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ABSTRACT 

In the present study, transient MHD Couette flow and heat transfer of dusty fluid between two parallel plates 
and the effect of the temperature dependent properties has been investigated. The thermal conductivity and 
viscosity of the fluid are assumed as linear and exponential functions of temperature, respectively. A constant 
pressure gradient and an external uniform magnetic field are considered in the main flow direction and 
perpendicular to the plates, respectively. A hybrid treatment based on finite difference method (FDM) and 
differential transform method (DTM) is used to solve the coupled flow and heat transfer equations. The 
effects of the variable properties, Hartman number, Hall current, Reynolds number and suction velocity on 
the Nusselt number and skin friction factor have been discussed. It is found that when Hartman number 
increases, skin friction of the upper and lower plates increases. 

Keywords: MHD couette flow; Temperature dependent property; Magnetic field; Hybrid DTM-FDM; 
Nusselt number; Skin friction. 

1. INTRODUCTION

The phenomenon of the heat and mass transfer of 
the fluid and dust particles through a channel has 
some applications in industries such as polymer 
technology, electrostatic precipitation, petroleum 
industry, fluid droplet sprays, application of dust in 
gas cooling systems, purification of crude oil, 
fluidization, centrifugal separation of matter from 
fluid and combustion. The hydrodynamic flow and 
heat transfer of a dusty fluid has been analyzed by 
some researchers Saffman (1962), Gupta and Gupta 
(1976), Prasad, and Ramacharyulu (1979) and Dixit 
(1980).  The MHD flow and heat transfer of a dusty 
fluid in a channel is important in analysis of the 
flow-meters, accelerators, pumps and magneto-
hydrodynamic generators. Some of the pioneer 
works which are done about this subject can be 
found in Singh (1976), Mitra, and Bhattacharyya 
(1981), Borkakotia and Bharali (1983) and 
Megahed et al. (1988). In these researches, the 
physical properties of the fluid such as viscosity and 
thermal conductivity considered to be constant. To 

reach a more accurate result, it is necessary to use 
temperature-dependent properties in modeling for 
them. 

Effect of temperature-dependent viscosity on the 
flow and heat transfer of the fluid in a channel has 
been investigated by Klemp et al. (1990). Attia and 
Kotb (1996) analyzed the steady MHD fully 
developed flow between two parallel plates by 
considering a temperature-dependent function for 
viscosity. Recently, Attia (1999) expanded the same 
problem in the transient state. Also, the effects of 
viscous dissipation and thermal dispersion of a 
viscous dusty fluid under the influence of a 
magnetic field have been studied by Sharma and 
Varshney (2003). Makinde and Chinyoka (2010) 
investigated the transient MHD flow and heat 
transfer in a channel. In their work, the properties of 
the fluid assumed to be variable with temperature. 
Chinyoka and Makinde (2011) analyzed the 
unsteady Couette flow for a non-Newtonian fluid 
under the influence of asymmetric convective 
cooling process. The unsteady MHD Couette flow 
and heat transfer of a dusty fluid with temperature 
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dependent properties have been studied using 
Crank-Nicolson implicit and network simulation 
method by Attia (2006) and Attia (2008) and Eguia 
et al. (2011), respectively. In other work, Gedik et 
al. (2012) have studied the unsteady viscous 
incompressible and electrically conducting of two-
phase fluid flow in circular pipes with external 
magnetic and electrical field.  They investigated the 
Effects of both uniform transverse external 
magnetic and electrical fields applied perpendicular 
to the fluid and each other on the two-phase 
(solid/liquid) unsteady flow. Also, Khan et al. 
(2011), have presented analytical solutions for some 
MHD flows of the Oldroyd-B fluid considering a 
uniform magnetic field and occupies the space over 
a flat plate between two sidewalls perpendicular to 
the plate. Chamkha and Ahmed (2011), have 
obtained the similarity solution for unsteady MHD 
flow near a stagnation point of a three-dimensional 
porous body with heat and mass transfer 
considering heat generation/absorption and 
chemical reaction. 
 

This paper studies the unsteady MHD Couette flow 
and heat transfer of an incompressible viscous dusty 
fluid with temperature dependent thermal 
conductivity and viscosity. The fluid is between two 
parallel infinite plates kept at constant and unequal 
temperatures. The lower plate is maintained 
stationary while the upper plate is moving with a 
constant velocity. The fluid is acted upon by an 
external uniform magnetic field and a constant 
pressure gradient. The main goal of the present 
paper is investigation of the effects of the physical 
parameters such as Reynolds number, Hall 
parameter, Hartman number and Eckert number on 
the Nusselt and skin friction of both plates.In this 
work, the differential transform method (DTM) is 
used to solve the coupled nonlinear partial 
differential equation of the described problem.  
DTM was firstly presented by Zhou (1986) to solve 
the initial value problems in the analysis of 
electrical circuit. This method has been applied to 
some computational and engineering problems such 
as boundary value problems, Mosayebidorcheh 
(2013) and Mosayebidorcheh (2014), advective-
dispersive transport problem Chen and Ju (2004), 
nonlinear heat transfer of fins Joneidi et al. (2009) 
and Mosayebidorcheh and Mosayebidorcheh 
(2012), Strum-Liouville equation Chen and Ho 
(1996) and vibration problems Ho and Chen (1998). 
Here, a hybrid numerical algorithm which combines 
the differential transform and finite difference 
methods is utilized to study the present problem. 
This technique has been used for solving the 
transient heat transfer equation of the fins by 
Mosayebidorcheh et al. (2014). The influence of 
temperature dependent physical properties and the 
dimensionless parameters on the Nusselt number 
and skin friction factor also are discussed. 

2. DIFFERENTIAL TRANSFORM 
METHOD 

The differential transform is defined as follows 
Zhou (1986): 
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where x(t) is an analytical function in the time 
domain, H is the time interval and X(k) is the 
transformed function. The inverse transformation is 
as follows 

    0

0

k

k

t t
x t X k

H





   
 

                                      (2) 

By substituting Eq. (1) into Eq. (2), we can obtain 
the Taylor series expansion of the x(t) at 0t  
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The function x(t)  is usually considered as a series 
with limited terms and Eq. (2) can be rewritten as: 
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where, m represents the number of Taylor series 
components. Usually, through elevating this value, 
we can increase the accuracy of the solution.  
Some of the properties of DTM are shown in Table 
1. These properties are extracted from Eqs.(1) and 
(4).  
 

Table 1 The properties of the DTM. 
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3. DESCRIPTION OF THE 
PROBLEM 

Consider the transient flow of an incompressible 
viscous dusty fluid between two parallel infinite 
plates at Y h  , as shown in Fig. 1.  

 
Fig. 1. The geometry of the problem. 

 
The dusty particles are assumed to be dispensed 
through the fluid.  The two infinite plates are 
considered to be electrically non-conducting and 
maintained at constant and different temperatures. 
The temperatures of the lower plate and upper plate 
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are 1T  and 2T  respectively. The motion is produced 

by a constant pressure gradient in the x-direction 
and the lower plate is kept stationary while the 
upper plate has a constant velocity 0U . A uniform 

suction is applied to the y-direction and the velocity 
of the fluid in this direction is constant and denoted 
by 0v . The constant magnetic field with value 0B is 

affected in the positive y-direction. Regarding a 
very small magnetic Reynolds number, the induced 
magnetic field can be neglected. The flow starts 
from rest at 0   and no-slip condition is 
considered for the flow at y h  . The initial 
temperatures of the dust particles and fluid are 

1T .The viscosity of the fluid is varied exponentially 

with temperature and electrical conductivity is a 
linear function of temperature. The physical 
parameters of the problem are constant in directions 
of the x and z, because the plates are assumed 
infinite in these directions. The fluid and dust 
particles velocities are as follow 
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The governing equations of the present problem are 
based on the conversation laws of momentum and 
energy for both fluid and dust particles. The Navier-
Stokes equations are as follow: 
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where   is the viscosity of the clean fluid,  is the 
density of the clean fluid, dp/dX is the pressure 
gradient in x-direction, K is the Stokes constant, N 
is the number of dust particles per unit volume,   
is the electric conductivity, m is the Hall parameter 
given by 0m B  and   is the Hall factor. The 

motion of the dust particles can be obtained by 
Newton's second law 
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The initial conditions are given by: 

 p

Q
m KN V Q




 


                                       (10) 

For 0  the no-slip condition implies that 
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The energy equations for both the clean fluid and 
dust particles are given by 
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where k is the thermal conductivity of the fluid, 

pc is the specific heat capacity of the fluid, sc is the 

specific heat capacity of the particles, p is the 

mass of dust particles per unit volume of fluid, T is 

the temperature relaxation time and T and  are 
the temperatures of the fluid and dust particles, 
respectively.  
The initial and boundary conditions for the 
temperature of the fluid and dust particles are given 
by 
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A linear temperature dependent function is assumed 
   2 11g T b T T T   for the electrical 

conductivity, and an exponentially temperature 
dependent function is assumed for the viscosity of 

the fluid    1a T Tf T e   , where a and b are 

constant.  

 

   

 

2

2

2

2

1

Re

1 1

Re Re 1

Re

u u u
S f

t y y

f u Ha
u mv

y y m

R
u w

 



  
   

  

 
  

  

 

            (15) 

 

   

 

2

2

2

2

1

Re

1 1

Re Re 1

Re

v v v
S f

t y y

f v Ha
v mu

y y m

R
v q





  
  

  

 
  

  

 

             

(16) 

 
0

1w
u w

t G


 


                                               (17) 

 
0

1q
v q

t G


 


                                                 (18) 

0; 0u w v q t                                      (19) 

0; 1

1, 0; 1

u v at y

u v at y

   
   

                                  (20) 

 

 

 

     

2

2

2 2

2
2 2

2

1

Re Pr

1

Re Pr

Re

2

3Re PrRe 1

S g
t y y

g

y y

Ec u v
f

y y

EcHa R
u v

m

  

 



 

  
  

  

 


 

     
           

   


    (21) 

 0L
t

  
  


                                              (22) 

0; 0t                                               (23) 



S. Mosayebidorcheh et al. / JAFM, Vol. 8, No. 4, pp. 921-929, 2015.  
 

924 

0; 1

1; 1

at y

at y



  
  

                                          (24) 

where  

0

0

2
0 0 0 0

1 1

2 1 2 1

, , , ,

, , , ,

,

Y X U U
y x t u

h h h U

W V Q P
w v q p

U U U U

T T T

T T T T





 

   

   

  
 

 

      (25) 

  af e   , the exponential temperature 

dependent function of viscosity,   1g b   , the 

linear temperature dependent function of electrical 
conductivity, S=v0/U0, the suction parameter, 
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To solve the coupled nonlinear partial equations 
(Eq. (15) to Eq. (24)) in the domain  0,t T  and 

 1,1y    using hybrid DTM and FDM, we 

applied finite difference approximation on y 
direction and take DTM on t. The following finite 
difference scheme is used based on a uniform mesh. 
The length in direction of y is divided into 

yN equal intervals. The y coordinates of the grid 

points can be obtained by  jy j y  , 0 : yj N , 

where y is the mesh size.  
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            

 
       

    
2

2
0

, , , ,

2
, ,Re 1

3 Re Pr

k

r

U j r U j k r W j r W j k r
EcHa

R
j k j km 

     


  


                                                                            (30) 

        0, 1 , ,
1

HL
j k j k j k

k


    


                 (31) 

where  ,F j k and  ,G j k are the differential 

transform form of  the  f  and  g  functions 

respectively. By applying DTM on initial conditions 
in Eqs. (19) and (23), we have: 

     
     

0

,0 0 , , 0 0, , 0 0,

, 0 0, , 0 0 , , 0 0

yfor j N

U j V j W j

Q j j j

 

  

    

     (32) 

The boundary conditions in Eqs. (20) and (24) can 
be transformed as follow: 

 
   
0, 0 , 0

, 0 1, , 0 , 1y y

U k k

U N U N k k

  


  
                (33) 

 
 
0, 0 , 0

, 0 , 0y

W k k

W N k k

  


 
                                      (34) 

 
   
0, 0 , 0

,0 1, , 0 , 1y y

k k

N N k k

  

    

                (35) 

4. RESULTS AND DISCUSSION 

In this paper, some parameters are considered to be 
constant as: 

0 00.8 , 0.7, Pr 1, 0.5,

5, 0.5, 0.5

G L R

a b
   
             (36)

 

Step sizes are chosen: 0.001H  and 0.05y   
for time and position respectively. There is no 
significant change for the smaller step sizes. In this 
section, a parameter study is performed for 
determining the effect of each parameter on the 
velocity and temperature field of the clean fluid and 
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dust particles.  
 
Firstly, the validation of the present solution is 
investigated comparing to FDM. The results of the 
present problem are validated for a special case that 
dust particles and suction velocity don't exist. 
Therefore, the governing equations reduce to a 
system of partial equations with three equations. It 
means that we can use the following parameters to 
confirm our results with the Attia (2008) 

0 00, 0, 0, 0G L S R   
                  (37) 

 

Fig. 2 Compares the results of Hybrid-DTM and 
Attia (2008) when 0.2Ec  , 0.5a  , 0.5b  , 
Re 1 , 3m  and 1Ha  . As seen in Fig. 2, 
which presents the velocity and temperature 
distributions as functions of y for various values of 
time (0.1, 0.5 and 2), Hybrid-DTM is completely 
accurate and efficient. This figure reveals that 
temperature in Couette flow can exceeds to hot 
plate temperature in large times  
(Fig. 2-c, t=2s). As seen, Hybrid-DTM has an good 
agreement with Attia (2008), furthermore its 
solution is obtained using a simple iterative 
procedure. 
 

 

 

 
Fig. 2. Comparison of the present results and 

numerical solution in Attia (2008). 
 
Fig. 3 demonstrates the profiles of the velocity and 
temperature of the fluid and dust particles at center 
of the channel (y=0) for different Reynolds 
numbers. Reynolds number of the flow has a direct 
relation with time required to reach the steady state. 

In other word, by increasing the Reynolds number, 
the time of unsteady state increases (see Fig. 3). 
Regarding Fig. 3, the time of the unsteady state for 
temperature of the fluid is larger than the velocity of 
the fluid. Both u and v increase with time until a 
maximum value and then decrease up to the steady 
state. In other words, the primary and secondary 
flows in directions x and z overshoot and have 
maximum values.   
 

 

 

 
 

Fig. 3. Effects of Re on velocity and temperature 
profiles of the fluid (solid line) and dust particles 

(dotted) when 0.2, 3, 10, 1Ec m Ha S    . 
 
The effect of the Hall parameter (m) on velocity and 
temperature profiles is shown in Fig. 4. Hall 
parameter has a very important role in MHD 
Couette flows, because this parameter causes the 
start of the secondary flow in z direction.  
 
Magnetic field plays the role of body force for 
momentum equations and increases the values of 
velocity in the center of the channel. This effect is 
explained by Eq. (6) where the effective 

conductivity takes the form of  2 2
0 / 1B m  and 

the damping force of the magnetic field decreases 
when m takes higher values. Increasing the Hall 
value, the distributions of primary and secondary 
velocities will have greater changes.  
 
Both primary and secondary velocities of the fluid 
exceed their steady state values and then go down 
towards the steady state. The overshooting time 
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occurs within increases with increasing the Hall 
parameter (m). As we can see in Fig. 4, the 
velocities components and temperature of the dust 
particles go down towards their values for the clean 
fluid. Primary velocity of dust particles (w) also 
overshoots and has a peak value (see Fig. 4a) while 
the secondary flow of dust particles (q) hasn't peak 
(see Fig. 4b). As we can see, the Hall parameter has 
great effect on the velocity distribution. This 
parameter has little effect on the temperature of the 
fluid at the channel center.  
 

 

 

 
Fig. 4. Effects of Hall parameter (m) on velocity 
and temperature profiles of the fluid (solid line) 

and dust particles (dotted) 
when 0.2,Re 1, 10, 1Ec Ha S    . 

 
The time dependent velocity and temperature of the 
flow at center of the channel (y=0) plotted in Fig. 5 
for different Hartman numbers. This figure 
indicates that increasing Ha decreases the primary 
velocity of the flow while increasing Ha increases 
the secondary velocity of the flow. Therefore the 
effect of rising Ha can be predicted as a negative 
body force for x- momentum equation and positive 
body force for z-momentum equation of the fluid.  
 
Figs. 6, 7 and 8 elucidate the variation of 
dimensionless local skin friction (surface shear 
stress) and Nusselt number of the upper and lower 
plates for different parameters such as Hartman 
number (Ha), suction velocity (S), Reynolds 
number (Re), Eckert number (Ec) and Hall 
parameter (m). In these figures, subscripts "1" and 

"2" show the properties of the lower and upper 
plates, respectively.  

 

 

 
Fig. 5. Effects of Hartman number (Ha) on 

velocity and temperature profiles of the fluid 
(solid line) and dust particles (dotted) 

when 0.2,Re 1, 3, 1Ec m S    . 
 
The effects of Hartman value and suction velocity 
on the skin friction and the Nusselt values on both 
upper and lower plates are shown in Fig. 6. 
Increasing the suction parameter decreases the skin 
friction coefficient of the lower plate. Suction in 
this problem  
 
decreases horizontal velocity near the lower plate 
which causes lower velocity gradient (skin friction 
coefficient). Skin friction coefficient is so low and 
leans toward zero for Hartman high values (Fig. 
6a). 
 
The effect of suction parameter is not very sensible 
on the skin friction coefficient of the upper plate. 
The changes trend of 2fC  with Hartman value is 

elevating. This means that when Ha increases, skin 
friction of the upper plate increases too. 
Surprisingly, in regard to the Fig. 6b, 2fC has 

negative values 
 
for 4Ha  . This means that fluid velocity value 
near the upper plate is more than 1 (upper plate 
velocity).     
 
Increasing the Hartman number makes a decrease 
and increases in the Nusselt values in lower and 
upper plates respectively. These changes are 
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nonlinear and linear with low gradient for low and 
high Ha values respectively. The velocity gradient 
is high near of the hot plate and so the temperature 
of the fluid increases as the Joule and viscous 
dissipations increase. Nusselt value in the upper 
plate has negative value for 0, 5S Ha   and 

1, 2S Ha  . This means that fluid temperature 

near the upper plate is more than the plate 
temperature.  
 

 

 

 

 
Fig. 6. Variation of the skin friction and Nusselt 

number with Ha and different values of S 
when 0.2,Re 1, 3Ec m   . 

 

In Fig. 7, effects of Eckert and Reynolds numbers 
on the Nusselt of upper and lower plates are 
demonstrated. Because Ec number has a little effect 
on the skin friction coefficient, it's not presented. In 
the below Reynolds numbers, the changes of Ec 

number has a little effect on the Nusselt value of the 
upper and lower plates. As the Reynolds number 
increases, the effects of Ec number on Nusselt value 
will increase. 
 
The effect of Reynolds number on Nusselt values 
are shown in the Fig. 7 for Ec=0. As Reynolds 
increases, Nusselt number in lower and upper plates 
decreases and increases respectively. But on the 
other hand, Ec has a reverse effect on the Nusselt in 
comparison to Reynolds. Based on this reason, the 
variation of Nusselt plates has a relative maximum 
and minimum for 0Ec  . This means that from the 
relative minimum and maximum points on the 
effects of viscous dissipation on Reynolds ones are 
dominant and it changes the direction of graph 
curve. Based on this fact, Nusselt has continues 
variation for 0Ec  in Fig. 7.   
 

 

 
Fig. 7. Variation of the Nusselt number with Re 

and different values of Ec 
when 10, 1, 3Ha S m   . 

 
From Fig. 7-b, it can be observed that Nusselt 
number of the upper plate has a negative value 
for 0.2,8.5 ReEc   . As mentioned before, it 

indicates that the fluid temperature near the upper 
wall is higher than wall temperature. On the other 
word, viscous dissipation term produces heat and 
finally increases the fluid temperature near the wall.  
 
The effects of Hall parameter and Reynolds number 
on the skin friction and Nusselt number of the upper 
and lower plates are shown in Fig. 8. As Reynolds 
elevates, skin friction of the lower and upper plates 
increases and decreases respectively. This variation 
is linear for 0m  and nonlinear for 0m  . As was 
observed in Fig. 4, the increase of Hall parameter 
m, increases primary and secondary flows velocity. 
This causes the increase of velocity from the upper 
plate one which this can come to a negative skin 
friction coefficient (Fig. 8-b for 5m  ). Hall 
parameter increases the Nusselt of lower plate and 
decreases the upper plate Nusselt. 
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5. CONCLUSION 

In this work, the unsteady MHD Couette flow and 
heat transfer of dust particles between two parallel 
plates are studied. Viscosity and thermal 
conductivity of the fluid considered as an  
 

 
 

 

 

 
Fig. 8. Variation of the skin friction and Nusselt 

number with Re and different values of m 
when 10, 1, 0.2Ha S Ec   . 

 
exponential and linear functions of the temperature. 
The problem is solved analytically using a hybrid 
technique based on the differential transform 
method and finite difference approximation. The 
results were presented for different values of 
Hartman number Ha , Reynolds number Re , Eckert 

number Ec , Hall parameter m and suction 
parameter S . The effect of these parameters is 
discussed by considering transient profiles of the 
velocity and temperature of the both clean fluid and 
dust particles.  

Following conclusions are concluded from the 
results: 
 
 Reynolds number of the flow has a direct 

relation with time required to reach the steady 
state. In other word, increasing the Reynolds 
number increases the time of unsteady state. 

 Hall parameter (m) causes the start of the 
secondary flow in z direction. 

 Hall parameter has great effect on the velocity 
distribution. This parameter has little effect on 
the temperature of the fluid at the center of 
channel.  

 In some cases, skin friction coefficient and 
Nusselt number of the upper plate had 
negative values. This means that fluid velocity 
and temperature near the upper plate are more 
than unit.  

 By increasing the suction parameter, the skin 
friction coefficient of the lower plate 
decreases.  

 When Hartman number increases, skin friction 
of the upper plate decreases, but for lower 
plate increases. 

 Increasing the Hartman value decreases the 
Nusselt number of lower plate and increases 
Nusselt of the upper plates. 

REFERENCES 

Attia H. A. and N. A. Kotb (1996). MHD flow 
between two parallel plates with heat transfer, 
Acta Mech. 117 215–220. 

 
Attia H. A. (1999). Transient MHD flow and heat 

transfer between two parallel plates with 
temperature dependent viscosity. Mech. Res. 
Commun. 26, 115. 

 
Attia H. A. (2006). Unsteady MHD Couette flow 

and heat transfer of dusty fluid with variable 
physical properties, Appl. Math. Comput. 177 
308–318. 

 
Attia H. A. (2008). The effect of variable properties 

on the unsteady Couette flow with heat transfer  
considering the Hall effect, Commun. 
Nonlinear Sci. Num. Simul. 13, 1596–1604. 

 
Borkakotia K. and A. Bharali (1983). 

Hydromagnetic flow and heat transfer between 
two horizontal plates, the lower plate being a 
stretching sheet, Quart. Appl. Math. 461. 

 
Chamkha A. J. and S. E. Ahmed similarity solution 

for unsteady MHD flow near a stagnation point 
of a three-dimensional porous body with heat 
and mass transfer, heat generation/absorption 
and chemical reaction, J. Appl. Fluid Mech. 4 
(2), 87-94. 

 
Chen C. K. and S. H. Ho (1996). Application of 

differential transformation to eigenvalue 
problems, Applied Mathematics and 
Computation 79, 173–188. 

 



S. Mosayebidorcheh et al. / JAFM, Vol. 8, No. 4, pp. 921-929, 2015.  
 

929 

Chen C. K. and S. P. Ju (2004). Application of 
differential transformation to transient 
advective–dispersive transport equation, Appl. 
Math. Comput. 155, 25–38. 

 
Chinyoka T. and O. D. Makinde (2011). Analysis 

of transient Generalized Couette flow  of a 
reactive variable viscosity third-grade liquid 
with asymmetric convective cooling. Math. 
Comput. Modell 54, 160-174. 

 
Dixit L. A. (1980). Unsteady flow of a dusty 

viscous fluid through rectangular ducts, Indian 
J. Theor. Phys. 28 (2), 129. 

 
Eguía P.,J. Zueco, E. Granada and D. Patiño (2011). 

NSM solution for unsteady MHD Couette flow 
of a dusty conducting fluid with variable 
viscosity and electric conductivity, Appl. 
Math. Modell. 35, 303–316. 

 
Gedika E., H. Kurtb, Z. Receblia and A. Keçebaş 

(2012). Unsteady flow of two-phase fluid in 
circular pipes under applied external magnetic 
and electrical fields, Thermal Sci. 53, 156-165. 

 
Gupta R. K. and S. C. Gupta (1976). Flow of a 

dusty gas through a channel with arbitrary time 
varying pressure gradient, J. Appl. Math. Phys. 
27, 119. 

 
Ho S. H. and C. K. Chen (1998). Analysis of 

general elastically end restrained non-uniform 
beams using differential transform, Appl. 
Math. Modell. 22, 219–234. 

 
Joneidi A. A., D. D. Ganji and M. Babaelahi 

(2009). Differential transformation method to 
determine fin efficiency of convective straight 
fins with temperature dependent thermal 
conductivity, Int. commun. Heat Mass 
Transfer 36, 757–762. 

 
Khan M., R. Malik and A. Anjum (2011). 

Analytical solutions for MHD flows of an 
Oldroyd-B fluid between two sidewalls 
perpendicular to the plate, Chem. Eng. Comm., 
198 1415-1434. 

   
Klemp K., H. Herwig and M. Selmann (1990). 

Entrance flow in channel with temperature 
dependent viscosity including viscous 
dissipation effects, in: Proceedings of the Third 
International Congress of Fluid Mechanics, 
Cairo, Egypt. 3, 1257–1266. 

 
Makinde O. D. and T. Chinyoka (2010). MHD 

transient flows and heat transfer of dusty fluid 
in a channel with variable physical properties 
and Navier slip condition, Comput Math. Appl. 

60 660-669. 
 
 

Megahed A. A., A. L. Aboul-Hassan and H. Sharaf 
El-Din (1988). Effect of Joule and viscous 
dissipation on temperature distributions 
through electrically conducting dusty fluid, in: 
Fifth Miami International Symposium on 
Multi-Phase Transport and Particulate 
Phenomena, Miami, Florida, USA, 3, 111. 

 
Mitra P. and P. Bhattacharyya (1981). Unsteady 

hydromagnetic laminar flow of a conducting 
dusty fluid between two parallel plates started 
impulsively from rest, Acta Mech. 39, 171. 

 
Mosayebidorcheh S. and T. Mosayebidorcheh 

(2012). Series solution of convective radiative 
conduction equation of the nonlinear fin with 
temperature dependent thermal conductivity, 
Int. J. Heat Mass Transfer 55, 6589–6594. 

 
Mosayebidorcheh S. (2013). Solution of the 

boundary layer equation of the power-law 
pseudoplastic fluid using differential transform 
method, Math. Problems Eng. Article ID 
685454, 8 . 

 
Mosayebidorcheh S. (2014). Analytical 

investigation of the micropolar flow through a 
porous channel with changing walls, J. 
Molecular Liq. 196, 113-119. 

 
Mosayebidorcheh S., M. Farzinpoor and D. D. 

Ganji (2014). Transient thermal analysis of 
longitudinal fins with internal heat generation 
considering temperature-dependent properties 
and different fin profiles, Energy Conv. 
Manag. 86, 365-370. 

 
Prasad V. R. and N. C. P. Ramacharyulu (1979). 

Unsteady flow of a dusty incompressible fluid 
between two parallel plates under an impulsive 
pressure gradient, Def. Sci. J. 30 125. 

 
Saffman P. G. (1962). On the stability of a laminar 

flow of a dusty gas, J. Fluid Mech. 13 120. 
 
Sharma P. and C. L. Varshney (2003). Thermal 

dispersion effect on MHD flow of dusty gas 
and dust particles through hexagonal channel, 
Int. J. Heat Mass Transfer 46, 2511–2514. 

 
Singh K. K. (1976). Unsteady flow of a conducting 

dusty fluid through a rectangular channel with 
time dependent pressure gradient, Indian J. 
Pure Appl. Math. 8 (9), 1124. 

 
Zhou J. K. (1986). Differential Transformation and 

its Applications for Electrical Circuits, 
Huazhong University Press, Wuhan, China 

 
 


