holds 
(Fig. 3) that, 

"Ix E [Xj, xd- (6-4) 

7The bound of 1 in 1If'/IIL2 is assumed without loss of generality. Any fixed bound can be treated in a 
similar manner. 
BThe use of the interval [0,1] is not restrictive either. Any interval [a, b], for some a and b. is equally good. 
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From this inequality we obtain data in the following manner. We select a few points 
t j, j = 1, ... , mi, in the i-th shadowed interval and we require that (6-4) is satisfied for 
these points. Clearly, f(Xi) - f(tj) is not known. We will assume that it is known and will 
derive its value later when we solve a minimization problem. 

In each one of the images in our sample, there are 0, 1 or more shadowed areas. From 
each one of those shadowed areas we can obtain a derivative value, a displacement, and a 
set of unknown displacements satisfying (6-4). If we group all the data resulting from this 
sampling we obtain the vector, 

N(f) = [J'(xJ), ... , J'(x n), f(xd - f(Xl), ... ,j(xn) - f(xn), 
T 

f(xJ) - f(td,···, f(xd - f(tml)"'" !(X2) - f(tm2)"'" f(xn) - f(t mn )] , (6-5) 

where mi is the number of points tj in the interval [Xi, Xi] that satisfy (6-4), and ml + ... + 
mn =m. 

6.2 Problem solution. 

In the setting discussed in section 6.1, the spline algorithm is given by, 

2n m 

'P~(x) = L aigi(x) + L cjhj(x), (6-6) 
j::;l 

where {gdi::;1 ..... 2n and {hj}j::;l ..... m are such that, 

"() (Xi - x)~ - (Xi-l - x)~ 
gi X = , 

JXi - Xi-l 
i = 1, ... ,n (6-7) 

where (Xi - x)~ = 1 for Xi > X and 0 otherwise, 

i = 1, ... ,n (6-8) 

where (Xi - X)+ = Xi - X for Xi> X and 0 otherwise, and 

h'J(x) = (tj - X)+ - (Xi - x)+ - (Xi - x)~(tj - xd, i = 1, ... , n, j = 1, ... , m. (6-9) 

The functions {gdi::;l ..... n and {hj}j::;l ..... m are the representers of the functionals Li(f) 
that make up the information N(f), i.e. (gi, J) = Li(f). The coefficients ai and Cj are 
chosen so that the spline 'P' interpolates the data, and minimizes the norm II . II. 

Two very important results about the spline algorithm (6-6) follow from theorem 3.1. 
First, the shape from shadows problem under the proposed formulation is well-posed. Reg­
ularization of the form discussed in sections 4 and 5 is not needed. 

Second, the spline algorithm is optimal. If a problem is linear, the spline algorithm 'P~ 
has a worst case error equal to the radius of information. An algorithm having error equal 
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to the radius of information is called strongly optimal. If the problem is not linear, then 
(3-10) holds, and the algorithm is called almost strongly optimal [57]. 

The shape from shadows problem is linear, only if the cardinality of the second part of 
the information N(J) is 0, i.e. m = o. If m > 0 then <.ps is not strongly optimal. but almost 
strongly optimal. 

6.3 Algorithm implementation. 

The calculation of the spline algorithm given by (6-6) is done in 2 stages using the following 
procedure. 

Stage 1: 

First, assume that the cardinality of the non-linear part of the information is zero.9 
Therefore, ignore the coefficients C j and only construct the values of the coefficients aj. This 
is done by solving the system of equations, 

Gii -y, ( 6-10) 

where G = {< gi, gj > } :,:=1. The system is solved by a direct method without the need 
for pivoting since it is symmetric, positive definite and has a special structure that can 
reduce the number of calculations. 

In the next step, the computed values of the aj' s are used to construct the spline alger 
rithm. 

Third, we check to see whether the non-linear constraints are violated. This can be done 
on-line while <.p"(x) is plotted, or can be done in a separate step. 

If the non-linear constraints (6-4) are not violated, the process terminates. V<le have 
already obtained the approximation <.p" (x) to the function f and we have plotted it. Since 
we have not used the non-linear part of the information, the problem is linear and the error 
of the spline algorithm is equal to the radius of information. 

Stage 2: 

If the constraints (6-4) are violated, then we do not have a sufficiently good approximation. 
Unfortunately, there is no a priori known formula for the calculation of Cj. Instead, 1I<p"1i 
must be minimized directly by solving a quadratic minimization problem [22]. 

To construct Cj we proceed as follows. We take a few points from the shadowed intervals 
where the constraints are violated. Then, for these points we solve the minimization problem 
and obtain the coefficients Cj and also modify the old coefficients aj. Then we check again 
for violations of the non-linear constraints. If there are violations we repeat Stage 2. We 
select a few more points from the interval(s) where (6-4) is violated, and we add them to 
the sample. The minimization is repeated for the new set of points and the new coefficients 
are derived. At the same time, the aj' s and the old C / s are modified. 

9This assumption is very plausible, and is supported by our experience. A good approximation can almost 
always be obtained without the need to use the non-linear information. 
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7. Conclusion. 

We reviewed various mathematical methods that can be used to model and solve computer 
vision problems. Particular emphasis was placed on the surface reconstruction problem 
which is of significant importance to the scene recovery process. 

We first discussed various classical methods used for the approximation and interpolation 
of functions. We considered methods that can be used to recover functions of one variable, 
and consequently extended the discussion to functions of two variables. 

In section 3 we presented a survey of information-based complexity which deals with 
problems that have to be solved approximately. It provides methods for the approximate 
solution of these problems, and studies the error and the complexity of the solution. Many 
computer vision problems can be modelled and solved using this methodology. 

We discussed ill-posed problems and analyzed the reasons that make computer VISlOn 
problems ill-posed. Regularization theory has often been used to model computer vision 
problems. vVe showed, in section 4, some ill-posed problems that can be solved using the 
methods proposed by regularization theory. 

In section 5 we reviewed different solutions to the surface reconstruction problem. Some 
of the solutions have been obtained using regularization theory, and some using information­
based complexity. 

Finally we discussed, in section 6, the shape from shadows problem, a problem which has 
not been tackled until recently. We formulated it in the theoretical framework of section 3, 
and we proposed a solution which always exists, is unique and achieves minimum error. We 
can thus suggest that information-based complexity may be employed to solve other open 
computer vision problems requiring approximate solutions. 
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