68,455 research outputs found

    A sufficient condition for the existence of an anti-directed 2-factor in a directed graph

    Get PDF
    Let D be a directed graph with vertex set V and order n. An anti-directed hamiltonian cycle H in D is a hamiltonian cycle in the graph underlying D such that no pair of consecutive arcs in H form a directed path in D. An anti-directed 2-factor in D is a vertex-disjoint collection of anti-directed cycles in D that span V. It was proved in [3] that if the indegree and the outdegree of each vertex of D is greater than (9/16)n then D contains an anti-directed hamilton cycle. In this paper we prove that given a directed graph D, the problem of determining whether D has an anti-directed 2-factor is NP-complete, and we use a proof technique similar to the one used in [3] to prove that if the indegree and the outdegree of each vertex of D is greater than (24/46)n then D contains an anti-directed 2-factor

    Reciprocity in Social Networks with Capacity Constraints

    Full text link
    Directed links -- representing asymmetric social ties or interactions (e.g., "follower-followee") -- arise naturally in many social networks and other complex networks, giving rise to directed graphs (or digraphs) as basic topological models for these networks. Reciprocity, defined for a digraph as the percentage of edges with a reciprocal edge, is a key metric that has been used in the literature to compare different directed networks and provide "hints" about their structural properties: for example, are reciprocal edges generated randomly by chance or are there other processes driving their generation? In this paper we study the problem of maximizing achievable reciprocity for an ensemble of digraphs with the same prescribed in- and out-degree sequences. We show that the maximum reciprocity hinges crucially on the in- and out-degree sequences, which may be intuitively interpreted as constraints on some "social capacities" of nodes and impose fundamental limits on achievable reciprocity. We show that it is NP-complete to decide the achievability of a simple upper bound on maximum reciprocity, and provide conditions for achieving it. We demonstrate that many real networks exhibit reciprocities surprisingly close to the upper bound, which implies that users in these social networks are in a sense more "social" than suggested by the empirical reciprocity alone in that they are more willing to reciprocate, subject to their "social capacity" constraints. We find some surprising linear relationships between empirical reciprocity and the bound. We also show that a particular type of small network motifs that we call 3-paths are the major source of loss in reciprocity for real networks
    corecore