671 research outputs found

    Mathematical modeling of tumor therapy with oncolytic viruses: Effects of parametric heterogeneity on cell dynamics

    Get PDF
    One of the mechanisms that ensure cancer robustness is tumor heterogeneity, and its effects on tumor cells dynamics have to be taken into account when studying cancer progression. There is no unifying theoretical framework in mathematical modeling of carcinogenesis that would account for parametric heterogeneity. Here we formulate a modeling approach that naturally takes stock of inherent cancer cell heterogeneity and illustrate it with a model of interaction between a tumor and an oncolytic virus. We show that several phenomena that are absent in homogeneous models, such as cancer recurrence, tumor dormancy, an others, appear in heterogeneous setting. We also demonstrate that, within the applied modeling framework, to overcome the adverse effect of tumor cell heterogeneity on cancer progression, a heterogeneous population of an oncolytic virus must be used. Heterogeneity in parameters of the model, such as tumor cell susceptibility to virus infection and virus replication rate, can lead to complex, time-dependent behaviors of the tumor. Thus, irregular, quasi-chaotic behavior of the tumor-virus system can be caused not only by random perturbations but also by the heterogeneity of the tumor and the virus. The modeling approach described here reveals the importance of tumor cell and virus heterogeneity for the outcome of cancer therapy. It should be straightforward to apply these techniques to mathematical modeling of other types of anticancer therapy.Comment: 45 pages, 6 figures; submitted to Biology Direc

    Lie series for celestial mechanics, accelerators, satellite stabilization and optimization

    Get PDF
    Lie series applications to celestial mechanics, accelerators, satellite orbits, and optimizatio

    Finite volume solution of the compressible boundary-layer equations

    Get PDF
    A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data

    Master index to volumes 1–10

    Get PDF

    Investigation of Transient MHD Couette flow and Heat Transfer of Dusty Fluid with Temperature-Dependent Oroperties

    Get PDF
    In the present study, transient MHD Couette flow and heat transfer of dusty fluid between two parallel plates and the effect of the temperature dependent properties has been investigated. The thermal conductivity and viscosity of the fluid are assumed as linear and exponential functions of temperature, respectively. A constant pressure gradient and an external uniform magnetic field are considered in the main flow direction and perpendicular to the plates, respectively. A hybrid treatment based on finite difference method (FDM) and differential transform method (DTM) is used to solve the coupled flow and heat transfer equations. The effects of the variable properties, Hartman number, Hall current, Reynolds number and suction velocity on the Nusselt number and skin friction factor have been discussed. It is found that when Hartman number increases, skin friction of the upper and lower plates increases

    Modeling of systems

    Get PDF
    The handbook contains the fundamentals of modeling of complex systems. The classification of mathematical models is represented and the methods of their construction are given. The analytical modeling of the basic types of processes in the complex systems is considered. The principles of simulation, statistical and business processes modeling are described. The handbook is oriented on students of higher education establishments that obtain a degree in directions of “Software engineering” and “Computer science” as well as on lecturers and specialists in the domain of computer modeling

    Elastodynamic modeling of fluid-loaded cylindrical shells with multiple layers and internal attachments

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1994.Includes bibliographical references (175-181).by David C. Ricks.Ph.D
    corecore