13,805 research outputs found

    Quantum Measurement Theory in Gravitational-Wave Detectors

    Get PDF
    The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kilometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.Comment: 147 pages, 46 figures, 1 table. Published in Living Reviews in Relativit

    Interfacing GHz-bandwidth heralded single photons with a room-temperature Raman quantum memory

    Full text link
    Photonics is a promising platform for quantum technologies. However, photon sources and two-photon gates currently only operate probabilistically. Large-scale photonic processing will therefore be impossible without a multiplexing strategy to actively select successful events. High time-bandwidth-product quantum memories - devices that store and retrieve single photons on-demand - provide an efficient remedy via active synchronisation. Here we interface a GHz-bandwidth heralded single-photon source and a room-temperature Raman memory with a time-bandwidth product exceeding 1000. We store heralded single photons and observe a clear influence of the input photon statistics on the retrieved light, which agrees with our theoretical model. The preservation of the stored field's statistics is limited by four-wave-mixing noise, which we identify as the key remaining challenge in the development of practical memories for scalable photonic information processing

    Invitation to the "Spooky" Quantum Phase-Locking Effect and its Link to 1/F Fluctuations

    Full text link
    An overview of the concept of phase-locking at the non linear, geometric and quantum level is attempted, in relation to finite resolution measurements in a communication receiver and its 1/f noise. Sine functions, automorphic functions and cyclotomic arithmetic are respectively used as the relevant trigonometric tools. The common point of the three topics is found to be the Mangoldt function of prime number theory as the generator of low frequency noise in the coupling coefficient, the scattering coefficient and in quantum critical statistical states. Huyghens coupled pendulums, the Adler equation, the Arnold map, continued fraction expansions, discrete Mobius transformations, Ford circles, coherent and squeezed phase states, Ramanujan sums, the Riemann zeta function and Bost and Connes KMS states are some but a few concepts which are used synchronously in the paper.Comment: submitted to the journal: Fluctuation and Noise Letters, March 13, 200

    Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device

    Full text link
    We report the first demonstrations of both quadrature squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number-resolving transition edge sensors. We measure 1.0(1)1.0(1)~dB of broadband quadrature squeezing (∼4{\sim}4~dB inferred on-chip) and 1.5(3)1.5(3)~dB of photon number difference squeezing (∼7{\sim}7~dB inferred on-chip). Nearly-single temporal mode operation is achieved, with raw unheralded second-order correlations g(2)g^{(2)} as high as 1.87(1)1.87(1) measured (∼1.9{\sim}1.9~when corrected for noise). Multi-photon events of over 10 photons are directly detected with rates exceeding any previous quantum optical demonstration using integrated nanophotonics. These results will have an enabling impact on scaling continuous variable quantum technology.Comment: Significant improvements and updates to photon number squeezing results and discussions, including results on single temporal mode operatio

    Study of spread spectrum multiple access systems for satellite communications with overlay on current services

    Get PDF
    The feasibility of using spread spectrum techniques to provide a low-cost multiple access system for a very large number of low data terminals was investigated. Two applications of spread spectrum technology to very small aperture terminal (VSAT) satellite communication networks are presented. Two spread spectrum multiple access systems which use a form of noncoherent M-ary FSK (MFSK) as the primary modulation are described and the throughput analyzed. The analysis considers such factors as satellite power constraints and adjacent satellite interference. Also considered is the effect of on-board processing on the multiple access efficiency and the feasibility of overlaying low data rate spread spectrum signals on existing satellite traffic as a form of frequency reuse is investigated. The use of chirp is examined for spread spectrum communications. In a chirp communication system, each data bit is converted into one or more up or down sweeps of frequency, which spread the RF energy across a broad range of frequencies. Several different forms of chirp communication systems are considered, and a multiple-chirp coded system is proposed for overlay service. The mutual interference problem is examined in detail and a performance analysis undertaken for the case of a chirp data channel overlaid on a video channel

    Hardware simulation of Ku-band spacecraft receiver and bit synchronizer, volume 1

    Get PDF
    A hardware simulation which emulates an automatically acquiring transmit receive spread spectrum communication and tracking system and developed for use in future NASA programs involving digital communications is considered. The system architecture and tradeoff analysis that led to the selection of the system to be simulated is presented
    • …
    corecore