3 research outputs found

    An overview of memristive cryptography

    Full text link
    Smaller, smarter and faster edge devices in the Internet of things era demands secure data analysis and transmission under resource constraints of hardware architecture. Lightweight cryptography on edge hardware is an emerging topic that is essential to ensure data security in near-sensor computing systems such as mobiles, drones, smart cameras, and wearables. In this article, the current state of memristive cryptography is placed in the context of lightweight hardware cryptography. The paper provides a brief overview of the traditional hardware lightweight cryptography and cryptanalysis approaches. The contrast for memristive cryptography with respect to traditional approaches is evident through this article, and need to develop a more concrete approach to developing memristive cryptanalysis to test memristive cryptographic approaches is highlighted.Comment: European Physical Journal: Special Topics, Special Issue on "Memristor-based systems: Nonlinearity, dynamics and applicatio

    A survey of Fault Attacks in Pairing Based Cryptography

    Get PDF
    Article published in the journal Cryptography and Communications http://link.springer.com/article/10.1007%2Fs12095-014-0114-5The latest implementations of pairings allow efficient schemes for Pairing Based Cryptography. These make the use of pairings suitable for small and constrained devices (smart phones, smart cards.. .) in addition to more powerful platforms. As for any cryptographic algorithm which may be deployed in insecure locations, these implementations must be secure against physical attacks, and in particular fault attacks. In this paper, we present the state-of-the-art of fault attacks against pairing algorithms, more precisely fault attacks against the Miller algorithm and the final exponentiation which are the two parts of a pairing calculation.
    corecore