1,051 research outputs found

    Wavenet based low rate speech coding

    Full text link
    Traditional parametric coding of speech facilitates low rate but provides poor reconstruction quality because of the inadequacy of the model used. We describe how a WaveNet generative speech model can be used to generate high quality speech from the bit stream of a standard parametric coder operating at 2.4 kb/s. We compare this parametric coder with a waveform coder based on the same generative model and show that approximating the signal waveform incurs a large rate penalty. Our experiments confirm the high performance of the WaveNet based coder and show that the speech produced by the system is able to additionally perform implicit bandwidth extension and does not significantly impair recognition of the original speaker for the human listener, even when that speaker has not been used during the training of the generative model.Comment: 5 pages, 2 figure

    Quantisation mechanisms in multi-protoype waveform coding

    Get PDF
    Prototype Waveform Coding is one of the most promising methods for speech coding at low bit rates over telecommunications networks. This thesis investigates quantisation mechanisms in Multi-Prototype Waveform (MPW) coding, and two prototype waveform quantisation algorithms for speech coding at bit rates of 2.4kb/s are proposed. Speech coders based on these algorithms have been found to be capable of producing coded speech with equivalent perceptual quality to that generated by the US 1016 Federal Standard CELP-4.8kb/s algorithm. The two proposed prototype waveform quantisation algorithms are based on Prototype Waveform Interpolation (PWI). The first algorithm is in an open loop architecture (Open Loop Quantisation). In this algorithm, the speech residual is represented as a series of prototype waveforms (PWs). The PWs are extracted in both voiced and unvoiced speech, time aligned and quantised and, at the receiver, the excitation is reconstructed by smooth interpolation between them. For low bit rate coding, the PW is decomposed into a slowly evolving waveform (SEW) and a rapidly evolving waveform (REW). The SEW is coded using vector quantisation on both magnitude and phase spectra. The SEW codebook search is based on the best matching of the SEW and the SEW codebook vector. The REW phase spectra is not quantised, but it is recovered using Gaussian noise. The REW magnitude spectra, on the other hand, can be either quantised with a certain update rate or only derived according to SEW behaviours

    A Comparison of Front-Ends for Bitstream-Based ASR over IP

    Get PDF
    Automatic speech recognition (ASR) is called to play a relevant role in the provision of spoken interfaces for IP-based applications. However, as a consequence of the transit of the speech signal over these particular networks, ASR systems need to face two new challenges: the impoverishment of the speech quality due to the compression needed to fit the channel capacity and the inevitable occurrence of packet losses. In this framework, bitstream-based approaches that obtain the ASR feature vectors directly from the coded bitstream, avoiding the speech decoding process, have been proposed ([S.H. Choi, H.K. Kim, H.S. Lee, Speech recognition using quantized LSP parameters and their transformations in digital communications, Speech Commun. 30 (4) (2000) 223–233. A. Gallardo-Antolín, C. Pelàez-Moreno, F. Díaz-de-María, Recognizing GSM digital speech, IEEE Trans. Speech Audio Process., to appear. H.K. Kim, R.V. Cox, R.C. Rose, Performance improvement of a bitstream-based front-end for wireless speech recognition in adverse environments, IEEE Trans. Speech Audio Process. 10 (8) (2002) 591–604. C. Peláez-Moreno, A. Gallardo-Antolín, F. Díaz-de-María, Recognizing voice over IP networks: a robust front-end for speech recognition on the WWW, IEEE Trans. Multimedia 3(2) (2001) 209–218], among others) to improve the robustness of ASR systems. LSP (Line Spectral Pairs) are the preferred set of parameters for the description of the speech spectral envelope in most of the modern speech coders. Nevertheless, LSP have proved to be unsuitable for ASR, and they must be transformed into cepstrum-type parameters. In this paper we comparatively evaluate the robustness of the most significant LSP to cepstrum transformations in a simulated VoIP (voice over IP) environment which includes two of the most popular codecs used in that network (G.723.1 and G.729) and several network conditions. In particular, we compare ‘pseudocepstrum’ [H.K. Kim, S.H. Choi, H.S. Lee, On approximating Line Spectral Frequencies to LPC cepstral coefficients, IEEE Trans. Speech Audio Process. 8 (2) (2000) 195–199], an approximated but straightforward transformation of LSP into LP cepstral coefficients, with a more computationally demanding but exact one. Our results show that pseudocepstrum is preferable when network conditions are good or computational resources low, while the exact procedure is recommended when network conditions become more adverse.Publicad

    Novel Pitch Detection Algorithm With Application to Speech Coding

    Get PDF
    This thesis introduces a novel method for accurate pitch detection and speech segmentation, named Multi-feature, Autocorrelation (ACR) and Wavelet Technique (MAWT). MAWT uses feature extraction, and ACR applied on Linear Predictive Coding (LPC) residuals, with a wavelet-based refinement step. MAWT opens the way for a unique approach to modeling: although speech is divided into segments, the success of voicing decisions is not crucial. Experiments demonstrate the superiority of MAWT in pitch period detection accuracy over existing methods, and illustrate its advantages for speech segmentation. These advantages are more pronounced for gain-varying and transitional speech, and under noisy conditions

    A study of data coding technology developments in the 1980-1985 time frame, volume 2

    Get PDF
    The source parameters of digitized analog data are discussed. Different data compression schemes are outlined and analysis of their implementation are presented. Finally, bandwidth compression techniques are given for video signals

    Speech coding at medium bit rates using analysis by synthesis techniques

    Get PDF
    Speech coding at medium bit rates using analysis by synthesis technique

    Time and frequency domain algorithms for speech coding

    Get PDF
    The promise of digital hardware economies (due to recent advances in VLSI technology), has focussed much attention on more complex and sophisticated speech coding algorithms which offer improved quality at relatively low bit rates. This thesis describes the results (obtained from computer simulations) of research into various efficient (time and frequency domain) speech encoders operating at a transmission bit rate of 16 Kbps. In the time domain, Adaptive Differential Pulse Code Modulation (ADPCM) systems employing both forward and backward adaptive prediction were examined. A number of algorithms were proposed and evaluated, including several variants of the Stochastic Approximation Predictor (SAP). A Backward Block Adaptive (BBA) predictor was also developed and found to outperform the conventional stochastic methods, even though its complexity in terms of signal processing requirements is lower. A simplified Adaptive Predictive Coder (APC) employing a single tap pitch predictor considered next provided a slight improvement in performance over ADPCM, but with rather greater complexity. The ultimate test of any speech coding system is the perceptual performance of the received speech. Recent research has indicated that this may be enhanced by suitable control of the noise spectrum according to the theory of auditory masking. Various noise shaping ADPCM configurations were examined, and it was demonstrated that a proposed pre-/post-filtering arrangement which exploits advantageously the predictor-quantizer interaction, leads to the best subjective performance in both forward and backward prediction systems. Adaptive quantization is instrumental to the performance of ADPCM systems. Both the forward adaptive quantizer (AQF) and the backward oneword memory adaptation (AQJ) were examined. In addition, a novel method of decreasing quantization noise in ADPCM-AQJ coders, which involves the application of correction to the decoded speech samples, provided reduced output noise across the spectrum, with considerable high frequency noise suppression. More powerful (and inevitably more complex) frequency domain speech coders such as the Adaptive Transform Coder (ATC) and the Sub-band Coder (SBC) offer good quality speech at 16 Kbps. To reduce complexity and coding delay, whilst retaining the advantage of sub-band coding, a novel transform based split-band coder (TSBC) was developed and found to compare closely in performance with the SBC. To prevent the heavy side information requirement associated with a large number of bands in split-band coding schemes from impairing coding accuracy, without forgoing the efficiency provided by adaptive bit allocation, a method employing AQJs to code the sub-band signals together with vector quantization of the bit allocation patterns was also proposed. Finally, 'pipeline' methods of bit allocation and step size estimation (using the Fast Fourier Transform (FFT) on the input signal) were examined. Such methods, although less accurate, are nevertheless useful in limiting coding delay associated with SRC schemes employing Quadrature Mirror Filters (QMF)

    Data reduction for the transmission of time encoded speech.

    Get PDF
    • …
    corecore