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Abstract. 

We survey recent worst case complexity results for the solution of nonlinear equations. 

Notes on worst and average case analysis of iterative algorithms and a bibliography of the 

subject are also included. 
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1. INTRODUCTION. 

We study the approximate solution of the equation I(x) = 0 and also the problem of 

computing the topological degree of f. It is assumed that I belongs to the class of smooth 

functions F defined on a real interval or on the unit simplex or on the unit cube in m dimen­

sions. The information on I consists in general of n values of arbitrary linear functionals 

which are computed sequentially (adaptively). The topological degree or an approximation 

to 0', a zero of I, is constructed by an algorithm which uses these evaluations. 

Several classes of functions F and the two error criteria are studied to determine whether 

or not it is possible to find an approximation to 0' which satisfies the error criterion to 

within a specified tolerance €. The topological degree is computed exactly for the class of 

Lipschitz functions. 

Complexity, i.e., the minimal cost of solving these problems, or lower and upper bounds 

on the complexity are found, and information and algorithms are developed which solve 

the problem with cost close to the complexity. 

In Sections 2, 3 and 4 we include some history and list recent complexity results for the 

worst case setting. In Section 5 we exhibit future directions of research, and in Sections 6 

and 7 include notes on worst and average case analysis of iterative algorithms. 
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2. OVERVIEW AND BRIEF HISTORY. 

In this section we discuss the worst case setting for the solution of nonlinear equations. 

We consider here algorithms which use general sequential information and whose error 

and cost are defined by the worst case performance. Sections 2-5 deal with non-iterative 

algorithms. 

There are numerous papers in this area where optimal or nearly optimal algorithms are 

found. A partial list includes Booth (1967), Chernousko (1968), Eichhorn (1968), Gross and 

Johnson (1959), Hyafil (1977), Kiefer (1953, 1957), Micchelli and Miranker (1975), Sikorski 

(1982,1984b), Sikorski and Wozniakowski (1983) and Sukharev (1976), who considered 

the scalar case, and Boult and Sikorski (1984, 1985a, 1985b, 1985c), Nemirovsky and 

Yudin (1983), Majstrovskij (1972), Sikorski (1984a) and Todd (1978) who consider the 

multivariate case. We include here papers dealing with computing extrema since this 

problem is closely related to zero finding. 

We briefly recall some of the results. The first results may be found in the Master's 

thesis of J. Kiefer, Kiefer (1953). He considers the search for the maximum in the class of 

scalar unimodal functions. The information is the values of f at n points. He proves that 

Fibonacci search is the optimal information and the optimal algorithm. 

In the 1960's people worked on classes of functions which were convex or unimodal and 

obtained optimal algorithms for approximating zeros of functions and also derivatives; see 

Gross and Johnson (1959), Booth (1967), Chernousko (1968) and Eichhorn (1968). 

Gross and Johnson consider the solution of scalar nonlinear equations for the class of 

convex continuos functions changing sign at the endpoints of an interval. The information 

is sequential function evaluations. They study optimal evaluation points and optimal 

algorithms. 

Booth studies location of zeros of derivatives, Chernousko the search for a zero in the 

class of scalar functions with bounded difference quotients and Eichhorn the search for the 

maximum or a zero in the class of unimodal or montone nonincreasing functions. 
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In the 1970's the focus shifted to classes offunctions with bounded derivatives. Examples 

here include the work of Micchelli and Miranker (1975) on "envelope methods", Sukharev 

(1976) on Lipschitz functions and Majstrovskij (1972) on optimality of Newton's method. 

An important contribution is the work of Nemirovsky and Yudin (1983). They study 

the multivariate minimization problem and are interested in finding the minimal number 

N(f) of function or derivative evaluations in order to determine f-approximation to the 

extremum in the residual sense. The authors find sharp estimates for N(f) for classes of 

convex and strongly convex functions as well as for nonconvex smooth functions defined n 

convex and/or compact set G of dimension n. For example N(f) ~ n In ~ for the convex 

class and N(f) ~ (~r/k for the nonconvex class of k-times continuously differentiable 

functions. The authors only occasionally deal with the problem of combining these N(f) 

evaluations to c.(lrnpute an approximate solution. 

There is much current research on optimal algorithms for solving nonlinear equations. 

A precise formulation of the worst case setting is given in Section 3 and selected recent 

results are stated in Section 4. 
3. FORMULATION OF THE PROBLEM. 

Let a(J) be a zero of the nonlinear function! and let x(J) be an approximation to a(J). 

What we mean by approximation is determined by which error criterion we choose. Two 

commonly used criteria are the root criterion and the residual criterion. 

Let f > 0 and a norm II . II be given. Then the root criterion is defined by 

(3.1) IIx(J) - a(J) II ~ f, 

and the residual criterion is defined by 

(3.2) 1I!(x(J))1I ~ L 

For each of these error criteria we study whether we can compute an approximation to 

within a tolerance f, for every function! in a class F. This is called the worst case setting. 
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The information commonly used to solve this problem are evaluations of I and its 

derivatives. We will, more generally, assume the information consists of linear functionals-o 

Namely, the information on I, N(f), consists of n values of arbitrary linear functionals 

which are computed sequentially (adaptively): 

(3.3) N(f) = [Ll (f), ... , Ln (f)], 

where the choice of Li depends on Ll (f), ... , Li-l (f). If Ll are given a priori the N is 

called parallel or nonadaptive, otherwise it is called sequential or adaptive. It is important 

to stress that this information is partial i.e., there are, in general, many functions sharing 

the same information. Knowing N(f) we compute x(f) = tp(N(f)) by an algorithm tp 

which is a mapping 

(3.4) tp: N(F) -+ D, 

where D is the domain of the functions I. The error of an algorithm tp using N is given 

by 

(3.5) e(tp, N) = sup 1I0'(f) - <p(N(f)) II 
JiF 

in the case of the root criterion, and 

(3.6) e(tp, N) = sup Ilf(tp(N(f)))11 
JiF 

in the case of residual criterion. 

We next define probJem complexity. 

We assume that functional evaluations cost c and that arithmetic operations and com-

parisons cost unity. 

To compute tp( N (J)) we must 

(3.7'-. .. Compute y = N (f), 
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and 

(3.8) Compute ~(y). 

Thus the cost of an algorithm ip, cost(~, N), is given by 

(3.9) cost(~, N) = sup (cost N(f) + cost rp(N(f))). 
fiF 

The problem complexity comp(i) is defined as the minimal cost of an algorithm which uses 

arbitrary information N and computes an approximation x(f) to within tolerance E, i.e., 

(3.10) comp(i) = inf{cost(~, N) : 'V~, N: e(~, N) ::; i} 

By optimal information and an optimal algorithm we mean N and ~ for which cost(~, N) 

= comp(E) and i(<p, N) ::; Eo 

4. RECENT RESULTS. 

In this section we list some recent complexity results. We conclude that for smooth 

functions the zero-finding problem with the root criterion is much more difficult than with 

the residual criterion. For example, for infinitely differentiable real functions with bounded 

arbitrary semi-norm it is impossible to solve the problem with the root criterion. It is, 

however, possible to solve it for the residual criterion. Thus additional restrictions on 

the functions are needed or the use of some nonlinear information is required to obtain 

positive results for the root criterion for these classes. We show that bisection is an almost 

optimal complexity algorithm for the class of functions changing sign at the end points of 

an interval. 

We also present recent results on the complexity of computing the topological degree of 

a mapping, which can be used to determine the existence of a zero of f in a given domain. 

Finally, we exhibit some results for the miultivariate case, both for the root and residual 

criteria. 
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4.1 ROOT CRITERION. 

First, we consider the class P of smooth real functions having a real zero: 

(4.1) FI = {I: [a, b] -+ R, 3a: I(a) = 0, I E COO [a, b], 11/11 ~ I}, 

where II . II is an arbitrary semi-norm. 

Of course, if E ~ (b - a) /2, then the midpoint xU) = bta solves the problem for 

every I in F. Thus the only interesting case is for E < (b - a)/2. Then Sikorski and 

Wozniakowski(19S3) show 

Theorem 4.1. comp(E) = +00, 'IE < b;a. I 

This means that for € less than half of the length of the interval there exists no information 

of the general form (3.3) and no algorithm to solve this problem. 

A very different result holds when we assume that the functions change sign at the 

endpoints of an interval. Namely consider the class 

(4.2) F2 = {I: [a, b] -+ R, f(a) ~ 0, f(b) ~ 0, f E cj [a, b]}, 

where j is an integer, j = 0,1,2, ... , or j = +00. It is known that if the information 

consists of function evaluations, then the optimal algorithm and information are given by 

bisection. It is proved in Sikorski (19S2) that bisection remains optimal even if the general 

information of (3.3) is permitted. We have 

Theorem 4.2. comp(E) = (c + a.)~ogb~aJ + a2, where alE[0,3j and a2 E[O, 1]. I 

The upper bound is realized by bisection information and the bisection algorithm. Thus 

the bisection algorithm using bisection information enjoys almost minimal complexity. 

Note that comp(E) does not depend on function smoothness. The same result holds for 

the class of polynomials of unbounded degree assuming the information is continuous, see 

Sikorski (1 9S4b). 
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l. 

Do similar results hold in the multidimensional case? The analagous assumption to sign 

change is an assumption on non-zero topological degree(deg). Namely let 

(4.3) 

F3 = {f i-Goo (6), 6 - unit triangle in R2, 

f: 6 - R2, f has exactly one zero, which is 

simple, deg(J, 6, 0) i= 0,0 = (O,O)and 6 is 

completely labeled under f}. 

It turns out that even in the two dimensional case it is impossible to solve this prob­

lem. Thus one additional dimension makes the problem noncomputable. Boult and Siko-

rski ( 1984) proved 

Theorem 4.3. If t < diam(6)/2 then 

comp(f) = +00. 

• 
Thus there exists no information and no algorithm to solve this problem to within ( < 

diam(6)/2. In particular, the complexity of all methods which use as information function 

and/or derivative evaluations is infinite. Examples of such methods are continuation and 

simplicial continuation methods; see Allgower and Georg(1980). 

This negative result suggests that additional restrictions on the class of functions or the 

use of nonlinear information are needed to obtain positive results in the multidimensional 

case. 
4.2 COMPLEXITY OF COMPUTING TOPOLOGICAL DEGREE. 

A problem related to zero finding is the computation of topological degree. The cru­

cial property of the degree , expressed by Kronecker's theorem, is the following: if the 

topological degree of f is not zero on some domain D then the function f has a zero 
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in D. Thus we can approximate a zero of f by the following algorithm. We start with 

some domain with nonzero degree. Subdivide this domain, compute the degree, if it is 

well defined, for the smaller domains, choose a sub domain of nonzero degree, etc. In this 

way we construct a sequence of domains with decreasing diameters and nonzero degrees. 

This idea was investigated by many people, see Eiger, Sikorski and Stenger(1984)' Harvey 

and Stenger (1976), Kearfott(1977,1979), Priifer and Siegberg(1980), Stenger(1975) and 

Stynes(1979a,1979b,1981). Such an algorithm would not always work, since the degree is 

not defined if a funtion has a zero on the boundary of a subdomain. We believe, however, 

that it would work with high probability. This claim, of course, requires introducing a 

probability measure into the space of functions; it will be a topic of future research. 

Here we exhibit lower and upper complexity bounds for the computation of degree in 

the class of Lipschitz functions. We stress that we compute the degree exactly. Let 

(4.4) F4 = {f: C -+ R", IIf(x) - f(Y)lloo ~ Kllx - Ylloo, IIf(x) II ~ d > 0, 'Vu a C} 

where C = [0,11" is the unit cube in R". Since the degree is uniquely defined by function 

values on the boundary of a domain we assume as information the sequential evaluation 

of function values on the boundary a C of C. For arbitrary n, n > 2, we have, Boult and 

Sikorski(1985b), 

Theorem 4.4. The complexity of computing degree, comp(deg), is bounded by: 

Clow ~ comp(deg) ~ cup, 

Clow ~ 2n(Kj(8d))"-1 (C + n), 

n2 

cup ~ 2n(Kj(2d))"-1 (c + 2" (n - 1)1), 

whenever Kj(8d) ~ 1. 
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Note that if K/(2d) < 1 then the functions in F4 do not have zeros and therefore the 

degree is zero for every f. The case 1 ~ K/(2d) < 4 is open. For the two dimensional 

case we have the stronger result, see Boult and Sikorski(1985a), 

Theorem 4.5. If n = 2 and K/(4d) ~ 1 then 

comp(deg) = 4t:dj(c + a) - 1 

where a t[2, 24]. • 
In both cases parallel function evaluations are almost optimal information. This infor­

mation is used by an algorithm due to Kearfott(1979). 

These results imply that the topological degree can be computed for small n and/or not 

too large K/(2d). taking for example n ~ 5 and K/(2d) ~ 10 the degree can be computed 

with cost ~ 105 (c + 300). For large n and/or large k/(8d) the problem is intractable. 

For example taking n = 10 and K/(8d) = 103 then the lower bound on complexity is 

Clow ~ 2.1028 (c + 10). 

4.3 RESIDUAL CRITERION. 

For the next two classes we show that the complexity of approximating a zero in the 

residual sense is finite. This contrasts with Theorem 4.1 in which we showed that with the 

root criterion the complexity is infinite. Namely consider the class F5 , which contains Fl 

from (4.1) with the semi-norm 11/11 = II/(r)lloo, and is defined by 

(4.5) Fs = {I: [a, b] -+ R, l(r-1) absolutely continuous, 11/(r)lIoo ~ 1 and 3a : I(a) = O}. 

It is proved in Sikorski and Woiniakowski (1983): 

Theorem 4.5. comp(t) = O(€-l/r). • 
It turns out that optimal information is parallel and that the optimal algorithm is easy 

to implement for small r. 
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Next we report on the multivariate case. Namely, take Lipschitz class: 

(4.6) F6 = {I: C --+ Rn 
: II/(x) - I(Y)lIoo ~ Kllx - ylloo, and30: € C: 1(0:) = (0, ... , O)}, 

where C = [0, l]n. 

It is proved in Sikorski (1984a): 

THEOREM 4.6. comp(€) = O((::)n). • 
We also showed that optimal information is parallel and that an optimal algorithm is an 

easy to implement search procedure. In fact this information and algorithm were already 

implemented in IMSL library by Aird and Rice (1977) in their ZSRCH routine. 

5. FUTURE DIRECTIONS. 

We list here a number of directions for future research. 

(i) Optimal information and algorithms in probabilistic and average case models should be 

studied. 

~. (ii) For a number of classes that we have investigated, the optimal information is parallel. 

We wish to obtain general conditions under which parallel information is optimal. 

(iii) For some problems linear information is too weak. Therefore, restricted non-linear 

information should be investigated. 

(iv) Classes of functions which are piecewise smooth should be considered since these classes 

arise in practice. 

(v) Optimal information and algorithms should be implemented in software and hardware. 

6. ITERATIVE MODEL OF COMPUTATION: WORST CASE. 

In the 1960's and 1970's most of the research on optimal solution of nonlinear equations 

was devoted to the iterative model. In this model one constructs a sequence of points con­

vergent to a zero of a function and wants to obtain information and an algorithm which 

guarantee the fastest possible convergence for every function in a given class. Thus, this 

can be viewed as an asymptotic worst case model with stationary iterative information; 
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stationary iterative information here means that a fixed set of linear functionals is repeat­

edly used in generating a sequence of points. Thus, for example, Newton information is 

evaluations of a function and its derivative on a sequence of points. Research monographs 

are due to Traub(1964)' Ortega and Rheinboldt(1970), and Traub and Wozniakowski(1980, 

part B). Although our paper is not devoted to the iterative model we present a brief survey 

of this field. 

The study of iterative complexity was intitiated by the work of Traub(1961,1964). In his 

1964 monograph Traub considers iterations for approximating a simple or multiple zero of 

a scalar nonlinear function f. The information is the values of f and it derivatives. He 

introduces the classification of iterations according to the information used as one-point, 

one-point with memory, multipoint and multipoint with memory. He proves the maximal 

order theorem for one-point iterations and introduces the idea of interpolatory iteration. 

He conjectures that memory always adds less than one to order for a one-point iteration. 

He introduces multipoint iterations and shows that it differs significantly from one-point 

iteration. He considers several complexity measures. 

Woiniakowski(1972-1976) generalizes the problem of maximal order to the multivariate 

and infinite dimensional cases, establishes the maximal order of interpolatory algorithms 

for the scalar case and shows that memory does not in general increase order for the 

multivariate case. He introduces the concept of order of information which provides a 

general tool for establishing the maximal order of an iteration. He shows that maxi­

mal order depends only on information used by an algorithm and not on the structure 

of the algorithm, see also Traub and vVoiniakowski(1976a,1976b,1979,1980a,1980b,1980c). 

Significant papers on optimal iteration include Brent (1973, 1976a, 1976b), Brent, Wino­

grad and Wolfe (1973), Kacewicz (1976a, 1976b, 1979), Kung (1976) Kung and Traub 

(1974a,1974b,1976)' Meersman (1976a, 1976b), Saari and Simon (1978), Trojan (1980a, 

1980b) and Wasilkowski (1980, 1981a, 1981 b, 1983). 

There is also a very interesting stream of work for the approximate solution of sca.lar or 
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multivariate polynomial equations. It is assumed that complete information is available 

and given by the degree and coefficients of a polynomial. There is a number of interesting 

papers in that area. Some of them deal with average or probabilistic settings, some of 

them deal with different models of computation. A partial list includes: Hirsch and Smale 

(1979), Kim (1985), McMullen (1985), Murota (1982), Renegar (1984,1985a,1985b,1985c), 

SchonIiage (1982), Shub and Smale (1985), Smale (1981,1985) and Wongkew (1985). 

7. ITERATIVE MODEL OF COMPUTATION: AVERAGE CASE. 

There have been a number of important recent papers on average case algorithmic anal-

ysis of iterative methods for computing polynomial zeros. 

Pioneering work is due to Shub and Smale(1985) who analyze the average behavior of 

Newton-type method for approximating zeros of complex polynomials. Also for polynomial 

zeros Renegar{1984, 1985a,1985b) investigates the simplicial-continuation algorithm due 

to Kuhn,(Kuhn et a1. (1984)), and the multivariate Newton method. 

Shub and Smale (1985) show that, on the average, six starts of a modified Newton's 

method are sufficient to obtain a point z, with 1 J(z) 1< f, at cost proportional to d(d + 

~ logl/f.) for a complex normalized polynomial J of degree d. Renegar(1984) assumes the 

normalized Lebesque measure on the coefficients of complex polynomials and proves that 

for sets of polynomials of large measure the Kuhn's simplicial algorithm finds a point z with 

IJ(z)l < f. and also I z - a 1< f., where J(a) = 0, within O(logl/f.) steps. In Renegar{1985a, 

1985b,1985c) he generalizes these results to the multivariate case. 

We believe that a significant area for future research will be to obtain optimal imforma-

tion and algorithms in average case and probabilistic settings. 
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