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Hospital resource modelling literature is primarily focussed on productivity and efficiency measures. In this paper, our focus is on
the alignment of the most valuable revenue factor, the operating room (OR) with the most valuable cost factor, the staff. When
aligning these economic and social decisions, respectively, into one sustainable model, simulation results justify the integration of
these factors. This research shows that integrating staff decisions and OR decisions results in better solutions for both entities.
A discrete event simulation approach is used as a performance test to evaluate an integrated and an iterative model. Experimental
analysis show how our integrated approach can benefit the alignment of the planning of the human resources as well as the planning
of the capacity of the OR based on both economic related metrics (lead time, overtime, number of patients rejected) and social
related metrics (personnel preferences, aversions, roster quality).
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1. Introduction

Implementing sustainability strategies in hospitals requires a
holistic approach. An idealistic solution is to model and simulate
a hospital as a whole. However, there has been remarkably little
work done, despite the clear linkage between different entities
within a hospital (Günal and Pidd, 2010). These links include the
flows of patients between emergency departments, operating
theatres and inpatient wards, governed by the hospital staff. The
objectives of the different hospital’s entities should be aligned in
order to improve efficiency, quality of care and social factors. The
contribution of this paper is twofold. First, we propose an
integration of the scheduling of the surgeries and rostering of the
surgeons in one phase. Second, we are able to prove through
discrete event simulation (DES) that integrating the social
measure into the classically economic measure for an operating
theatre even improves the solution on both economic (operating
theatre planning) and social (staff rostering) level.

In hospitals, 70% of all admissions are surgery related
(Macario et al (1995)) and the operating theatre is seen as the
core of the hospital with about 40% of all expenses (Litvak and
Long, 2000). When implementing sustainability in hospitals, the
operating theatre is consequently one of the most prominent
candidates for improvement. The planning of the operating room
(OR) is a very challenging task from a number of perspectives.
On the one hand, there are the surgeries with their dependencies
concerning arrival time and bed availability and on the other

hand, the physicians require rosters that abide by work effort
equalities, holiday applications and skills.

The majority of scheduling simulation studies in hospitals are
directed at surgery scheduling in order to distribute patient
demand for the physicians and the staff (Jun et al, 1999).
A number of studies have tackled the problem from the reverse
side, that is, the staff should be scheduled to meet the patient
demand. Obviously, walk-in clinics and emergency departments
are unable to change the arrival rate of patients and are obliged to
roster their staff in accordance. The integration of staff prefer-
ences in the operating theatre schedule has also been discussed by
Roland and Riane (2011). The main difference of this paper as
opposed to similar papers in literature (Roland and Riane, 2011)
that integrate both the staff rosters and the surgery schedule is the
assignment of these physicians to the surgeries. In practice, these
decisions are not yet integrated in the central planning system, but
are part of the consultation phase. This paper differs from this
similar work by implementing both problems in a single phase
decision formulation. Our experimental analysis shows that this
integration of decision stages offers better results on all levels,
both economic and social.

Simulation techniques provide a variety of possibilities for
health-care analysis. For example, performance analysis (eg,
What is the capacity of the current health system?) and what-if
analysis (eg, What is the effect of changes to resource scheduling
to management policies?). Current literature includes several
studies that analyse the performance of emergency departments,
operating theatres and outpatient clinics, which use simulation
and/or optimization techniques (Rohleder et al, 2007). As an
example of performance analysis, VanBerkel and Blake (2007)
propose a DES model to analyse the effect (patient throughput
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and waiting times for elective patients) of redistributing beds and
OR time between two sites of a general surgery division. Harper
and Gamlin (2003) perform a what-if analysis by a simulation
modelling approach the analyses patient flows under uncertainty
in service times with respect to different proposal schedules in
order to reduce patient waiting times.

DES is one of the most heavily used analysis tools applicable
for the analysis of health-care systems. Especially the modelling
of inpatient facilities, such as the operating theatre was an
actively discussed topic. Patient flows, bed occupancy levelling,
length of stay (LOS) modelling, scheduling of surgeries are one
of the most important issues. For example, in Persson and
Persson (2010) a discrete event model shows how different
management policies affect different performance metrics, such
as patient waiting time, cancellations and the utilization of the
OR. However the model does not allow social metrics. Patient-
related or staff-related preferences that aim to ameliorate their
social context are not present in most research papers concerning
patient planning. In Virtue et al (2011) a DES approach is used to
prove that average simulation times can be used to model average
process times. Mallor and Azcrate (2011) combines optimization
with simulation to study bed occupancy levels in an intensive
care unit.

The rest of the paper is organized as follows. The next section
discusses the modelling and integration of the surgery and
physician assignment problem. The following section introduces
the DES model in order to compare our proposed single phase
decision stage with the two phase decision stage. We study the
effects on both the economical and social metrics in the
penultimate section. In the final section we discuss future work
and give an overview of our proposed framework.

2. Hospital modelling: the OR

We focus on the modelling and scheduling of a patient flow in the
operating theatre in order to maximize the throughput, while also
maximizing the preferences of the staff. In order to achieve this
combination, both surgery- and staff-related decisions must be
integrated. When these decisions are taken sequentially or
iteratively, the patient is first assigned to an eligible physician
according to their preferences and afterwards the corresponding
surgeries are assigned to the available OR days. This two-phase
approach yields suboptimal results, because the search space is
reduced because of the assignment of patients to physicians
before the assignment of patients to OR days. In this paper, we
propose to combine these problems into one decision problem.
DES techniques are used to do performance analysis and what-if
analysis.

In order to validate our assumption that the integrated decision
implies better results than the iterative procedure for both
economical and social factors, we define two models:

1. ITER: Iterative model
2. INT: Integrative model

These two models are both based on the same basic model as
follows.

Let us consider a set of patients queued every week, eligible
for surgery. These surgeries (defined by the set S) should then be
assigned to one of the ORs of the set of ORs, R and on one of the
days of the week of the set of days D. In that OR day, the surgery
has to be scheduled in the time slots T according to the duration
of the surgery ds for the surgery s∈ S. Let xstdrp be equal to 1 if
surgery s starts on time instant t, on day d and in OR r by
physician p, and otherwise 0. Let fst be the throughput coefficient
for every surgery s and dependent on t. Then fst is equal to a pre-
defined throughput favouring constant K if t> trd with trd the
overtime instance and fst equal to H if t⩽ trd, with K≫H. Let us
define Asp as a parameter specifying which surgery has to be
scheduled by which physician. This is an important parameter of
our model, since this parameter is used in the iterative (ITER)
model and not in the integrative (INT) model. In the following, a
basic model mixed integer programming model (MIP) containing
only the surgery and physician assignment constraints is given.

Model:

max
X
s2S

X
p2P

X
t2T

X
r2R

X
d2D

fstxstdrp (1)

X
p2P

X
s2S

Xt

τ¼t - ds + 1

xsτdrp ⩽ 1 8r 2 R; 8d 2 D; 8t 2 T (2)

X
r2R

X
s2S

Xt

τ¼t - ds + 1

xsτdrp ⩽ 1 8t 2 T ; 8d 2 D; 8p 2 P (3)

xstdrp ¼0 8s 2 S; 8r 2 R; 8p 2 P;

8d 2 D; 8t 2 T j t + dsð Þ> j T j ð4Þ
X
d2D

X
t2T

xstdrp ⩽Asp 8s 2 S; 8r 2 R; 8p 2 P (5)

xstdrp 2 0; 1f g
8p 2 P; 8r 2 R; 8d 2 D; 8t 2 T ; 8s 2 S

(6)

The Objective (1) is to maximize the throughput of the
surgeries by scheduling as many surgeries as possible on a
weekly basis in order to optimize operating time. Because of the
structure of the cost coefficient cst, the overtime is minimized as
well. Constraint (2) ensures that no surgery starts before the end
of the previous surgery in that OR. Constraint (3) is quite similar
by forcing that no surgery starts before the end of the previous
surgery performed by the same physician. No surgery can start
before the end of the day minus the duration of that surgery,
therefore all x variables for those time instances are set to 0 in
Constraint (4). Constraint (5) is only present in model ITER and
mimics the pre-defined assignment of physicians to patients
(surgeries). Finally, the integrality constraints on the x variable
are presented in Equation (6).

Besides these basic assignment constraints, we implemented
five soft constraint in order to optimize the roster of each
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physician. These soft constraints are (ctA), (ctN), (ctO), (ctW)
and (ctQ).

● (ctA): Links the skills of the physician to the type of surgery

which has to be performed.

● (ctN): Allows the physician to specify to work a certain number

of hours in a week.

● (ctO): Allows the physician to take a holiday or to request
unavailable time instances during the week.

● (ctW): Allows the physician to request a limit on the number of
consecutive working days.

● (ctQ): Allows the physician to request a limit on the number of

hours work per day.

These soft constraints are added as goal constraints in the MIP
model described above. In the objective function, the deviation
on these constraints per physician is then penalized in order to
introduce fairness among the physicians. Every physician’s roster
is consequently optimized to satisfy the physician constraints.

Each patient has a LOS for which the patient remains in
hospital. A patient can only be scheduled for surgery if there is an
available bed, which has to be available during the LOS of that
patient. The entire MIP model is formulated in Appendix.

3. DES hybridization with optimization

As a simulation model provides estimates of some characteristics
of system performance under a set of given constraints, we
suggest a discrete-event simulation to examine the efficiency of
the operating theatre.

Figure 1 describes the proposed system that models the patient
arrivals, surgery duration and surgery scheduling. Every simula-
tion step, representing 5 scheduling days in the operating theatre,
starts with the generation of instances of patients, sampled out of
the historical arrival distribution. These surgeries are then
planned in the operating theatre in the optimization phase by
both the iterative model and the integrative model considering the
surgery duration means. In the execution phase, these surgery

schedules and physician rosters are evaluated through simulation.
It is assumed that every patient arrives exactly at the scheduled
surgery time. The model does not take into account no-shows nor
cancellations. We have chosen not to integrate the cancellations
nor no-shows into the simulation in order to focus the results of
our simulation on the integrated versus iterative procedure. We
do believe that no-shows will not influence the managerial result
of this paper. Cancellation is a different story, minimizing the
number of cancellations would benefit from better planning.
Patients arrive in a first in first out queue at every OR. The
planned surgeries’ duration is then sampled from the historical
log-normal distribution to simulate the surgery process. The
economic performance parameters like lead time, number of
processed, rejected surgeries and average overtime are measured.
Social metrics regarding the physician preferences consist of the
ratio of satisfied physician constraints ctA, ctQ, ctO, ctN and ctW.
Each patient is instantiated with the throughput fst parameter that
doubles every week in order to prioritize non-scheduled patients.
The unprocessed patients are then added to the list of patients
eligible for scheduling in the next week. When a patient is not
scheduled for 2 consecutive weeks (because of infeasibility), the
patient is rejected and eliminated from the queue.

Both models, ITER and INT are based on the same MIP
defined in the section ‘Hospital modelling: the OR’ and exten-
sively defined in the appendix (Equations (A.1)–(A.19)).

The iterative model mimics a two-phased approach. In the first
phase, the patient makes an appointment with one of the
physicians eligible to do that surgery. In the second phase, the
surgery is scheduled in the week, according to the physician’s
preferences and the patient is notified of the surgery date.

It is possible to simulate the pre-fixed surgeries to physicians in
our model by setting the data parameter Asp of Constraint (A.7) in
such a way that it is subject to,X

p2P
Asp ¼ 1; 8s 2 S; 8r 2 R (7)

X
p2P

X
r2R

Asp ¼ j R j ; 8s 2 S (8)

In this way, all surgeries are pre-assigned to a specific
randomly chosen physician. Equation (7) ensures that only one
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Figure 1 DES: Operating theatre.
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physician is chosen for every surgery. However, this allows
surgeries to be performed by multiple physicians in different
ORs. Equation (8) forces every surgery to be eligible to be
performed in every OR. This trick in parameter settings thus
mimics an iterative approach and will be used to compare the
results with the integrated approach.

We therefore propose an integration of the surgery and
physician assignment to circumvent the suboptimal results by
the iterative method. The data parameter Asp does not impose any
pre-defined assignment. Consequently, the search space is larger
and physician preference infeasibilities can be avoided.

4. Results

The data regarding the surgeries in this study was based on
data received from the General Hospital Maria Middelares in
Sint-Niklaas, Belgium over a 3 months period. The data
included surgery information of different surgical special-
ities: stomatology, orthopaedic surgery and neurological
surgery. The information resulted in a list of surgery records

from the |R| = 3 ORs in the hospital, not including emergency
cases. The horizon consists of |D| = 5 opening days and a day
consists of 10 hours surgery (ie, from 8:00 until 18:00) with a
time division denoted by |T| = 20 resulting in half-hour time
blocks.

Every week a set of patients are generated, sampled out of
the fitted distribution of weekly patient arrival from the data.
The hospital Maria Middelares patient quantity arrival pattern
is normally distributed with Nð40:8; 3:6Þ and the surgery
duration was sampled from the data set of three surgery types:
neurological, stomatological and orthopaedic surgery, presented
in Table 1.

All experiments were performed on the Stevin Supercomputer
Infrastructure (Gengar) provided by Ghent University. The
cluster contains 94 computing nodes (IBM HS 21 XM blade),
each of which contains a dual-socket quad-core Intel Xeon
L5420 (Intel Core microarchitecture, 2.5 GHz, 6 MB L2 cache
per quad-core chip), thus 8 cores/node with 16 GB RAM. The
model was written in C + + and linked with the CPLEX 12.5
optimization library. In the optimization phase the MIP solver
is aborted after 3600 seconds when no solution is found with
a MIP gap of 1%. The simulation phase is written in the
R statistical programming language and calls the optimization
phase in every simulation step.

4.1. Sustainability measures

In Figure 2 the results of the DES are visualized per metric;
economic and social. For every of the 52 weeks, both the

Table 1 Surgery specialties data

Specialty Distribution fit
(location, scale)

Mean Number of
surgeries

Neurological ln Nð0:387; 0:777Þ 1.83 207
Stomatology ln Nð0:258; 0:633Þ 1.61 315
Orthopaedic ln Nð0:237; 0:670Þ 1.53 852
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Figure 2 DES: Integrative versus iterative methods.
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performance measures of the integrative model and the iterative
model is shown. It can be observed that the integrative approach
is equal or better than the iterative approach for every week on
economic aggregate. The economic aggregate is defined by the
throughput maximization and overtime minimization as defined
by the objective function in the base model. The social aggregate
is defined by the weighted sum of all five different measures (ctA,
ctN, ctO, ctW, ctQ) with equal weight.

In Table 2 a summary of the qualitative results for the DES
simulation are presented for both methods, the iterative model
and the integrative model. Economic factors are shown in the first
three columns, while the social factors are shown in the last five
columns. Economic factors include the average number of days
from scheduling day until the leave date (lead time (LT)), the
number of patients processed (#P), the number of patients
rejected (#R) and the average weekly overtime cost (OT). Social
factors are the percentage of non-violated physician constraints.
For every metric the best approach is underlined.

Results show that the integrative approach is always better or
equal than the iterative approach. Our proposed integrative model
indicate a significant decrease in overtime work while processing
more and rejecting less patients than the iterative approach. There
is also less impact on the physician preferences when using the
integrative approach. Only ctN and ctW yield similar levels of
physician satisfaction.

4.2. Rejection policy

In the previous experiment the rejection policy stated that patients
are rejected after 2 consecutive weeks not being scheduled. In the
following experiment, we perform what-if analysis on the rejec-
tion policy. A limitation on the number of consecutive weeks
(Rej) is the measurable parameter in the experiment. We repeat
the DES analysis of the previous section for Rej= 2, 4, 6.

Table 3 displays the average economic and social metrics for a
DES simulation of 52 weeks for the integrative approach. For
Rej= 2, the results are the same as in Table 2. For Rej= 4, more
patients get processed (#P) and consequentially less rejected
(#R). The trade-off mechanism shows a slight increase in average
overtime cost (OT) and social measures for the physician. If we
set Rej= 6, the number of rejected patients disappear. Calculating
the influence of the rejection policy is a decision support tool for
the hospital manager.

5. Discussion

In this paper we propose a new management policy for OR
planning with the use of DES. This new policy introduces the
integration of the physician to patient assignment into the OR
planning decision. We believe this integration is necessary in
order to align two of the most important problems for hospital
management, capacity planning and staff planning. In the
simulation both economic performances as well as social perfor-
mances are measured. The simulation of 52 weeks using the
integrative scenario shows the positive impact on both through-
put metrics and staff preferences. Therefore, we can conclude that
the simulated performance of the OR department can be
improved, when applying the integrated model.

Moreover, we simulate the proposed scenario having another
rejection policy. We study the impact of prolonging the rejection
date in order to decrease the number of cancellations, while only
slightly forcing the waiting time to go higher. The integrated
approach shows to be more resilient against these negative
effects.

Our optimization model was able to solve a problem contain-
ing the assignment of 40 surgeries to 3 ORs by 7 physicians on a
weekly basis. However, to achieve optimal results, the computa-
tion times can rise exponentially, when the problem instances size

Table 2 Qualitative results for the integrated (IN) and iterative (IT) approach over yearly period

Approach Economic Social Computation time (s)

LT #P #R OT ctA (%) ctN (%) ctO (%) ctW (%) ctQ (%)

Integrative 1.01 2003 40 €852 89 91 82 84 79 2072
Iterative 1.06 1927 116 €971 87 91 80 84 77 903

Table 3 DES: Influence of rejection policy on integrative approach

Policy Economic Social

LT #P #R OT ctA(%) ctN(%) ctO(%) ctW(%) ctQ(%)

Rej= 2 1.01 2003 40 €852 89 91 82 84 79
Rej= 4 1.01 2031 11 €858 88 89 81 84 78
Rej= 6 1.01 2045 0 €863 87 89 81 83 77
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rises linearly. Consequently, we were not able to solve operating
theatres of more than three rooms under similar circumstances in
acceptable computation time (24 h). In practice, large hospitals
consist of up to 20 ORs or more, serving hundreds of patients on
a weekly basis. Our proposed integrated optimization model is
not fit to generate the schedule under these requirements.
However, if the procedure is replaced by a heuristic approach
(Van Huele and Vanhoucke, 2014a), good feasible results could
be attained in shorter computation time and the simulation
procedure could be repeated.

The integration and alignment of different entities in hospitals
are shown to have a positive effect on both productivity as well as
staff-related social measures. In this work, the integration of the
environmental aspect of the Triple Bottom Line of sustainability
is a direct consequence of the economical aspect. Indeed, the
optimization of the resources in a hospital has both economic and
ecological impact. Hence no further attention is given to the
environmental aspect in the manuscript.

Future research would encompass going further in this direction
and integrating more aspects of the hospital resource modelling
process. We suggest working towards a holistic approach in
modelling the entire scheduling process in an operating theatre by
integrating the bed assignment decision. In a second step, the entire
surgical team (surgeons, nurses and anaesthesiologists) could be
integrated to avoid suboptimal results and stimulate alignment.
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Appendix

Mathematical model

Sets:

S Surgeries s= 1,…, |S|
S′ Surgeries of previous week s= 1,…, |S′|
T Time instances t= 1,…, |T|
D Days d= 1,…, |D|
R Operating rooms r= 1,…, |R|
P Physicians p= 1,…, |P|

Cost parameters:

cp
cons consecutive working days violation cost for physician p

cp
week weekly work violation cost for physician p
cp
day daily work violation cost for physician p
cprs
skills skill assignment violation cost for physician p
cpdt
free unavailability violation cost for physician p

Parameters:

Asr =
1 if surgery s can take place in OR r
0 otherwise

�

Opdt =
1 if physician p is unavailable on time instance t

and on day d
0 otherwise

8<
:

Bd available beds in the ward on day d
bs LOS belonging to surgery s
ds duration of surgery s
Np

min minimum amount of hours that physician p has to work
Np

max maximum amount of hours that physician p has to work
Wp

min minimum consecutive days that physician p has to work
Wp

max maximum consecutive days that physician p has to work
trd maximum overtime at operating room r and on day d
Qp maximum surgery time per day for physician p
ESs earliest starting day of surgery s
LSs latest starting day of surgery s
fst throughput parameter for surgery s and time instant t

Goal variables:

op
1+ penalty of positive daily physician work content constraint
op
1− penalty of negative daily physician work content

constraint
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op
2a+ penalty of positive maximum weekly physician work

content constraint
op
2a− penalty of negative maximum weekly physician work

content constraint
op
2b+ penalty of positive minimum weekly physician work

content constraint
op
2b− penalty of negative minimum weekly physician work

content constraint
opdt
3 penalty of physician unavailabilities constraint

ors
4 penalty of OR type constraint

op
5a+ penalty of positive maximum consecutive working days

op
5a− penalty of negative maximum consecutive working days

op
5b+ penalty of positive minimum consecutive working days

op
5b− penalty of negative minimum consecutive working days

Decision variables:

xstdrp =
1 if surgery s starts at day d and time instant t inOR

r by physician p:
0 otherwise

8<
:

xdp =
1 if the physician pworks on day d:
0 otherwise

�

Model:

max
X
s2S

X
p2P

X
t2T

X
r2R

X
d2D

fstxstdrp (A.1)

-
X
p2P

cdayp o1 +p -
X
p2P

cweekp o2a +p + o2b -p

� �
-
X
p2P

X
d2D

X
t2T

cfreepdt o
3
pdt

(A.2)

-
X
p2P

X
r2R

X
s2S

cskillsprs o4prs -
X
p2P

cconsp o5a +p + o5b -p

� �
(A.3)

X
p2P

X
s2S

Xt

τ¼t - ds + 1

xsτdrp ⩽ 1 8r 2 R; 8d 2 D; 8t 2 T (A.4)

X
r2R

X
s2S

Xt

τ¼t - ds + 1

xsτdrp ⩽ 1 8t 2 T ; 8d 2 D; 8p 2 P (A.5)

xstdrp ¼ 0 8s 2 S; 8r 2 R; 8p 2 P; 8d 2 D;

8t 2 T j ðt + dsÞ> j T j ðA:6Þ

X
d2D

X
t2T

xstdrp ⩽Asp 8s 2 S; 8r 2 R; 8p 2 P (A.7)

xstdrp ¼ 0 8s 2 S; 8r 2 R; 8p 2 P;

8t 2 T; 8d=2 ESs; LSs½ � ðA:8Þ

Xd + bs
d0¼d

zsd0 ⩾ bsxstdrp 8p 2 P; 8d 2 D; 8s 2 S;

8r 2 R; 8t 2 T ðA:9Þ

X
s2S

zsd ⩽Bd 8d 2 D (A.10)

X
s2S

X
r2R

X
t2T

dsxstdrp ¼ Qp + o1 +p - o1 -p

8p 2 P; 8d 2 D

(A.11)

X
t2T

X
d2D

X
s2S

X
r2R

dsxstdrp ¼ Nmax
p + o2a+p - o2a -p

8p 2 P

(A.12)

X
t2T

X
d2D

X
s2S

X
r2R

dsxstdrp ¼ Nmin
p + o2b +p - o2b -p

8p 2 P

(A.13)

X
r2R

X
s2S

Opdt

Xt

τ¼t - ds + 1

xsτdrp

" #
¼o3pdt

8p 2 P; 8d 2 D; 8t 2 T ðA:14Þ

X
d2D

X
t2T

X
p2P

xstdrp ¼ Asr - o4rs 8r 2 R; 8s 2 S (A.15)

XWmin
p +
d + 1

n¼d

xnp ≥Wmin
p xdp - xðd - 1Þp

� �
+ o5b +p - o5b -p

8t 2 T; 8d 2 D n 1f g; 8p 2 P; 8s 2 S; 8r 2 R ðA:16Þ

XWmax
p +
d + 1

n¼d

xnp ⩽Wmax
p + o5a +p - o5a -p 8t 2 T ; 8d 2 D;

8p 2 P; 8s 2 S; 8r 2 R ðA:17Þ

xdp ⩾ xstdrp 8d 2 D; 8p 2 P; 8s 2 S; 8r 2 R (A.18)

xstdrp 2 0; 1f g
8p 2 P; 8r 2 R; 8d 2 D; 8t 2 T ; 8s 2 S

(A.19)

xdp 2 0; 1f g 8p 2 P; 8d 2 D (A.20)

C Van Huele and M Vanhoucke—Operating theatre modelling 127



o1 +p ; o1 -p ; o2a +p ; o2a -p ; o2b +p ; o2b -p 2 0; 1; 2 ¼f g

8p 2 P; 8r 2 R; 8d 2 D; 8t 2 T ; 8s 2 S ðA:21Þ

o3pdt; o
4
prs; o

5a +
p ; o5a -p ; o5b +p ; o5b -p 2 0; 1; 2 ¼f g

8p 2 P; 8r 2 R; 8d 2 D; 8t 2 T ; 8s 2 S ðA:22Þ

Objective (A.1) is to maximize the throughput of the surgeries
by scheduling as many surgeries as possible on a weekly basis in
order to optimize operating time. Because of the structure of the
cost coefficient cst, the overtime is minimized as well. Objectives
((A.2) and (A.3)) maximize the physician goals. Constraint (A.4)
ensures that no surgery starts before the end of the previous
surgery in that OR. Constraint (A.5) is quite similar by forcing
that no surgery starts before the end of the previous surgery
performed by the same physician. No surgery can start before the
end of the day minus the duration of that surgery, therefore all x
variables for those time instances are set to 0 in Constraint (A.6).
Constraint (A.7) is only present in model ITER and mimics the
pre-defined assignment of physicians to patients (surgeries).

Every surgery s has a time window [ESs, LSs] that determines
their allocation on the right date (Equation (A.8)). After the
surgery, patients are allowed to rest for bs days (LOS) in one of
the available beds Bd, represented in Equations (A.9) and (A.10).

The constraints concerned with physician specific restrictions
follow next: Equation (A.11) defines the maximum allowed
number of surgeries Qp per physician per day (ctQ). Physicians
are preferred to work between Np

min and Np
max time instances per

week (ctN). The excess of the maximum and the deficit of the
minimum number of hours is being minimized. These constraints
are reflected in the Equations (A.12) and (A.13). Physicians can
also choose their preferred free or unavailable moments in the
parameter Opdt (Equation (A.14)). If Opdt= 1, then physician p is
unavailable at (d,t). Consequently, a surgery with physician p
cannot start up to ds− 1 time blocks before (d,t). Otherwise the
surgery could end at a time instant where the physician ought to
be unavailable. Some operations can only be done in specific ORs
that are equipped for those kind of surgeries (Equation (A.15).

If Asr= 0 which prohibits an assignment from surgery s to OR r,
and an actual assignment is made, the goal variable ors

4 is
therefore set to 1, indicating a penalty for this constraint. Let us
define these four constraint types (daily work constraint, skill
constraint, weekly work constraint and unavailability constraint)
as the set of physicians’ constraints (ctA, ctQ, ctW, ctO, ctN).

Finally, the xstdrp variable determines the starting time
of a surgery s at day d and time instant t in OR r by physician
p and must comply to the integrality Constraint (A.19).
The binary variable xdp determines if physician p is working
on day d and its integrality constraints are defined in
Equation (A.20). The auxillary physician-related goal vari-
ables o1 +p ; o1 -p o2a +p ; o2a -p ; o2b+p ; o2b -p ; o3pdt; o

4
prs; o

5a +
p ; o5a-p ; o5b +p ;

o5b -p ; are defined in Equations (A.21) and (A.22).

Parameter settings

The cost parameters (fixed parameter values) are set to:

Cost Symbol Value

Consecutive days goal cost cp
cons 1/P

Working hours goal cost cp
work 1/P

Day work goal cost cp
day 1/P

Skills goal cost cprs
skills 1/(PRS)

Unavailable goal cost cpdt
free 1/(PDT)

The parameters in the physician goal constraints (ctA, ctO,
ctN, ctW, ctQ) are set to a tightness of 25% according to the
tightness metrics proposed in Van Huele and Vanhoucke
(2014b). The same holds for the surgery-related Constraints
((A.8)–(A.10)). The throughput favouring constant K is set
equal to the maximum of the physician constraint costs in
order to have an equilibrium between the social and econom-
ical metrics.
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