43,996 research outputs found

    Taxonomic classification of planning decisions in health care: a review of the state of the art in OR/MS

    Get PDF
    We provide a structured overview of the typical decisions to be made in resource capacity planning and control in health care, and a review of relevant OR/MS articles for each planning decision. The contribution of this paper is twofold. First, to position the planning decisions, a taxonomy is presented. This taxonomy provides health care managers and OR/MS researchers with a method to identify, break down and classify planning and control decisions. Second, following the taxonomy, for six health care services, we provide an exhaustive specification of planning and control decisions in resource capacity planning and control. For each planning and control decision, we structurally review the key OR/MS articles and the OR/MS methods and techniques that are applied in the literature to support decision making

    Flexible nurse staffing based on hourly bed census predictions

    Get PDF
    Workload on nursing wards depends highly on patient arrivals and patient lengths of stay, which are both inherently variable. Predicting this workload and staffing nurses accordingly is essential for guaranteeing quality of care in a cost effective manner. This paper introduces a stochastic method that uses hourly census predictions to derive efficient nurse staffing policies. The generic analytic approach minimizes staffing levels while satisfying so-called nurse-to-patient ratios. In particular, we explore the potential of flexible staffing policies which allow hospitals to dynamically respond to their fluctuating patient population by employing float nurses. The method is applied to a case study of the surgical inpatient clinic of the Academic Medical Center (AMC) Amsterdam. This case study demonstrates the method's potential to study the complex interaction between staffing requirements and several interrelated planning issues such as case mix, care unit partitioning and size, and surgical block planning. Inspired by the numerical results, the AMC decided that this flexible nurse staffing methodology will be incorporated in the redesign of the inpatient care operations during the upcoming years

    Operating theatre modelling: integrating social measures

    Get PDF
    Hospital resource modelling literature is primarily focussed on productivity and efficiency measures. In this paper, our focus is on the alignment of the most valuable revenue factor, the operating room (OR) with the most valuable cost factor, the staff. When aligning these economic and social decisions, respectively, into one sustainable model, simulation results justify the integration of these factors. This research shows that integrating staff decisions and OR decisions results in better solutions for both entities. A discrete event simulation approach is used as a performance test to evaluate an integrated and an iterative model. Experimental analysis show how our integrated approach can benefit the alignment of the planning of the human resources as well as the planning of the capacity of the OR based on both economic related metrics (lead time, overtime, number of patients rejected) and social related metrics (personnel preferences, aversions, roster quality)

    Stochastic surgery selection and sequencing under dynamic emergency break-ins

    Get PDF
    Anticipating the impact of urgent emergency arrivals on operating room schedules remains methodologically and computationally challenging. This paper investigates a model for surgery scheduling, in which both surgery durations and emergency patient arrivals are stochastic. When an emergency patient arrives he enters the first available room. Given the sets of surgeries available to each operating room for that day, as well as the distributions of the main stochastic variables, we aim to find the per-room surgery sequences that minimise a joint objective, which includes over- and under-utilisation, the amount of cancelled patients, as well as the risk that emergencies suffer an excessively long waiting time. We show that a detailed analysis of emergency break-ins and their disruption of the schedule leads to a lower total cost compared to less sophisticated models. We also map the trade-off between the threshold for excessive waiting time, and the set of other objectives. Finally, an efficient heuristic is proposed to accurately estimate the value of a solution with significantly less computational effort.Anticipating the impact of urgent emergency arrivals on operating room schedules remains methodologically and computationally challenging. This paper investigates a model for surgery scheduling, in which both surgery durations and emergency patient arrivals are stochastic. When an emergency patient arrives he enters the first available room. Given the sets of surgeries available to each operating room for that day, as well as the distributions of the main stochastic variables, we aim to find the per-room surgery sequences that minimise a joint objective, which includes over- and under-utilisation, the amount of cancelled patients, as well as the risk that emergencies suffer an excessively long waiting time. We show that a detailed analysis of emergency break-ins and their disruption of the schedule leads to a lower total cost compared to less sophisticated models. We also map the trade-off between the threshold for excessive waiting time, and the set of other objectives. Finally, an efficient heuristic is proposed to accurately estimate the value of a solution with significantly less computational effort.A

    Visualizing the demand for various resources as a function of the master surgery schedule: A case study.

    Get PDF
    This paper presents a software system that visualizes the impact of the master surgery schedule on the demand for various resources throughout the rest of the hospital. The master surgery schedule can be seen as the engine that drives the hospital. Therefore, it is very important for decision makers to have a clear image on how the demand for resources is linked to the surgery schedule. The software presented in this paper enables schedulers to instantaneously view the impact of, e.g., an exchange of two block assignments in the master surgery schedule on the expected resource consumption pattern. A case study entailing a large Belgian surgery unit illustrates how the software can be used to assist in building better surgery schedules.Assignment; Case studies; Consumption; Decision; Demand; Exchange; Expected; Image; Impact; Management; Operating room scheduling; Resource management; Scheduling; Software; Studies; Visualization;

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Integral multidisciplinary rehabilitation treatment planning

    Get PDF
    This paper presents a methodology to plan treatments for rehabilitation outpatients. These patients require a series of treatments by therapists from various disciplines. In current practice, when treatments are planned, a lack of coordination between the different disciplines, along with a failure to plan the entire treatment plan at once, often occurs. This situation jeopardizes both the quality of care and the logistical performance. The multidisciplinary nature of the rehabilitation process complicates planning and control. An integral treatment planning methodology, based on an integer linear programming (ILP) formulation, ensures continuity of the rehabilitation process while simultaneously controlling seven performance indicators including access times, combination appointments, and therapist utilization. We apply our approach to the rehabilitation outpatient clinic of the Academic Medical Center (AMC) in Amsterdam, the Netherlands. Based on the results of this case, we are convinced that our approach can be valuable for decision-making support in resource capacity planning and control at many rehabilitation outpatient clinics. The developed model will be part of the new hospital information system of the AMC

    Making Medical Homes Work: Moving From Concept to Practice

    Get PDF
    Explores practical considerations for implementing a medical home program of physician practices committed to coordinating and integrating care based on patient needs and priorities, such as how to qualify medical homes and how to match patients to them
    corecore