5,224 research outputs found

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    A pervasive augmented reality serious game

    Get PDF
    This paper presents a pervasive augmented reality serious game that can be used to enhance entertainment using a multimodal tracking interface. The main objective of the research is to design and implement generic pervasive interfaces that are user-friendly and can be used by a wide range of users including people with disabilities. A pervasive AR racing game has been designed and implemented. The goal of the game is to start the car and move around the track without colliding with either the wall or the objects that exist in the gaming arena. Users can interact using a pinch glove, a Wiimote, through tangible ways as well as through I/O controls of the UMPC. Initial evaluation results showed that multimodal-based interaction games can be beneficial in serious games

    Presence and agency in real and virtual spaces: The promise of extended reality for language learning

    Get PDF
    Augmented and virtual realities (together “extended reality”) offer language learners the opportunity to communicate and interact in real and virtual spaces. In augmented reality (AR), users view computer-generated layers added to a phone camera’s view of the world. Virtual reality (VR) immerses users in a 3D environment that might simulate aspects of the outside world or project an entirely imagined reality. This column looks at opportunities and challenges in the use of extended reality (XR) for second language learning. Opportunities include higher learner motivation and personal agency through XR uses that feature collaboration and open-ended interactions, particularly in simulations, games, and learner co-design. That direction offers more alignment with current theories of second language acquisition (SLA)–emphasizing holistic language development and ecological frameworks–than most commercial VR apps currently available. Those posit a linear language development and focus largely on vocabulary learning and language practice within closed role-play scenarios. Offering both AR and VR access, mixed reality may present opportunities to combine the best features of each medium. Advances in generative artificial intelligence (AI) provide additional possibilities for personalized language learning in a flexible and dynamic VR environment

    Towards a multimodal interaction space: Categorisation and applications

    Get PDF
    Based on many experiences of developing interactive systems by the authors, a framework for the description and analysis of interaction has been developed. The dimensions of this multimodal interaction space have been identified as sensory modalities, modes and levels of interaction. To illustrate and validate this framework, development of multimodal interaction styles is carried out and interactions in the real world are studied, going from theory to practice and back again. The paper describes the framework and two recent projects, one in the field of interactive architecture and another in the field of multimodal HCI research. Both projects use multiple modalities for interaction, particularly movement based interaction styles. © Springer-Verlag London Limited 2007

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation

    Multimodal augmented reality tangible gaming

    Get PDF
    This paper presents tangible augmented reality gaming environment that can be used to enhance entertainment using a multimodal tracking interface. Players can interact using different combinations between a pinch glove, a Wiimote, a six-degrees-of-freedom tracker, through tangible ways as well as through I/O controls. Two tabletop augmented reality games have been designed and implemented including a racing game and a pile game. The goal of the augmented reality racing game is to start the car and move around the track without colliding with either the wall or the objects that exist in the gaming arena. Initial evaluation results showed that multimodal-based interaction games can be beneficial in gaming. Based on these results, an augmented reality pile game was implemented with goal of completing a circuit of pipes (from a starting point to an end point on a grid). Initial evaluation showed that tangible interaction is preferred to keyboard interaction and that tangible games are much more enjoyable

    Interactions in Virtual Worlds:Proceedings Twente Workshop on Language Technology 15

    Get PDF

    Mixed reality participants in smart meeting rooms and smart home enviroments

    Get PDF
    Human–computer interaction requires modeling of the user. A user profile typically contains preferences, interests, characteristics, and interaction behavior. However, in its multimodal interaction with a smart environment the user displays characteristics that show how the user, not necessarily consciously, verbally and nonverbally provides the smart environment with useful input and feedback. Especially in ambient intelligence environments we encounter situations where the environment supports interaction between the environment, smart objects (e.g., mobile robots, smart furniture) and human participants in the environment. Therefore it is useful for the profile to contain a physical representation of the user obtained by multi-modal capturing techniques. We discuss the modeling and simulation of interacting participants in a virtual meeting room, we discuss how remote meeting participants can take part in meeting activities and they have some observations on translating research results to smart home environments

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    corecore