

University of Bath

PHD

Data reduction for the transmission of time encoded speech.

Longshaw, Stephen

Award date:
1985

Awarding institution:
University of Bath

Link to publication

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 11. May. 2021

https://researchportal.bath.ac.uk/en/studentthesis/data-reduction-for-the-transmission-of-time-encoded-speech(059c68c4-3970-4c9d-b375-22570ae13eca).html

DATA REDUCTION FOR THE TRANSMISSION OF

TIME ENCODED SPEECH

submitted by Stephen Longshaw

for the degree of Ph.D.

of the University of Bath

1985

Attention is drawn to the fact that copyright of this thesis

rests with its author. This copy of the thesis has been supplied on

condition that anyone who consults it is understood that its copyright

rests with its author and that no quotation from the thesis and no

information derived from it may be published without prior written

consent of the author.

This thesis may be made available for consultation within the

University Library and may be photocopied or lent to other libraries

for the purposes of consultation.

ProQuest Number: U363374

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U363374

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

TO

FELICITY

ABSTRACT

Time Encoded Speech (TES) transmits information concerning the

duration between zero-crossings, shape and the amplitude of the sig­

nal between successive zero-crossings.

This thesis examines a number of aspects of TES with the view

of achieving data reductions to enable the transmission of speech,

with acceptable quality and intelligibility, at low bit rates and a

practical system delay.

This thesis presents:

(i) A study of techniques for signalling amplitude information

in a TES coder. It was indicated that a minimum of the order

of 1 bit per epoch is required. Diagnostic Rhyme Tests (DRT)

yielded intelligibility scores of the order of 88% for algor­

ithms employing 1 and 2 bits of amplitude information per

epoch.

(ii) Investigations into Median and Moving Average filtering for pre­

processing the epoch duration sequences. It has been shown

that such applications, which involve simple numerical smooth­

ing, are of little value for they degrade the quality of the

synthesised speech.

(iii) Studies of Extremal Coding and Orthogonal Transformations for

achieving data reductions in the signalling of epoch duration

and, in some instances, the peak magnitude sequences. Each

technique yielded a useful data reduction. The technique using

- i -

Hadamard Transformations yielded the greatest data reduction,

a ratio of 2:1 for the representation of the epoch duration

sequences. The Hadamard Transformation also proved to be of

low complexity in its implementation.

(iv) A real-time simplex digital voice channel, developed during the

course of this thesis, and a study of the implementation of TES

and TES related coders. It is reported that speech of accept­

able quality and intelligibility is achieved for a transmission

rate of 10 or 15kb/s with a transmission delay of 300ms.

- ii -

LIST OF CONTENTS

Abstract.

List of Contents.

List of Symbols and Abbreviations

Page

(i)

(iii)
(ix)

Chapter 1 : Introduction and Review of Speech

Communication Systems.

1.1 Introduction.

1.2 Speech Production.

1.2.1 Voiced Sounds.

1.2.2 Fricative Sounds.

1.2.3 Plosive Sounds.

1.3 Bandwidth Compression.

1.3.1 Source Coders, Vocoders.

1.3.2 Waveform Coders.

1.3.3 Intermediate Systems.

1.4 Thesis Organisation.

Tables.

Figures.

Chapter 2 : TES : Simulation and Real-Time.

2.1 Introduction.

2.2 Simulation Investigations.

2.3 Real-Time Digital Voice Channel.

2.3.1 Miproc System.

2.3.2 Code Structures and Dictionaries

1

4

5

6
6
7

10
13

18

22

24

25

31

34

36

38

40

- iii -

Page

(i) Code Structures. 40

(ii) Code Dictionaries. 42

2.3.3 Read-Only Data Structures. 44

2.3.4 External Hardware and Executive Software. 46

2.3.5 Analogue Interfaces. 48

2.3.6 Digital Interfaces. 49

2.3.7 Analysis and Synthesis Modules. 52

2.3.8 Software Support. 54

2.3.9 Extrema and Zero-Crossing

Detection. 56

2.4 Summary. 58

Figures. 59

Chapter 3 : Amplitude Coding.

3.1 Introduction. 74

3.2 Amplitude Processing. 76

3.2.1 Algorithm Representation. 80

3.2.2 Algorithms Investigated. 81

3.3 Informal Subjective Appraisal. 87

3.4 Performance Assesment. 93

3.4.1 Diagnostic Rhyme Test, (DRT). 94

3.4.2 Direct Comparison Test, (DCI). 98

3.5 Conclusions. 98

Tables. 100

Figures. 102

- iv -

Page

Chapter 4 ; Median Filtering.

4.1 Introduction.

4.2 Smoothing Algorithms.

4.2.1 Non-Linear Smoothing.

4.2.1.1 One Dimensional Median

Filtering.

4.2.1.2 Initial and Final Conditions

4.2.2 Linear Smoothing.

4.2.3 Dual Stage Smoothing.

4.3 Results.

4.3.1 Epoch Duration Sequence Comparisons.

4.3.2 Informal Subjective Appraisal.

4.3.3 Power Spectral Density Measurements.

4.4 Conclusions.

Table.

Figures.

109

112

112

113

114

115

116

119

120
123

126

129

131

132

Chapter 5 : Predictors, Interpolators and Extremal Coding

5.1 Introduction.

5.2 Extremal Coding.

5.2.1 Epoch Encoding.

5.2.2 Peak Magnitude Encoding.

5.2.3 Decoding.

5.3 Results.

5.3.1 Sequence Comparisons.

5.3.2 Informal Subjective Appraisal.

150

154

154

159

161

163

163

167

- V -

Page

5.3.3 Power Spectral Density Measurements. 169

5.4 Data Reduction. 171

5.4.1 Parameter Coding. 173

5.5 Conclusions. 175

Tables. 177

Figures. 178

Chapter 6 : Orthogonal Transformations.

6.1 Introduction. 198

6.2 Terminology. 199

6.3 Data Reductions with Hadamard

Transforms, (WT)̂ .̂ 200

6.3.1 Dominant Coefficient Retention. 201

6.3.2 Sequency-based Vector Filtering. 201

6.4 Bit Allocations and Reductions. 204

6.4.1 Maximum Coefficient Value. 204

6.4.2 Minimum Coefficient Value. 205

6.4.3 Dominant Coefficient Retention. 206

6.4.4 Low-pass Sequency Filter. 207

6.4.5 Multiple Band-pass Sequency Filter. 209

6.5 Results. 210

6.5.1 Epoch Duration Sequence Comparisons. 212

6.5.2 Informal Subjective Appraisal. 215

6.5.3 Power Spectral Density Measurements. 217

6.6 Conclusions. 219

- vi -

Page

Tables. 220

Figures. 221

Chapter 7 : Real-Time Implementation of TES and TES

Related Systems.
7.1 Introduction. 235

7.2 TES Coder: King and Gosling. 236

7.3 TES Coder: Al-Doubooni. 237

7.4 System Parameters. 240

(i) Buffering. 240

(ii) Transmission Delay. 243

(iii) Transmission Rate. 245

7.4.1 System Parameters. 246

7.4.2 Discussion. 247

7.5 Amplitude Signalling. . 249

7.5.1 System Parameters. 251

7.5.2 Discussion. 252

7.6 Orthogonal Transformations. 254

7.6.1 System Parameters. 256

7.6.2 Discussion. 257

7.7 Informal Subjective Appraisal. 259

7.8 Summary. 263

Tables. 264

Figures. 266

- vii -

Page

Chapter 8 : Conclusions and Recommendations

for Future Work.

8.1 Conclusions.

8.2 Recommendations for Future Work

271

274

Appendix 1 : Listing of Commented Mnemonic Code For

Transmitter and Receiver Algorithms.

Appendix 2 : Variable Length Codes.

Appendix 3 : System Diagrams.

Appendix 4 : Supplementary Notes for System Diagrams

of Chapter 3, section 3.3.

Appendix 5 : Walsh Functions.

Appendix 6 : Physical Significance of Discarding Walsh

Transform Coefficients.

Appendix 7 ; Speech Intelligibility and Performance

Assessment.

Appendix 8 : Speech Material.

277

311

316

319

325

334

319

350

Acknowledgements.

References.

351

352

- viii -

List of Symbols and Abbreviations

x(n)

x' (n)

Ax
A* I

An
I

CAPC

.LT.

.LE.

.EQ.

.GE.

.GT.

Tx.

Rx.

ADC

DAC

DRT

DCT

k

ms

us

ns

Hz

dB

FWT

Discrete sample at time instant n.

Processed x(n).

Amplitude parameter of an epoch.

Processed Aj.

Amplitude parameter for group of epochs.

Transmitted amplitude information per epoch.

Chance Adjusted Percent Correct.

Less than.

Less than or equal to.

Equal to.

Greater than or equal to.

Greater than. :

Transmitter.

Receiver

Analogue-to-Digital Converter.

Digital-to-Analogue Converter.

Diagnostic Rhyme Test.

Direct Comparison Test.

Kilo, or 1,000.

Millisecond, or 0.001 seconds.

Microsecond, or 0.000001 seconds.

Nanosecond, or 0.000000001 seconds.

Hertz.

Decibel.

Fast Walsh Transform.

- IX -

FHT ; Fast Hadamard Transform.

X(N) : Column Input Vector.

Y(N) : Column Transform Vector.

Yn : nth coefficient of a transform vector

CSF : Coded Speech File.

ADalphabet : Al-Doubooni coding alphabet.

KHalphabet : King and Holbeche coding alphabet.

- X -

Chapter 1

Introduction and Review of

Speech Communication Systems

1.1 Introduction

Speech is a communication technique unique to man. It is our

main method of conveying thoughts, ideas, concepts and facts to other

humans. Of the many thousand species of life sharing this world

only man has developed the vocal means of communication beyond the

rudimentary stage.

In personal, face-to-face conversation, we have no need to

process speech with sophisticated equipment. However, the concept of

speaking over long distances has intrigued man for generations.

In our early history, communication between two people who were

some distance apart was achieved by sending messengers with verbal

information, eliminating the need for the communicators themselves to

travel. The messenger had to remember the verbal information until

it could be delivered. With the advent of writing, the necessary

information could be inscribed on paper, wood, or stone and "mailed".

In this case, the storage medium was probably more reliable. However,

as in the first example, the communication method (ie. by messenger)

was such that long time delays were still inherent in the transmission

of data.

The direct, "real-time" conversational method of exchanging

information over distances was still a highly desirable mode of

communications for man, as it would allow an immediate feedback of

a response enabling information to be clarified, and hence understood.

Numerous techniques ranging from smoke signals to semaphore

- 1 -

were devised for communicating over long distances. Yet despite the

desire and motivation to accomplish this, it was not until man learned

to generate, control and convey electric current that "real-time"

communications became possible with the advent of telephony and its

associated communication link, or "channel".

Initially, audio amplifier, two wires, and appropriate relays

to complete the connections for transmitting the electrical analogue

of the speech was adequate. However, as the distances between speak­

ers increased, more sophisticated equipment was necessary and the

transmission medium became a radiated carrier wave, modulated by

the speech waveform. With this system the information might now be

subjected to corruption by noise bursts over the link. However, the

time delay in transmission was sufficiently short for the errors to

be corrected by the simple technique of re-transmission.

Economic developments and social demands led to the growth of

a host of different channel media, each promising increased capacity,

with better quality of communications over long distances. Today,

society has accepted the role of communication channels as common

place for long distance communications, although the problems of time

delay were evident during communications between NASA's Mission Con­

trol and the Apollo astronauts on the moon.

In todays society communication systems, in particular voice

communications, are at a premium. The emergency services, armed

forces, security organisations and many other businesses demand

reliable portable two-way communications. More recently, with the

legalisation of Citizen Band (CB) radio, portable two-way communica­

— 2 —

tions have been made available to a host of professions and the

general public whose requirements could not be adequately catered

for by a telephone link.

Demands on available channels are very high and continue to

increase, and society mistakenly assumes that communication channels

are unlimited, but they are not. The limitations are either space,
or time, or the economics of supplying thousands of channels. Some

communication links, such as a satellite link, are by their very

nature expensive.

Communication Engineers strive to ensure that the optimum use.

is made of the available communication channels, and look for means

of making such communications more effective. One way to do this is

to ensure that only useful information is transmitted, and that redun­

dant information is eliminated. Because the dominant communications

traffic today is speech, engineers and scientists are continually

researching techniques of speech and data compression and/or redund­

ancy reduction by speech coding to achieve a reduction in data stor­

age and/or signal bandwidth requirements, thereby allowing more

conversations to be stored or carried over the same channel.

Speech signals are composed of sounds. These sounds and the

transitions between them serve as a symbolic representation of infor­

mation. The rules of language govern the arrangement of these sounds

(symbols). Linguistics is the study of these rules and phonetics is

the study and classification of the sounds of speech. Although a

study of linguistics and phonetics is very important especially in

the areas of speech recognition such a study would take us too far

— 3 —

afield. However, in processing speech signals to extract or enhance

information, it is helpful to have as much knowledge as possible

about the structure of the signal. Thus it is instructive to review

the nature of speech production and the main classes of speech sound

before we progress to survey the more "popular" techniques employed

for speech coding.

1.2 Speech Production[l-3]

Making a sound is not necessarily making speech, no one can

talk through a flute. It.is necessary to articulate, to join together

the basic note or notes before they are transformed into speech. The

so-called "mobile articulators" are the lower lips plus its jaw, the

various parts of the tongue, and the vocal cords. The mobile articu­

lators have to . move towards something - the "fixed articulators".

These are the upper lips, upper teeth, the ridge of gum supporting

the teeth, the hard palate at the front and the soft palate at the

back of the mouth and the sides of the larynx. A cross-sectional

view of the vocal mechanism showing some of the major anatomical

structures involved in speech production are shown in figure 1.1.

Try to say 'pop' without the lips touching, or 'that' without

pressing the tongue's tip to the upper teeth, articulation is inevit­

able. The articulators form the vocal tract which is an acoustical

tube of non-uniforn cross-sectional area. It is terminated at one

end by the vocal cords and at the other end by the lips. An ancill­

ary 'tube', the nasal cavity, can be connected or disconnected by

the movement of the soft palate. The basic source of acoustic power

- 4 -

is the lungs. During exhalation they force out a stream of air via

the trachea through the vocal mechanism to form one of three sounds,

each of which are described in the following sections.

1.2.1 Voiced Sounds

In a relaxed condition, the vocal cords move apart leaving a

large opening, while during speech they draw together to form a

split-like orifice called the glottis; In voiced sounds, the vocal

cords are initially tensed and together. The lungs force air up the

trachea, thus increasing the pressure behind the vocal cords (this is

known as the sub-glottal pressure) until it is sufficient to force

the vocal cords apart resulting in lateral acceleration of the air

through the narrow glottis. On entering the wider pharynx, the air

slows down. The velocity differential brings about a reduction of

pressure in the glottis. The reduced pressure enables the vocal

cords to return to their initial position, and the air flow dimin­

ishes. The sub-glottal pressure then begins to increase again and

the whole cycle is repeated.

The vocal cord mass, tension and sub-glottal pressure essent­

ially determine the period of vibration. This repetative action

produces quasi-periodic pulses of air which causes excitation of the

vocal tract and generates the voiced sound of speech. The vocal

tract is similar to a resonant cavity and therefore intensifies the

energy at certain bands of frequencies. These resonances, whose

frequencies are altered by movement of the articulators are called

the "Formant frequencies" or simply " Formants". Voiced sounds are

- 5 -

usually characterised by three or four formants in the frequency

range up to approximately 4.0kHz. An example of the periodic nature

of a voiced sound is given in figure 1.2.

1.2.2 Fricative Sounds

Fricative sounds are generated by forming a constriction at

some point in the vocal tract and forcing air through the constric­

tion at a high enough velocity to produce turbulence. This creates

a broad spectrum noise source to excite the vocal tract. The sound

produced is different from the voiced sound as its method of produc­

tion is inherently random and does not exhibit any repetative struc­

ture.

The constriction in the vocal tract may be formed between the

teeth and lips as in ' f ' or between the tongue and hard palate as in

'sh'. The position of the constriction has a profound effect on the

characteristic sound radiated from the mouth.

If the noise source alone is used to generate the fricative,

the fricative is unvoiced and exhibits a ’breathy’ and ’hissy’ qual­

ity. If the vocal cord source operates in conjunction with the

noise source, the fricative is voiced. An example of unvoiced frica-

tion is given in figure 1.3.

1.2.3 Plosive Sounds

The third sound source are the plosives or stop consonants.

— 6 —

These sounds are produced by stopping the air flow from the lungs by

completely closing off the vocal tract, building up pressure behind

the closure and quickly releasing it thereby causing a transient

excitation of the vocal tract which results in the sudden production

of sound. During the build up of pressure, if the cords are vibrat­

ing, then the plosive is preceded by low level sound. If the cords

are not vibrating during the pressure build up the plosive is preceded

by silence. These two type of plosives are termed voiced and unvoiced,

respectively. Table 1.1 presents a classification of the various

speech sounds.

1.3 Speech Bandwidth Compression

This section defines channel capacity and indicate its relev­

ance when discussing speech bandwidth compression. The categories

under which speech coding techniques are classified will be described

before reviewing some of thé most important of the currently known

techniques.

Speech sounds occupy the frequency range from approximately

50Hz to lOkHz. A bandwidth of lOkHz is therefore required for trans­

mission of the exact electrical analogue of a speech wave. In order

to utilise the full capacity of todays communications channels where

bandwidth capabilities of WHz, W is much much greater than lOkHz, are

common. Multiplexing [6] of conversational speech is employed.

However, the channel capacity soon becomes exhausted when employing

such simple techniques. To further increase the number of conversa­

tions transmitted over the channel, the speech band capacity occupied

- 7 -

by each conversation must be reduced. This has been, and still is

the goal of many researchers in the broad ’field' of speech communica­

tions.

Channel capacity is measured in binary units of information

(bits) per second , b/s, and specifies a maximum rate at which the

bits can be transmitted over a channel with errors reduced to neglig-
able proportions. Shannon[7] has shown that the theoretical maximum

capacity, C, of a communications channel of bandwidth, W, for a signal-

to-noise power ratio, S/N, to be:

C = W.Log2 (l + S/N) b/s (1.1)

For a given signal-to-noise ratio the theoretical maximum

channel capacity and bandwidth are directly related. Techniques for

the reduction of required channel capacity are often termed ’Bandwidth

Compression’ or ’Bandwidth Reduction’. The achieved bandwidth reduc­

tion is, in general, specified as a ratio of the previous channel

capacity and the currect channel capacity.

A question often posed when discussing the achieved bandwidth

compression is, "How significant is this result?". The answer to

this depends upon the envisaged area of application. For example,

consider a speech system which yields good quality speech with a

transmission rate of 16kb/s. In a commercial environment a signif­

icant bandwidth compression is reducing the transmission rate from

16 to 8kb/s, a ration of 2:1, and yield speech of the same quality.

However, for military applications fair to good quality speech at a

transmission rate of 12kb/s, a ratio of 1.33:1, is highly significant

— 8 —

because the 4kb/s ’save’ may be utilised for conveying secure data.

The initial techniques proposed for reducing the required

channel capacity employed analogue processing and the reductions were

achieved by exploiting known characteristics of conversational speech.

However, for digital processing greater reductions were achieved us­

ing Analysis-Synthesis techniques, a form of source coding. Source

coders in this application make no attempt to preserve the original

waveform, instead the input speech is analysed using a priori knowl­

edge of how the signal is generated at the source. The speech param­

eters are transmitted and, at the receiver, employed to synthesise

the speech signal. Source coders of this nature for speech are

generally referred to as a Vocoder, a term derived from the words

voice œOER.

Reductions approaching those of source coders can be attained

using waveform coding. : As the name implies, the coder essentially

strives to copy the actual shape of the waveform. In principle they

are designed to be signal/source-independent and therefore can code

a variety of signals equally well eg. speech, music, electrocardio­

grams. Waveform coders tend to be robust for a wide range of speaker

characteristics and for noisy environments.

There are many ways of combining some of the detailed signal

description possibilities of waveform coders with some of the redund­

ancy exploitation of source coders. The resultant systems, known as

Intermediate coders, generally yield comparable speech quality at

data rates intermediate to that of vocoders and waveform coders.

- 9 -

The following sections briefly review some of the most import­

ant of the commonly adopted methods of encoding speech signals.

Sections 1.3.1 and 1.3.2 review source and waveform coders. Section

1.3.3 describes an intermediate coder known as Time Encoded Speech;

a relatively new digital speech encoding technique.

1.3.1 Source Coders, Vocoder[l,8-12]

Systems which attempt to preserve the short-term power spectrum

of speech while disregarding most of the phase information, are

called Vocoders. Vocoders strive to retain the perceptually signifi­

cant properties of the waveform with the intention of synthesising a

signal .at the receiver which sounds like the original.

The traditional model of speech production, figure 1.4, is one

where the source of the sound and the resonant system which modifies

the sound are separable and do not interact.

For vocoder purposes, speech sounds are classified as either

voiced or unvoiced. The voiced sounds are represented by a periodic

pulse generator and the unvoiced sounds by a random noise generator.

These sources are normally considered mutually exclusive with a

signal to indicate switching between the voiced and unvoiced sources.

The intensity of sound excitation of each source is represented by

an amplitude or gain signal. In addition, the periodicity or ’pitch*

of the voiced pulse must be signalled.

The important difference, in principle, between vocoders lie

In their representation of the vocal tract transfer function. This

— 10 —

description can take a variety of forms. In the Channel vocoder,

values of the short-term amplitude spectrum of the speech signal are

evaluated at specific frequencies. The Linear Predictive Coding

(LPC) vocoder utilises linear prediction coefficients which describe

the spectral envelope, whilst the Formant vocoder uses frequency and

amplitude values of major spectral resonances. Autocorrelation voco­

ders specify samples of the short-term autocorrelation function

whilst coefficients of a set of orthogonal functions that approximate

the speech waveform comprise an Orthogonal Function vocoder. There

are numerous other variants. With all these methods of waveform

description the data is coded into 'frames' associated with the

spectra measured at intervals of 10 to 30ms.

A basic channel vocoder is shown in figure 1.5. A series of

bandpass filters are used to divide the speech signal into frequency

channels. The number of filters employed within the analyser or

synthesiser vary depending upon the application. The first channel

vocoder demonstrated by Dudley[8] had only 10 equal bandwidth spec­

trum channels covering the speech band upto 3kHz, while the JSRU

channel vocoder[ll] had 19 non-uniformly spaced channels which had

a rough correspondence with the critical bands of auditory perception

in the range 0.25 to 4.0kHz. The signal components in each of the

channels are full wave recified and low pass filtered to yield a

continuous estimate of the speech power spectrum amplitude in each

channel. Independent to the spectral analysis, the fundamental

frequency is measured and a voiced/unvoiced condition determined by

the voicing detector.

— 11 —

At the receiver (or synthesiser) the. speech is synthesised

using estimates of the power spectrum together with the pitch and

voicing information. During voiced segments pulses at the pitch rate

are output from a pulse generator to excite a bank of filters. The

excitation is adjusted using the power spectrum amplitude in an

attempt to equalise the output energy to that measured for the corres­

ponding channel in the analyser. For unvoiced sounds, a gaussian

noise source excites the filter bank. The output of each filter is

then combined to produce artificial speech similar to the original.

An overall bandwidth compression of the order of 10:1 in the trans­

mitted signal is possible.

As digital technology evolved and small processors became more

economical, powerful and faster so their applications in digital

signal processing increased. Most modern vocoders employ a digital

transmission path. The Channel and LPC vocoders can produce useable

albeit poor quality speech at transmission rates of;2.4kb/s. It is

generally recognised that good speech quality can be achieved at data

rates as low as 1.2kb/s, by Formant vocoders. However, the main

difficulty with Formant vocoders lie in the automatic formant analy­

sis during consonant or vowel/consonant boundaries where discrep­

ancies in signalling can arise [12] .

Vocoders tend to be fragile (in terms of parameters such as

voiced/unvoiced decisions and pitch values), the performance is often

talker- and environment-dependent and the output speech quality,

generally, has a synthetic (less than natural) quality. These charac­

teristics and the signal model utilised constitute a ceiling on the

— 12 —

performance that vocoders can achieve.

1.3.2 Waveform Coders

Waveform coders represent an analogue waveform in digital form

for transmission. This digital representation offers ruggedness,
efficient signal representation, ease of encryption, the ability to

combine transmission and switching functions and the advantage of a

uniform format for different types of signals.

(i) Pulse Code Modulation,PCM[13,14]

Historically, PCM was the first method used to digitally repre­

sent speech waveforms and is still widely used. The sampling theorem

states that a signal whose highest frequency of importance is f^ can

be completely specified by 2f^ samples taken at equal intervals of

l/2fb seconds. PCM invokes the sampling theorem by uniformly samp­

ling the (bandlimited) waveform at a minimum rate of at least twice

the highest frequency in the waveform. The amplitude of the sample

is quantised into one of 2® levels. These discrete amplitude levels

are represented by unique binary words of length B bits.

To decode the PCM signal, the binary words are mapped back into

amplitude levels creating an amplitude pulse sequence. This sequence

is low pass filtered with a filter whose cut-off frequency is equal

to the highest frequency in the input waveform.

PCM is illustrated in figure 1.6. The difference between the

— 13 —

original and quantised signal is regarded as noise and termed 'quant­

isation noise'. It has been shown [14] that the mean square quant­

isation noise, Q^, is a function of step size, S, where :

2
Qn = S /12 (1.2)

If the 2B amplitude levels are uniformly spaced, low level

signals have a poor signal-to-quantisation noise ratio compared with

large amplitude signals. In order to combat this problem a number of

techniques have been developed, namely Non-Uniform Quantisation,

Adaptive Quantisation and Instantaneous Companding.

Non-uniform quantisers are characterised by fine quantisation

steps for the frequently occurring low amplitudes in speech; while

much coarser quantisation is used for the less frequent large amp­

litude excursions in the speech waveform.

Adaptive quantisation utilises a quantiser whose character­

istics (uniform or non-uniform) shrink or expand in time like an

accordion. In an adaptive quantiser with a one word memory [15] the

adaption of step size s(n+l) is characterised by:

s(n+l) = s(n).M(1 Quantiser Output(n)I) (1.3)

Where M is a function only of the latest quantiser output.

The use of a non-uniform quantiser is equivalent to the present­

ation of a compressed signal to a uniform quantiser and a subsequent

expansion of the output. Smith [16] investigated instantaneous comp­

anders and demonstrated that a mu-law (-law) compression charac­

teristics using 128 quantisation levels (7 bits per sample) could

— 14 —

provide "toll quality speech" of similar performance to that of a

2048 level (11 bits per sample) quantiser. Figure 1.7 shows the

input-output relation for mu-law characteristics.

Civil telephony systems employ 8 bits per sample quantisation

with a sampling rate of 8 kHz, resulting in a transmission rate of 64

kb/s.

(ii) Differential PCM,(DPCM)[1,17-20]

Differential Pulse . Code Modulation (DPCM) estimates the next

sample based on the previously transmitted samples. The estimate is

subtracted from the actual sample value to give a prediction error.

The prediction error is then quantised, coded and transmitted. At

the receiver, the original signal is synthesised! from the sequence

of quantised prediction errors. A block diagram of a DPCM system is

shown in figure 1.8.

The predictor weights past sample values so as to minimise the

average energy of the prediction error or difference signal. The

’weights' are calculated using long term statistics of a represent­

ative sample of speech. Once selected, the 'weights' remain fixed

for any given DPCM system.

The application of adaptive quantisation in DPCM systems has

been investigated [20] and the quality of speech output from a 4 bit

adaptive differential PCM (ADPCM) coder was subjectively judged to

be better than that of 6 bit log-PCM.

- 15 -

(iii) Adaptive Predictive Coding,(APC)[1,21,22]

Adaptive Predictive Coding (APC) differs from ADPCM in that,

besides the quantiser being adaptive, the predictor in APC is also

adaptive and is updated periodically. Atal and Schroeder [21] emp­

loyed an adaptive linear predictor which was updated every five

milliseconds to minimise the mean square error between the predicted

and the true values of the signal. The predictor parameters were

transmitted periodically along with the difference signal and quant­

iser step size.

The block diagram of an APC system is identical to that of

figure 1.8 when, the predictor in figure 1.8 is replaced with that of

figure 1.9. This configuration was first postulated by Atal and

Schroeder based on the observation that speech signals contain both

long term and short term redundancies due to excitation or pitch

signal and the vocal tract, respectively.

Subjective comparisons with speech from a 6 bit log-PCM encoder

[21] indicate that the quality produced by APC is very similar. More

recently Atal [22] has shown that predictive coders have the potential

of producing superior performance to that of source coders, even at

low bit rates.

(iv) Delta Modulation,(DM)[1,23-25]

Delta Modulation (DM) is a predictive coding system similar to

DPCM. However, in DM the signal is sampled at many times its Nyquist

— 16 —

rate and each sample is encoded employing one bit (2 levels). A DM

system generates a local copy of the input waveform and successsively

modifies this copy, as specified by a digit code, in an attempt to

track the input. A block diagram of a DM system is given in figure

1.10. The step size, SS, is fixed for non-adaptive (linear) delta

modulation (LDM).

Figures 1.11(a),(b) and (c) are waveforms produced at various

points within the DM system of figure 1.10. Figure 1.11(a) compares

the local copy of the input waveform (which is the output of the

integrator, s(t)) with the input waveform itself. Figure 1.11(b) is

the output of the sampler, e(n), while figure 1.11(c) gives the error

signal derived by differencing the input signal, x(t), and the local

copy, s(t).

As shown in figure 1.11(c) the quantisation noise takes two

distinct forms. The first, 'granular noise', occurs when the DM

coder is tracking a constant or slowly varying signal. The second,

'slope overload noise', occurs when the slope of the input signal is

greater than the maximum slope of the DM system. The optimum step

size is one which achieves an appropriate balance between slope over­

load which is dominant when the step size, SS, is small and granular

noise when SS is large.

To reduce these noise sources a number of techniques for alter­

ing the step size, generally refered to as Adaptive Deltamodulation

(ADM), have been investigated [24]. The adaption can be either cont­

inuous as in Continuously Variable Slope Delta modulation (CVSD)

which varies SS over a continuous range, or discrete as in Variable

- 17 -

Slope Delta modulation (VSD) which adapts, depending the error signal,

by changing SS in steps of 2^.

The data rates necessary for DM to produce high quality speech

are relatively high. For low data rates, adaptive delta modulators

can be designed to have a better signal to noise ratio than that of

7 bit log-PCM. However, ADM typically requires 16-20kb/s for satis­

factory speech production.

1.3.3 Intermediate Systems

In the last decade many of the speech encoding systems devel­

oped were of the Intermediate type[26-29]. Of these some of the

better known are still being extensively researched. Intermediate

coders combine some of the detailed signal description possibilities

of waveform coders with some of the signal redundancy exploitations

of vocoders in an attempt to achieve a system of low complexity

which has a high tolerance to noise and low data transmission rate.

A relatively new technique for digitally encoding speech which may

be classified as an intermediate coder is described below.

Time Encoded Speech,(TES)[30,31]

In 1948 Licklider and Pollack published the results of their

investigations into the effects of "infinite peak clipping" on the

intelligibility of a speech waveform [32,33]. It was reported that

a speech waveform, clipped such that no amplitude information remain­

ed, yielded 75% random word intelligibility. If differentiated prior

— 18 —

to clipping the intelligibility was increased to 97%. The only

information transmitted was the position of the zero-crossings of the

speech waveform. At the receiver, this information was decoded and

used to generate "square speech", that is rectangular waves of const­

ant amplitude, alternating in polarity. However, this technique has

been of little practical use for two main reasons. The waveform's

zero-crossings must be located accurately to maintain intelligibility

and an acoustic noise background caused severe degradation of the

signal.

In 1978, King and <5osling described a new method of encoding

speech waveforms called Time Encoded Speech (TES). This technique

was akin to rectangular or "square" speech in that the speech signal

was segmented between successive real zeros of the function. However,

for each segment of the waveform, the code consisted of a single

digital word derived from two parameters of the segment: its quant­

ised time duration and its shape.

Measurement of the interval between real zeros of the waveform

was straight forward. This parameter is often referred to as the

'epoch duration' or 'epoch length' and its units are either the num­

ber of samples between real zeros or the physical time between real

zeros (ie. the product of the number of samples between real zeros

and the sampling interval). The epoch durations were logarithmically

quantised so that, in absolute terms, the shorter epoch durations

were transmitted more accurately than the longer, thus maintaining

an approximately constant fractional accuracy.

TES differed from the non-linearly quantised rectangular speech

- 19 -

in that, in addition to the quantised epoch durations, epoch shape

descriptors were also transmitted. This provided additional waveform

information and extra psycho-acoustic cues to enhance the naturalness

of the synthesised speech.

In principle, the epoch shape could be compared with a cata­

logue of shapes and a code selected which represents the shape in

the catalogue nearest to the actual segment shape. However, since

the short-term phase relationships, which greatly affect waveshape,

are hardly perceived at all by the ear, epoch shapes which look

different when viewed on an oscilloscope may not sound different

when heard. As a result of this, much simplification of shape ident­

ification is permissible. The product of the number of durations

multiplied by the number of distinguishable epoch shapes constituted

a large 'alphabet* of distinguishable symbols. Thus such a simple

coding strategy would have been of limited value. However, further

research revealed that the large number of naturally occurring symbols

could be mapped to a smaller number. A two dimensional matrix,

corresponding to quantisation of time on one axis and a list of shape

descriptors on the other, permitted mapping onto a reduced alphabet

of symbols distributed uniformly over the matrix. The reduced alpha­

bet approximated the natural symbols which are mapped onto the matrix.

Synthesis was a relatively simple matter. Stored epoch shapes

were reproduced in sequence at the correct duration, in accordance

with the shape and duration specifications of the received codeword.

This yielded waveforms of fixed amplitude.

Mean amplitude is a relatively slowly varying characteristic

— 20 —

of speech waveforms. To further improve the naturalness of the

synthesised speech, after every eighth transmitted codeword an addi­

tional codeword was inserted which communicated the mean speech

amplitude of the next eight codewords and the synthesis mean ampli­

tude was reset to this new value.

It was reported that for a reduced alphabet of 23 codewords

simulation of encoding and synthesis (utilising a PDF 8/e minicom­

puter) yielded speech of "good intelligibility and speaker identifi­

able" at an estimated bit rate of 5.4kb/s.

Time Encoded Speech involves the coding of variable-rate source

signals into constant-rate signals for transmission. Buffer storage

at transmitter and/or receiver is required to permit this "variable-

rate to constant-rate" transformation. As a result, delays are

introduced into the communication process.

The mechanisms involved, the influences of buffer size and the

delays associated with such systems were described by Turner et al

[34], who concluded that "fairly long delays (of the order of one

second) may be involved in the distortionless transmission of speech

encoded using information about the waveform segments linkng success­

ive real zeros from speech signals". Mason and Balston [35] extended

this analysis, proposing that a modest increase (by a factor of 1.5

to 1.9) in transmission rate over the average source generation rate

would permit the distortionless transmission of time encoded speech

with a tolerable system delay (200ms). Turner et al [36] derived

explicit expressions for the limiting delay in time encoded speech

type systems operating at data transmission rates higher than the

- 21 -

average rate at which the information is produced by the variable-

rate source. However, King and Holbeche [37] offered experimental

evidence which indicated that transmission delays in time encoded

speech may be reduced an order of magnitude by utilising suboptimum

bounded entropie codes in place of constant length codes.

Despite the initial promise of Time Encoded Speech the results

of simulation exercises were dissappointing and many significant

questions were left unanswered, for which there was no prior art to

turn to for guide-lines.

Time Encoded Speech offers a method of medium complexity for

the transmission of digitally encoded speech. Table 1.2 shows the

relative advantages and disadvantages of a number of speech coding

systems, a number of which were omitted in this review, and high­

lights the need for low to medium complexity intermediate coders.

1.4 Thesis Organisation

This thesis details an investigation into data compression

techniques for the reduction of data transmission rate or buffer-

delay associated with Time Encoded Speech. Chapter 1 has highlighted

the need for bandwidth compression, given a brief 'tutorial' on

speech production and finally reviewed some of the better known

speech coding techniques to provide a benchmark against which TES

may be evaluated.

Chapter 2 describes the simulation algorithms and modification

of the coded speech data structures implemented for these investiga­

- 22 -

tions. Details of a microcomputer system developed in parallel to

and utilised within the investigations reported here for the real­

time evaluation of Time Encoded Speech are also presented.

Chapter 3 describes the real-time investigations into the amp­

litude information requirements of TES. Chapters 4, 5 and 6 describe

simulation investigations into possible data reduction techniques

applied to the sequences of epoch parameters, where: Chapter 4 details

the study of Median and Moving Average Filters for the preprocessing

of the epoch duration sequences for the enhancement of the effective­

ness of data compression techniques; Chapter 5 presents the investiga­

tions into Extremal Coding of the sequences of epoch durations and

peak magnitude parameters; Chapter 6 presents the study of Orthogonal

Transformations of the epoch durations sequence and inspected poss­

ible bandwidth reduction techniques.

Chapter 7 presents the real-time implementation of the Al-

Doubooni and King and Gosling TES coders, and the TES related coders

which have incorporated those techniques of significance to emerge

from chapters 3 to 6. Chapter 8 presents the conclusions and recomm­

endations for areas of further research.

— 23 —

u to

>£

Œ 0»
> 2.

inuJ_)
2 SY e.o

u S

J2i:5
a

i I
fv
g 3

“■5.o -S? J
^ 3 ^ 8

oe = .S.5.£
"w w Si M & <
E’n «) u u ® _ yw ba 3 a a C ̂ O0 1# b* M ta 0 tj ̂
‘" • I l 2 2 ' U s

gs-so e.«ü.= 2
I
âe

01X
i 1

I
D
CLw UJ<

c'y -îî”̂
5 5 > »•- K8>

« y B *̂ U

J

— 24 —

SOFT p a l a t e
Velum)

N A S A L
C A V I T Y

HARD
PALATE

VOCAL TRACT

TONGUE

LIPS

VOCAL FOLDS

Figure 1.1 : Cross-sectional view of the vocal mechanism showing some

of the major anatomical structures involved in speech

production (After Markel and Gray [4]).

— 25 —

w-\
I-"** A— -njV*Vv

I |J6S«C I

|J«-Cî /-\-

ne. |xaa*c

j a ' a . 1" “ 'i — >j'yviA/'—

(J»3<e pjec --
|3TSet |3«sa |39»ac

f-»«ec

Figure 1-2 : "ar" as in pare. Low pitched male speaker.

(After Crandall [5]).

|««C |o»3at >033«£

|.9J3« |.«kM6 |.»T3«C |.(»ac |.W3« |.l»i<C

jiOiSC 1 l»3«C l-ieaet pa«e

fJ33ée Ji*a«c)jr3«e jjaiec ---------- |£*â

l«sjBi l^aac 1̂ *®* |zaa«_
u * /̂<yV/v v̂ -̂'vv̂'Ŷ /̂\̂>v̂-N-̂'Yvuyv-̂ vvv̂ Y''̂

Îaae [ztMt , I

laaaac

jA ja ec ^ , la o ie c

|33jeepJStfC

|-393St

pa |îMa

Figure 1.3 : "Sa" as in sat. Male speaker.

(After Crandall [5]).

— 26 —

Source Sound

Unvoiced

Pitch Output
Speech

Voice
Excitation Vocal

Tract
Response

Input
Speech Transmission

Noise
Source

Pulse
Source

ANALYZER

Vocal
Tract
Filter

Figure 1.4 : Source-System Representation of Speech Production

VOCODER
INPUT

VOCODER
OUTPUT

V /U V SIGNAL

SWITCH

BANDPASS
FILTER N

LOWPASS
f il t e r I

PITCH
d e t e c t o r

FU.SE
GENERATOR

Figure 1.5 : Block Diagram of a Channel Vocoder.

- 27 -

o

(J)X

- 2 8 -

Tx. Rx.

s (n) 20 -
e(n) Q e(n) Channel Ü

s(n)

ê(n)

Q-1

e(n)

x b
s'(n)

s(n)

L- PREDICTOR

PREDICTOR

s'(n)

Figure 1.8 ; Block Diagram of a Differential Pulse Code Modulation(DPCM) system.

Figure 1,9 : Predictor required for Adaptive Predictive Coding(APC)

— 29 —

X(t) t 0 l (Ü

S(t)

e(n)

SS
SS

LPF: Low pass filter

LPF
+v

SAMPLER

INTEGRATOR

INTEGRATOR

Figure 1.10 : Block Diagram of a Delta Hodulatlon(DM) system.

cn

CL

•fÎ
if)

i
T

>
I

- 30 -

Chapter 2

TES: Simulation and Real-Time

2.1 Introduction

The work of King and Gosling on Time Encoded Speech (TES)

(section 1.4) stimulated research by Al-Doubooni [39] into speech

encoding applied to low data rate transmission. The system developed

by Al-Doubooni differed from that of conventional TES in the repre­

sentation of the shape desciptors for successive waveform segments.

Mapping of the quantised time and shape descriptors onto a reduced

alphabet was excluded and amplitude information was signalled on an

epoch to epoch basis rather than after every eight epochs.

Prior to sampling (fg= 20kHz) the input speech was bandlimited

to the standard telephone bandwidth (300 - 3400 Hz). The encoder

then sampled and analysed the input speech to detect:

- waveform zero-crossings.

- maximum sample magnitude between zero-crossings.

- number of extrema between zero-crossings.

- number of samples between zero-crossings.

To reduce the effect of background noise and the data required

for encoding periods of silence, symmetrical thresholding of the

speech waveform was applied. The threshold level was set at -36dB

below the peak magnitude of a complete utterance. Epochs with a

peak magnitude less than the threshold level were assigned a zero

valued peak magnitude, figure 2.1.1. A succession of such epochs

were combined to form a single epoch of zero magnitude and duration

equal to the sum of the durations of the combined epochs. To preserve

signal polarity, the number of combined epochs was restricted to odd

— 31 —

(A)

(B)

THRESHOLD
LEVEL

Figure 2.1.1 : Symmetrical thresholding of a speech waveform.

(A) Waveform before thresholding.

(B) Waveform after thresholding.

values. Computational limitations restricted the maximum duration of

an epoch to 2047 samples (approximately 0.1 seconds). The epoch

parameters 'transmitted* were:

(a) Epoch Duration

(b) Number of Extrema

(c) Epoch Peak Magnitude

Due to the technique implemented to encode periods of silence

and low level noise the encoding resulted in two seperate distrib­

utions for the epoch durations. One distribution was associated

with the speech and ranged from one time quantum (a time quantum

being 50 ys) to 40 time quanta. The second distribution was assoc­

iated with the silence intervals and ranged from one time quantum to

- 32 -

2047 time quanta. Since each epoch parameter was independently coded

and thus had a seperate codeword alphabet the speech epoch duration

codeword alphabet could be a subset of the silence epoch duration

codeword alphabet. However, the total codeword alphabet required

for the representation of all possible epoch parameters was vast with

2047 codewords being required to represent the epoch durations alone.

The synthesis of the speech waveform employing these epoch

parameters was straight forward. Utilising a look-up table of stored

epoch shapes, the epoch duration and number of extrema were employed

to reference the required epoch shape. The individual samples of

the referenced shape were scaled relative to the peak magnitude and

then output. The synthesis algorithm assumed alternating polarity

of the epoch peak magnitude. Epochs of three or more extrema were

synthesised as a symmetric three extreme segment with a minima at

A/2, A being the peak magnitude.

To investigate possible data reduction techniques for the

transmission of TES codewords it was decided to utilise the algor­

ithms developed by Al-Doubooni for the initial simulation exercises

before progressing to implementing any techniques of significance in

realtime. However, due to the vast codeword alphabets described

above some adjustments to the parameters output from the encoder

were required before these algorithms could be utilised. In order

to be able to implement algorithms in real-time, a flexible simplex

digital voice channel was developed. In section 2.2 the adjustments

to the coded speech files produced by Al-Doubooni’s algorithms are

outlined and section 2.3 describes the simplex digital voice channel.

- 33 -

2.2 Simulation Investigations

Al-Doubooni's algorithms were not developed for the simulation

of a feasible speech coder but as a vehicle for studying factors

governing data rates and speech quality. The algorithms were implem­

ented in non real-time on a Digital Equipment PDF 8/e minicomputer.

The input speech and coded speech together with the synthesised

speech were all stored on the PDF 8/e minicomputer disk storage

medium.

The necessary buffering between the variable-rate source and

the constant-rate channel was not simulated and therefore, distor­

tions due to buffer underflow and overflow do not occur within the

synthesised speech. The effectiveness of, and distortions introduced

by, a data reduction technique could therefore be studied without

having to distinguish between the distortions due to buffering and

those due to the algorithm.

In a real-time system, where the input speech is bandlimited

to the standard telephone bandwidth, epoch durations greater than 2ms

(40 samples) are, in general, small in magnitude and infrequent.

Spurious epochs of durations greater than 3.2ms (64 samples) are trun­

cated to 3.2ms. Periods of silence and low level noise are repre­

sented by the transmission of a special codeword which represents a

fixed epoch duration of 2ms and zero magnitude. The number of spec­

ial codewords transmitted depends upon the duration of the silence

interval or segment of low level noise. The maximum epoch duration

encoded in a real-time system in therefore 3.2ms.

— 34 —

However, within Al-Doubooni*s TES encoding algorithm the thres­

holding technique implemented for the coding of silence and low level

noise produced epoch durations in excess of 0.1 seconds. Therefore,

before the coded speech file produced by Al-Doubooni's TES encoding

algorithm could be utilised its format had to be altered to resemble

that produced by a 'physical' system. This was achieved by omitting
all epochs whose duration exceeded 2ms and whose peak magnitude was

zero. It was hypothesised that the silence codeword would not play

a role in any data compression technique because it invokes a separ­

ate synthesis routine and any corruption of this codeword by a data

compression algorithm could result in significant deterioration in

the quality of the synthesised speech. Thus to remove such codewords

from the coded speech file would not affect the results of simulation

exercises.

Once data compression and expansion transformations had oper­

ated on a coded speech file, which had had the "silence" intervals

removed, the synthesised speech produced using Al-Doubooni's algor­

ithm would have been devoid of the majority of the normal conversa­

tional inter-word pauses. Therefore the capability to replace the

"silence" intervals previously omitted was deemed necessary and was

implemented.

Two Fortran programmes were developed. One to remove the

silence intervals, SILRM.FT, and another to re-insert such intervals,

SILRP.FT. SILRM.FT required the coded speech file, CSFl.DT, as its

input and created a coded speech file, OUTl.DT. OUTI.DT had all

those epochs with durations greater than 2ms and of zero peak magni­

- 35 -

tude omitted.

Once OUTl.DT had been transformed, and inverse transformed,

via a data compression technique, provided the transformations had

not eliminated or created extra epochs, the silence intervals were

replaced by SILRP.FT. This program required two input files: the

original coded speech file, CSFl.DT, and OUTl.DT or its equivalent,

and created an output file, 0UT2.DT.

The epoch parameters of CSFl.DT were sequentially inspected.

If an epoch did not have a duration greater than 2ms and zero peak

magnitude, a set of epoch.parameters were transferred from OUTl.DT to

0UT2.DT, otherwise the epoch parameters were transferred from CSFl.DT

to 0UT2.DT. Thus 0UT2.DT is OUTl.DT with the silence intervals of

CSFl.DT. Figure 2.2.1 depicts this entire operation.

A further program PAREXT.FT was developed for the sequential

extraction, from the coded speech file, of one of the three epoch

parameters. This aided the user in the production of sequential

plots of the epoch parameters which were extensively used during the

simulation investigations.

2.3 Real-Time Digital Voice Channel

The system described here is not a rigid solution to the prob­

lem of serial transmission of Time Encoded Speech. The overriding

design criterion was flexibility and as a working basis the following

properties of a comprehensive system were included:

— 36 —

(a) Serial transmission of binary data.

(b) Arbitrary channel bit rate.

(c) The only external synchronisation is the

bit timing information.

(d) Non-propagation of channel errors.

(e) "Filler-words" as an essential element

of the system.

(f) Optional inclusion of "silence-words".

(g) Optional inclusion of "repeat-words".

(h) Amplitude information included on a

fixed pattern.

In line with terminology used in the majority of the literature

on coding theory, "symbols" has been reserved to denote the indivi­

dual members or "letters" of the underlying set used in transmission.

For example, in a binary system, the symbols are 0 and 1. Therefore,

the expression "tes-word" will appear in preference to "tes-symbol"

and similarly for "amplitude-word","repeat-word" etc.

A simplex system was developed based on two Plessey MIPROC 16F

processors. One functioned as the transmitter and the other as the

receiver. A uni-directional serial interface, with an arbitrary

preset constant transmission rate and the option of inserting inver­

sion errors into the bit stream, was introduced between processors.

Section 2.3.1 describes a MIPROC processor and the software

development tools used. Section 2.3.2 discusses the choice of code

structure and dictionaries. Section 2.3.3 presents the read-only

data structure employed whilst section 2.3.4 discusses the external

— 37 —

hardware and executive software. Details of the analogue interface

between the input speech and transmitter, and that of the receiver

and the output speech are described in section 2.3.5. Section 2.3.6

describes the digital interfaces between the two processors and

section 2.3.7 describes the modular implementation of the analysis

and synthesis associated with TES. The support software generated in

conduction with the system is described in section 2.3.8. Finally,

the extrema and zero-crossing detection routines utilised in the

example algorithm listed in appendix 1, are presented in section

2.3.9.

2.3.1 Miproc System

An overview of the complete system is presented in figure

2.2.2. The Plessey Miproc 16F [40] is a single board 16 bit pro­

cessor fabricated using low power schottky TTL gates. The main

features of this processor are:

- two general purpose registers.

- an index register.

- a memory address register.

- 170 possible instructions.

- execution time of 250ns for

single cycle instruction.

- 64k memory addressing capability.

An extra board is required to utilise the indexed addressing

mode of some of the instructions and the interrupt facility. The

- 38 -

Miproc architecture has completely separate data memory and program

memory addressing spaces.

Two identical Miproc systems were used in the configuration of

figure 2.2.2. Each system was equipped with:

- 2k of program memory.

- 6k of data memory.

- a 12 bit analogue-to-digital converter.

- a 12 bit digital-to-analogue converter.

- a dual 16 bit parallel interface.

- a 16 bit by 16 bit hardware multiplier.

- a resident monitor.

Although the hardware multiplier forms a 32 bit product in 250

ns, loading of the multiplier and multiplicand from arbitrary memory

locations and the transfer of the product to arbitrary memory loca­

tions required a total of eight instructions (2ps). Only the

most significant bit of one channel of the parallel interface was

employed to form the serial data link.

The Miproc resident monitor provided examine and deposit, break

point, de-assemble, single step, load, dump and verify facilities.

A Digital Equipment PDF 11/34 was employed to emulate the monitor

console under MLINK providing the facilities for loading from and

dumping to disk files created under RT-11. A cross-assembler for

the convertion of programs developed in mnemonics to machine code was

also available on the PDF 11/34 thus completing a powerful software

development capability.

- 39 -

2.3.2 Code Structures and Dictionaries

(i) Code Structures

Of particular concern in a real-time implementation of TES is

the irregular rate at which data is extracted from the waveform.

This necessitates that some form of buffering be interposed between

the irregular rate source and the constant rate channel. Since the

buffer must be of finite capacity in a real-time system the possibil­

ities of buffer underflow and buffer overflow must be considered and

contingencies for such eventualities organised. If the channel rate

is faster than the symbol generation rate, the buffer in the trans­

mitter will empty. At such a time the channel must be kept occupied

by the transmission of a "filler-word". The "filler-word" is formed

from a special pattern of digits which are unambiguously recognised

by the receiver.

To enable the inclusion of specialised codewords it was assumed

that the serial data stream would comprise of a succession of ele­

ments. Each element being either a filler-word or data frame. Each

data frame may be either a specialised codeword, such as the silence-

or repeat-word, or an amplitude-word followed by a group of N tes-

words. Figure 2.2.3 illustrates possible data frames*

To further retain flexibility in the system, separate diction­

aries were implemented so that the amplitude-dictionary was the

totality of amplitude-words and the tes-dictionary the totality of

tes-words. Certain special cases may arise when conditions are

placed on these dictionaries eg. When the amplitude-dictionary is

— 40 —

empty and the system is "amplitudeless" as in the same sense as that

of infinite clipping. Alternatively, it may be that the amplitude-

-dictionary is a proper subset of the tes-dictionary.

Since no conditions were placed on the construction of the two

dictionaries, they were considered disjointed and not necessarily

having the same structure eg. constant length codewords in the ampli­

tude-dictionary and variable length codewords in the tes-dictionary.

Such a structure had provisions for combining the dictionaries or

omitting the amplitude-dictionary in special applications.

It was decided that the silence-word would be decoded as if it

were a single descriptor for a group of N epochs of fixed duration

and zero amplitude. It therefore replaced the standard data frame

of "amplitude-word followed by a group of N tes-words". If a member

of the amplitude-dictionary was reserved as the silence-word, the

receiver recognised its presence and inserted a group of zero ampli­

tude epochs. Similar remarks apply to the inclusion of a repeat-

word.

Since the filler-word was extracted from the bit stream on

every occurrence and was always preceded by either another filler-

word or a data frame, it also provided the minimum synchronisation

requirement of the channel. The filler-word was constrained to

occur only at the beginning (end) of a data frame and was not a

member of either the amplitude- or tes-dictionary. Therefore, the

construction of the two dictionaries and filler-word were not inde­

pendent. For efficient synchronisation in the presence of channel

errors it was necessary to augment the naturally occurring filler-

— 41 —

words (due to transmitter buffer underflow) with deliberately inser­

ted filler-words at a set rate. Figure 2.3(a) depicts the codeword

classifications, while figure 2.3(b) provides an example of possible

dictionaries where the amplitude-dictionary is based upon a 5 bit

constant length code and the tes-dictionary is based upon a 4 bit

constant length code.

(ii) Code Dictionaries

The code structure selected was, in general, one in which the

same codeword could have two different meanings, depending on its

position within the data frame. Therefore, correctly identifying

position within the data frame was essential. Indeed it was felt

thatp the importance of maintaining the correct frame boundaries

outweighed that of conventional error protection for guaranteeing

the data within the frame. Because of this, the vast bulk of linear

algebraic coding techniques [41-43] were not considered.

Constant length codes had the attractive property that once

synchronisation was achieved, simply counting the number of bits

provided for continuing synchronisation. Methods of synchronising

constant length codes have been suggested by many authors. Usually

these methods require special coding of the message, as in comma-free

codes [44-47] or the periodic insertion of a comma between blocks of

messages [48,49]. For application to small dictionaries, comma-free

coding has an inherently large redundancy. The word "comma" is inter­

preted as a sequence of symbols which cannot occur in any valid sequ­

ence of data-words. The latter approach was anticipated in section

— 42 —

2.3.2(1) when it was stated that the filler-word could provide the

minimum synchronisation. The overall redundancy in this approach

(including the bits needed for synchronisation) increases with the

frequency of transmission of the comma and is therefore, to a certain

extent, under the control of the transmitter.

The self-synchronising properties of some variable length codes

were not universally applicable in the system under development due

to the structure imposed upon the sequence of codewords. For such

codes, decoding from an arbitrary starting- point in a given sequence

eventually results in the correct word endings being identified [50].

However, without further additions or modifications, such a code

cannot identify the frame boundaries and hence a possible change of

dictionary. Furthermore, a transmission error may result not only

in the decoding of the wrong codewords but even the wrong number of

codewords, which would also affect frame boundary identification.

Given a finite dictionary with a maximum length for its codes,

there exists a finite number of variable length codes. A procedure

for constructing dictionaries which minimise the average number of

code symbols required to encode a "message" was proposed by Huffman

[51]. Similarly, codes can be constructed for minimising the proba­

bility of buffer overflow where the said buffer is necessarily inter­

posed between the codeword source and the channel. Constant length

codes cannot be applied to achieve such optimisations. Minimisation

of the expected delay for matching the constant rate channel to the

variable rate source not only requires a knowledge of the isolated

word probabilities but also of their sequential statistics. There­

— 43 —

fore, the optimisation procedures which generalise Huffman's algor­

ithm cannot be applied here because they only utilise the long-term

codeword probabilities. However, this does not affect the ability

of variable length codes to reduce, if not minimise, such functions.

The implementation of the digital interfaces developed (section

2.3.6) were to be equally suited (ie. employed the same assembler
routine) to constant and variable length codes given some minor

constaints on allowable dictionaries.

2.3.3 Read-Only Data Structures

The processing time required for a real-time TES implementation

was obviously at a premium. It was therefore the function of the

read-only data structures, commonly termed 'look-up tables', to reduce

to a minimum any repetitive calculations and data manipulations. By

performing all the necessary calculations beforehand and storing the

results, the only processing overheads were those of addressing the

relevant portion of the look-up table. These overheads were related

to the amount of structure built into the look-up tables. The final

composition of real-time calculation and look-up operations was a

compromise between two options;

(1) the extravagant use of processing time

for repeated calculations,

or (2) the complexity of addressing diverse

look-up functions.

It was clear that at some stage the limitations of data memory

— 44 —

size would play a role. However, initially the view that data memory

was cheap and readily available was adopted.

Two principal gains were made by identifying those parts of the

processing which would benefit from the application of look-up tables

and then defining a precise format for such tables. Firstly, the

preparation of the tables was made semi-automatic and secondly, the
low-level coding was simplified arid standardised. Since the prepar­

ation of the tables was without reference to any actual memory loca­

tion, they were relocatable and therefore regarded as physical Read-

Only Memory (ROM) to be loaded anywhere within the data memory address

space.

Ah example to illustrate the above points is given in figure

2.4. The purpose of this table is to convert amplitude information

as established within the transmitter into a corresponding transmitter

buffer entry. The look-up table contains entries, correctly ordered,

for each possible amplitude value and the first entry is used to

verify that the amplitude legal value is legal.

The format of the decoding ROM for amplitude codewords is

shown in figure 2.5. The two arrays contained constants required in

the decoding algorithm (SUMl(k) = ^^(k), SUM2(k) = of appendix

2). The application of the variable length decoding algorithm with

the ROM of figure 2.5 was considered superior to the simple "code

book" approach as the latter would occupy an enormous amount of

memory for the codewords envisaged (up to 12 bits).

Figure 2.6 gives the format of the ROM for the encoding of tes-

— 45 —

words. The ROM is essentially a two dimensional matrix stored by

columns. The first two locations of the table were used to verify

the legality of the row and column numbers. The column offsets were

pre-calculated and related to the start of the ROM.

The format of the ROM employed to decode the tes-words and to

store the look-up shape for waveform synthesis is given in figure
2.7. To distinguish one look-up shape from another and minimise

computation, it was necessary to record the length, in samples, of

each shape.

2.3.4 External Hardware and Executive Software

Each program had one analogue and one digital interface separ­

ated from the main analysis and synthesis sections by first-in first-

out (FIFO) buffers. Associated with each interface was an interrupt

service routine (ISR). The analogue interface was assigned higher

priority than that of the digital interface. In order to minimise

sampling "jitter" the analogue interrupt service routine was perm­

itted, as far as was possible, to interrupt the digital interrupt

service routine. Both sampling and transmission were controlled by

external clocks.

With the boards available, the most sensible means of trans­

ferring data between the Miproc processors was via one channel of

the parallel interface card (the serial interface cards were restric­

ted in their formats and dedicated to servicing the monitor termin­

als). By driving the interface cards interrupt generation circuitry

— 46 —

at a known rate and transferring, under software control, one bit on

a single line of the external bus it was possible to continuously

change the bit rate of the serial link. If timing overheads assoc­

iated with the interrupt service routine proved too great, it was

then possible for up to 16 of the external bus lines to be utilised

and, provided the bit-rate calculations were suitably ammended and

the order and singularity of the data bits respected, it would remain

valid to talk of a serial transmission channel.

- To avoid programming complexities it transpired that it was

sensible to devote the most significant line(s) of the external bus

for data transfers. Once the appropriate word had been output to the

control register of the transmitter's interface card, an interrupt

was generated in Miproc 1 when "DATA STROBE IN" went low. The soft­

ware responded, if the interrupt was unmasked, by executing the

transmitter interrupt service routine. Similar remarks apply to

Miproc 2. Thus by connecting the "DATA STROBE OUT" port of the

transmitter (which goes low whenever data is put on the external bus)

to the "DATA STROBE IN" port of the receiver, the required synchronis­

ation of bit timings between processors was achieved. Thus the trans­

mission rate clock was input to the "DATA STROBE IN" of channel A of

the transmitter parallel interface and channel B of the parallel

interfaces acted as the serial link between transmitter and receiver.

An outline of the external hardware necessary for the interface is

given in figure 2.8.

The executive software performed the following functions:

- set up hardware interfaces.

— 47 —

- initialisation of program variables and buffers.

- control of analysis and synthesis routines.

- processed fatal error conditions.

The transmitter’s executive software ensured that the analysis

continued as long as the input buffer (which contained signal samples)

contained data. Conversely, the receiver's executive software ensured

that the synthesis continued as long as the output buffer was not

full. In the receiver, during system initialisation, dummy codes

were inserted into the receiver buffer. These codes represented a

tone which was synthesised and repeated until synchronisation was

achieved, at which point they were overwritten by received data.

Any error conditions occurring during the execution of either

program was considered fatal causing a diagnostic message to be

output to the monitor terminal followed by a halt in program execu­

tion. Figure 2.9 gives the flowchart of the executive software for

both transmitter (Tx.) and receiver (Rx.).

2.3.5 Analogue Interfaces

The analogue interfaces (figure 2.10) were straightforward.

Prior to sampling, the input speech was bandlimited to the standard

telephone bandwidth (300 to 3400 Hz) and the synthesised output

speech samples were low-pass filtered with a cut-off frquency at

3400 Hz.

In the transmitter, analogue-to-digital conversions (ADC) of

the input speech were triggered by the falling edge of an external

— 48 —

clock. The converter's "end of convert" signal caused an interrupt

which was serviced by the analogue interface software. The ISR

allowed a constant value to be subtracted from the converted signal

immediately prior to storage. This ensured that the analysed signal

had zero mean. After writing to the sample buffer, a test for immin­

ent buffer overflow was conducted which indicated whether the pro­

cessor was capable of processing the samples fast enough. If the

buffer were to overflow then a fatal error condition was generated.

In the receiver, the analogue ISR performed a test to ensure

that the FIFO containing the synthesised samples was not empty. An

empty buffer would have occurred if the output samples could not be

computed fast enough and resulted in a fatal error condition. How­

ever, if a sample was available in the buffer, it was read and output

to the digital-to-analogue converter (DAG) and then the interrupt

latch was cleared.

Both routines were clocked at the same frequency, usually 10,

15 or 20kHz depending on the complexity of the main program.

2.3.6 Digital Interfaces

The digital interface software was more involved than that of

the analogue interfaces. This was a consequence of the fact that

the filler-word may well be up to three Miproc 16 bit words long

(depending upon the data frame employed).

In order to accommodate variable length, as well as constant

length codes, the buffer structure characterised in figure 2.11(a)

- 49 -

was employed. The 16 bit words stored in the buffer were split into

two fields. The most significant 4 bits (count field) indicated the

number of valid bits in the least significant 12 bits (data field).

There was therefore a limit of 12 bits to the size of the data word

and a conventional restriction that the most significant bit of the

data occupied bit 11 of the buffer. By utilising such a buffer

between the TES analysis and the serial channel, all possible data

types were treated alike by the bit orientated transmission routine.

A flowchart of the transmitter digital interface is given in

figure 2.12. Transmission of a single bit occurred in response to

an externally generated clock signal (section 2.3.4). The ISR assoc­

iated with the transmission buffer retained a count of how many bits

of the current word were left to transmit. If there were no words

in the buffer, a filler-word was inserted into the bit stream. The

test for an empty buffer involved comparing the read and write pointer

values. It was conceivable that the ISR might interrupt that portion

of the transmitter program which updated the write pointer. To

prevent this causing any problems, the pointer update was performed

after a complete data frame had been transcribed to the buffer. The

filler-words introduced for the purpose of additional synchronisation

passed straight through the transmitter buffer.

Figure 2.11(b) shows the actual transfer of the data stored in

the buffer of figure 2.11(a) for the situations where one, two and

four external bus lines are used to form the "serial" link (see

section 2.3.4). The short dash (-) indicates data-word boundaries.

The receiver ISR had to do more than merely take bits off the

— 50 —

channel and buffer them individually, it was also required to achieve

de-framing of the bit stream into its elements. It therefore had to

acknowledge the presence of filler-words and be able to distinguish

the various species of data-word.

Since filler-words were removed before they entered the receiver

buffer the ISR introduced a delay equal, in bits, to the length of

the filler-word. For ease of programming this length was constrained

to a multiple of 16. The bit stream was continuously scanned for the

filler-word (synchronisation-word) and re-synchronised on its every

occurrence. This prevented erroneous synchronisation from persisting

indefinitely.

At any instant the receiver might be out of synchronisation

either because it- had been turned on at an arbitrary time or because

an error had caused loss of synchronisation. One bit of the system

status flag was reserved to indicate the presence or absence of

synchronisation. Once synchronised, the receiver must identify from

which dictionary decoding is to take place. This was accomplished

by utilising another bit of the status flag. If this bit was set

the next word was drawn from the amplitude-dictionary and if clear

from the tes-dictionary.

The receiver digital interface flowcharts are given in figures

2.13(a),(b) and (c). The receiver's ISR was equally well suited to

decoding constant length and variable length codes. A bit count was

continually compared with the value of the maximum number of bits

per word (a value stored within the decoding ROMs). A fatal error

occurred if the bit count exceeded this limit, otherwise the decoding

- 51 -

continued. The 'ceiling' values were pre-calculated (see appendix

2) and stored within Decoding Array 2 of the decoding ROM (figures

2.5 and 2.7).

To retain flexibility of data frame structure, counters were

incorporated to assess the number of amplitude and tes-words decoded.

This made it possible to transmit more than one amplitude-word, a

feature which might be desirable in a special case.

2.3.7 Analysis and Synthesis Modules

The processing involved in analysis and synthesis was sub­

divided into three 'subroutines';

(1) that associated with individual samples

(2) that associated with epochs

(3) that associated with complete data frames (ie. N epochs)

Within the transmitter (analyser) the sample routine had to

read a sample from the ADC buffer, update the descriptive parameters

of the current epoch and check whether an "end of epoch" had been

reached. This was indicated by a change in sign of the input signal.

The epoch routine had to validate, encode and reset the descriptive

parameters of the previous epoch, update envelope information and

check whether the data frame was complete. The frame routine valid­

ated, encoded and reset the envelope parameter(s) and transcribed

the complete data frame to the transmission buffer. In periods of

high data generation rate, the transmission buffer may not have room

for the complete data frame. It was therefore the responsibility of

- 52 -

the frame routine to test for imminent buffer overflow and act accord­

ingly. The overflow prevention stratergy had to respect the frame

structure of the data within the transmission buffer. To this end,

it proved useful to maintain a record of the transmission buffer

write pointer which indicated the beginnings of the last M frames.

These values were stored in a ’discard' buffer, a location of which

was overwritten every time a new frame was processed. The length of

this FIFO buffer, M, determined the amount of data, in frames, to be

discarded. In the event of imminent transmission buffer overflow,

the write pointer of the transmission buffer was overwritten with the

current output from the 'discard' buffer. This effectively back

spaced the write pointer and discarded M complete data frames. The

current data frame was then written to the transmission buffer. In

addition to, the basic frame processing, the transmitter retained a

count of the number of frames transmitted and at regular intervals,

in terms of complete data frames, inserted a filler-word into the

data stream. This provided a synchronisation facility to augment

the built in dependence on 'buffer underflow' filler-words.

Similar remarks to the above can be made for the receiver

software. The sample routine computed the next sample by multiplying

the correct look-up value by the envelope factor and stored the

result in a FIFO buffer ready for output by the analogue ISR. The

sample routine accessed the epoch processing routine if the end of

the synthesised epoch was reached. The epoch routine decoded the

variables which ensured that the correct look-up shape was addressed,

reversed the polarity of the scaling factor and at, the end of the

data frame, accessed the frame processing routine. The frame pro­

- 53 -

cessing routine handled imminent receiver buffer underflow and decoded

the amplitude-word(s). Once again, it proved useful to maintain a

record of the receiver buffer write pointer which indicated the

beginnings of the last M frames. These were stored in a 'repeat'

buffer, a location of which was overwritten every time a new frame

was received. The length of this buffer determined the amount of

data, in frames, that was to be repeated. In the event of imminent

receiver buffer underflow, the receiver buffer read pointer was over­

written by the current output from the repeat buffer. This effect­

ively backspaced the read pointer causing the previous M data frames

to be repeated.

To reduce the perceptually disturbing effects which result

when a series of epochs are repeatedly synthesised, each time the

read pointer was backspaced, the amplitude-word(s) at that location,

if greater than zero, were decremented. Therefore, following a

series of repeats, the amplitude-word(s) may have been reduced to

zero resulting in 'silence' being synthesised.

Figures 2.14(a),(b) and (c) give the transmitter and receiver

sample, epoch and frame processing routines.

2.3.8 Software Support

Once the read-only data structures had been defined (section

2.3.3) a suite of Fortran programmes were developed by P. S. Cooper

[52] to run on the PDF 11/34. These generated ROM files according

to parameters set interactively.

- 54 -

The amplitude encoding and decoding ROM's were produced using

a program which required inputs to specify the number of possible

amplitude levels, the degree of compression (in the case of logar­

ithmic characteristics or zero for a linear characteristic), the

number of codewords and their lengths (n^s of appendix 2). The

program constructed the actual codewords and computed the relevant

buffer entry (count field and data field) for each possible input

level. Figure 2.15 demonstrates program/user interaction required

to create a 7 bit logarithmic (P = 255) quantiser. The user respon­

ses are underlined.

The corresponding program for generating the TES encoding and

decoding ROM's required data to specify the minimum and maximum

epoch lengths (dimension 1) in samples, the minimum and maximum

number of extrema (dimension 2), the number of codewords and their

lengths (n̂ ŝ of appendix 2). For each codeword the user specified

minimum and maximum values of dimensions 1 and 2 and the synthesis

shape. Figure 2.16 demonstrates the inputs required to create a six

bit (63 codeword) linear epoch encoder with:

(a) minimum value of dimension 1 : 1

(b) maximum value of dimension 1 : 64

(c) minimum value of dimension 2 : 1

(d) maximum value of dimension 2 : 6

The synthesis shapes were stored individually in disk files

and were created and edited by further Fortran programmes. Figure

2.17 gives an example of one possible TES-coding matrix for an alpha­

bet of 39 codewords which could be implemented using the program

- 55 -

described above.

2.3.9 Extrema and Zero-Crossing Detection

The listing of appendix 1 gives the code developed to transmit,

in real-time, a TES data frame which comprises of one n-bit amplitude-

word (maximum of 2# - 1 codes) per N m-bit tes-words (maximum of

2m - 1 codes), where n + N.m is less than 49. Silence- and repeat-

words were not incorporated into this particular coding but the

provision for extra synchronisation- (filler-) words was included.

The object of this section is to describe the techniques employed in

this implementation for the detection of extrema and zero-crossings.

(i) Extrema Detection

An extreme was defined as occurring when the gradient between

successive samples changed sign. Mathews [53] demonstrated that

extrema which were small, in comparison with the local topography,

may be omitted without causing a perceptible difference to the synth­

esised speech.

The technique employed for extreme detection and the zero-

crossing detection were similar. The previous input sample, SI, was

subtracted from the current input sample, SO, to yield the gradient

between samples, DSC. If the absolute value of DSC was greater than

or equal to the extreme sensitivity measure, DSMIN, the previous

gradient, DSl (whose absolute value was greater than or equal to

DSMIN) and DSC were compared for a sign change. If DSC was less

— 56 —

than DSMIN no comparison was performed. Once a sign change was

detected the extrema count was incremented. Figure 2.18 portrays

the extreme detection and small extrema elimination routine.

(ii) Zero-Crossing Detection

A "zero-crossing" was initially defined as two successive

samples having different polarity. For the purpose of this defini­

tion zero was conventionally regarded as having a positive sign,

being consistent with the 2*s complement binary representation of

the system ADC’s and DAC's.

However, in noisy environments, uncertainty of zero-crossing

positions resulted in the generation of epochs which were short in

duration and low levelled in amplitude compared with the local topo­

graphy. In turn, this caused an increase in the occupancy of the

transmission buffer and hence increased the possibility of trans­

mission buffer overflow. At the receiver, short epochs manifested

as a "hissing" in the background of the synthesised speech.

To reduce this effect, a sample sensitivity measure, SMIN, was

introduced. If the absolute value of the current sample, SO, was

greater than or equal to SMIN, then the sign of SSI, ie. the pre­

vious sample whose absolute value was greater than or equal to SMIN,

and the current sample were compared to determine if a sign change

occurred. However, if the current sample value was less than SMIN

no comparison was made. If a sign change was detected the ’end of

epoch' routine was entered. Figure 2.19 depicts the operation of

- 57 -

the zero-crossing detector and demonstrates how it reduces the number

of short epochs due to noisy environments.

2.4 Summary

This chapter reviewed the simulation algorithm developed by

Al-Doubooni for studying Time Encoded Speech (TES). A description

of alterations to the coded speech files output by this TES coder

were indicated. These alterations were necessary before the studies

presented in chapters 4, 5 and 6 could be conducted.

Also presented was a description of a versatile real-time

digital voice channel developed for the implementation of TES coders.

The choice of code structures and code dictionaries, analogue and

digital interfaces, external hardware, executive software and the

analysis and synthesis modules were detailed. The final section

presented one solution for the detection of the extrema and zero-

crossings of the speech signal. The application of this simplex

digital voice link are presented in chapter 7.

- 58 -

Coded Speech File 1
(CSF1)

Coded Speech File 2,
(CSF2)

2047 0 0 1 7 0 9 -
2047 0 0 1 13- 0 0
1986 0 0 1 6 0 9

7 0 9 -1 24 0 0
13 0 0 1 9 0 13 -
6 0 9 1 7 0 14

24 0 0 1 3 0 0
9 0 13 -1 6 0 12
7 0 14 1 7 0 15 -
3 0 0 1 7 0 12
6 0 12 1 8 0 15 -
7 0 15 -1 11 0 9 -

54 0 0 1 7 0 9
7 0 12 1 24 0 19 -
8 0 15 -1

49 0 0 1
11 0 9 -1 .
7 0 9 1

24 0 19 -1

CSF2 CSF3 CSF3A

CSF1 CSF3 CSF3A

2047 0 0 1 7 0 9 -1 - 2047 0 0
2047 0 0 1 7 0 0 1 2047 0 0
1986 0 0 1 13 0 9 1 1986 0 0

7 0 9 -1 9 0 0 1 7 0 9 -
13 0 0 1 9 0 13 -1 7 0 0
6 0 9 1 7 0 14 1 13 0 9

24 0 0 1 6 0 0 1 9 0 0
9 0 13 -1 6 0 12 1 9 0 13 -
7 0 14 1 7 0 15 -1 7 0 14
3 0 0 1 7 0 12 1 6 0 0
6 0 12 1 8 0 15 -1 6 0 12
7 0 15 -1 7 0 9 -1 7 0 15 -

54 0 0 1 7 0 9 1 54 0 0
7 0 12 1 24 0 19 -1 7 0 12
8 0 15 -1 8 0 15 -

49 0 0 1 49 0 0
11 0 9 -1 7 0 9 -
7 0 9 1 7 0 9

24 0 19 -1 24 0 19 -

Figure 2.2.1 Shows the operation of silence removal (SILRM)
from the coded speech files and the re-insertion
of the silence (SILRP) into the coded speech files

- 59 -

Disk

Sampling
Rate

Sampling
Rate

Channel
rate

Error
Rate

Speech
Input

Speech
Output

TerminalTerminal

POP 11/34

MIPRQC 1 MIPROC 2

0 3-3 4kHz 0-3-4 kHz

Figure 2.2.2 : System overview.

F] c « [

OR

F
S
R
A
I

Filler-word
Silence-word
Repeat-word
Amplitude-word
n-tn Tes-word

I

F F S A I I T A I I I R R R A I I I S

Figure 2.2.3 : Illustration of the possible data frames.

— 60 —

o *•

— 61 —

! T ” 1 1 i i 1 1

1 ^ 1 i i i

1

1 ! i !

1 -o ! i i 1 ! 1
1 1 1 1 î
1 1 1 1

1 3 1 1 1 i î
1 1 1 1 1 1 1

1 t . ! ! !
1 3 ! Ü I j j j 1 1 1 s !

CM 1 • ! ^ ! ^ ■o 1 1 “O 1
1 3 1

*j 1 1 1
! -g 1 ! G ! 1 E s E 1 1 E ^ 1 1 -M 1
! g 1 3 1 * 1 3 3 1 3 1 • 1 3 1 rH 1
î z

co 1 tO 1 1 CO co r CO 1 ! M ex 1 1 ex 1
! [! B E 1 1 E 11 s 1 1

< < 1 1 < 1
1 3 1 1 1 1 î i 1 {

1 E ! E 1 1 1
1 1 1 1 1
1 1 1
1 1 1 !

I z
1

!..

1
1
1

i
1

i

i

I N

1 M ! o*

C C\J
3 «-H

T3 >3 Û. 01

O L. 3 S
(ü L. O J

j z o < Û <

1 a

i

— 62 —

J
7

ERROR
RATE

MONITOR

DATA,5
DATA STROBE

DATA,5
DATA STROBE

OUT

CHANNEL CHANNEL

CHANNEL / DATA STROBE

EXTERNAL
6 CLOCK

TTL
DRIVER

ERROR
INJECTION
CIRCIUTRY

MIPROC 1 PARALLEL
INTERFACE CARD

SOURCE MIPROC 2 parallel
INTERFACE CARD

Figure 2.8 : External Hardware,

— 63 —

_y

— 64 —

READ
MSB
0
0
1
0
0
1
1
0
0

COUNT
FIELD

DATA
FIELD

INTERNAL WORD

L93

1

1
0

WRITE

Figure 2.11(a) : Transmission Buffer Structure

Single Line

515 1 0 1
-- 1
1 --0 1 c 1 0 0 1 0 0 0 1 0 1 1

Dual Lines

515 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0
B14 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1

Four Lines

515 1 0 0 0 1 0 0 0 0
B14 0 1 0 0 1 1 1 1 1
513 1 0 1 1 1 1 1 1 0
512 1 1 0 0 0 1 1 1 1

Figure 2.11(b) : Transfer of data stored in figure 2.11(a)

employing 1, 2 and 4 external bus lines.

— 65 —

I - o

h- o

— 66 -

o ><

a o

- 67 -

52 52

— 68 —

- 69 —

Encoding Information Filename»
Decoding Information Filename

Number of input levels
Degree of Compression

Number of codewords

AENCOD
ADECOD
2047

127

Number of codewords of length 1 0
Number of codewords of length 2 0
Number of codewords of length 3 Ô
Number of codewords of length 4 Ô
Number of codewords of length 5 Ô
Number of codewords of length 6 0
Number of codewords of length 7 127

— Stop —

Figure 2,15 X Program/User interaction reouired for
the construction of amplitude encoding
and decoding files.

— 70 —

Encoding Information Filename
Decoding Information Filename

EENCOD
EDECOD

Dimension 1 minimum 1
maximum if

Dimension 2 minimum 1
maximum 6

Number of codewords 127

Number of codewords of length 1 « 0
Number of codewords of length 2 : Ô
Number of codewords of length 3 ; 2
Number of codewords of length 4 : 2
Number of codewords of length 5 ; 5
Number of codewords of length 6 *• 63

Codewo rd Number 1
Dimension 1 minimum : 1

maximum
Dimension 2 minimum ; 1

maximum 6
Epoch Definition file : EP2

Full Scale : 1

Correct 7 Y

Codeword Number 63
Dimension 1 minimum : 62

maximum : 64
Dimension 2 minimum : 4

maximum Z
Epoch Definition file : EP63

Full Scale : _1
Correct ? Y

Transcribing matrix to file
Copying Look-up shape

>top -

Figure 2,16 *. Program/User interaction required for
the construction of Tes encoding and
decoding files.

-71 -

Nouvuna
H30d3

1— I— I— r 1 I I I I I r 1 — I— I— I— I— I— I— r - i— I— I— I— I— I— I— I— r

NOiivana
HDOda

1 I I I I I I I I I I I I r ~ i I I r

c
tn

ovT

oU)a
o

g
—T O<TJ Q.

IIU Q II^ c
gl/)

— 72 —

CO lOI

<30
C
f-4
4->
(0
J.
Oa
k
o
o
c

c ■P
o 01
f* <u
4^ 4-3
O
<o >»4-3
<u v4
o >

v4
(30 4^
c v4

01
n C
01 V
o 01
i.
o <o

1—<o o.
(. s
(U (0M 01
••
a\

CM
<u
i.
3
<30
•1-»
Cu

a\
1 c
o

I
o
T

â

5iîo ^
Q

IIIf
g S
û £

co

- 73 -

Chapter 3

Amplitude Coding

3.1 Introduction

Licklider [54] investigated the effects of different types of

amplitude distortion on the intelligibility and quality of speech.

The investigations examined the techniques of peak clipping (symm­

etric, asymmetric and infinite) and centre clipping of the speech

signal. The conclusions reached indicated that amplitude distortions

degrade the "quality" of speech more severely than they do the "intel­

ligibility". In further experiments Licklider and Pollack [32]

investigated the effects of differentiation, integration and infinite

peak clipping upon the intelligibility of speech. Depending on the

listeners skill and familiarity with the test words, for infinite

clipping of speech waveforms random word intelligibility scores of

at least 70% were achieved. However, the resultant speech was of

poor quality. When the infinite clipping was preceded by different­

iation the intelligibility scores were as high as 90% for an "unpract­

iced" listener and upto 97% after the listener had become familiar

with the vocabulary and with the effects of distortions.

From this and other work [33,55 - 57] it would appear that the

instantaneous amplitude of speech carries little information. How­

ever, with high degrees of amplitude compression noise between words

becomes overbearing and obtrusive such that the speech loses its

naturalness. It is observed that the mean amplitude of speech wave­

forms is a relatively slowly varying characteristic. When developing

TES King and Gosling (Chapter 1, section 1.4) elected to exploit this

feature and transmit a mean amplitude signal at intervals. Generally,

amplitude signalling produces only a very modest increase in the

— 74 —

data rate but in return yields a significant increase in speech

naturalness. Al-Doubooni [39] investigated the problem of signalling

epoch peak magnitude for TES and, on an epoch to epoch basis, con­

cluded that "one or two bits for differential amplitude signalling

was to be the most suitable for a low data rate system". Al-

Doubooni's routines were not fully described: apart from stating the
adaptive relationship investigated, step sizes employed for the 1

bit and 2 bit differential amplitude signalling were not specified.

Furthermore, in the system studied by Al-Doubooni the peak amplitude

of each epoch was transmitted utilising the full range of the quant­

iser (9 bits) and although high quality speech was achieved by this

means in simulation, such an extravagant utilisation of data is

worthy of further investigation especially as no evaluation of

quality versus"amplitude information per epoch was made.

Although it was believed that the amplitude signalling employed

by King and Gosling was adequate, the question of coding efficiency

versus quality remained unresolved. The question remaining in this

area of TES implementation was: "Could the coding efficiency be

increased without causing further speech quality degradation or

might this possibly even improve the speech quality?"

The objectives of the investigations to be reported were:

(a) To examine possible data reduction techniques as suitable

candidates for amplitude signalling within a TES system.

(b) To establish the effects of amplitude signalling in the

TES domain on the quality and intelligibilty of speech.

- 75 -

(c) To establish a minimum amplitude information requirement

for good quality intelligible speech.

An advantage of Time Encoded Speech (TES) when compared with

other coders is its relatively simple implementation. The investig­

ations into amplitude coding techniques to be reported here were

conducted with the view of future implementation within a TES system

hence, throughout the algorithms development, certain restrictions

were imposed upon a number of features such as coder complexity and

system delay. Any significant increases in these parameters would

reduce the overall viability of TES.

The investigations to be described were conducted in real-time

using a Plessey Miproc 16F processor (see section 2.3.1). The format

of this chapter is as follows : Section 3.2 outlines the techniques

investigated. Section 3.3 presents an informal subjective appraisal

of the speech output and section 3.4 gives the results of the perfor­

mance assessments. The conclusions of these investigations are con­

tained in section 3.5.

3.2 Amplitude Processing

The input speech was bandlimited (0.3 to 3.4kHz) using an

eighth order Barr and Stroud variable filter and Pulse Code Modulated

(PCM), sampling at 20kHz. Since all processing was conducted between

interrupts generated by the Analogue-to-Digital Converter (ADC), the

maximum processing time per sample was 50 ys (200 single instruc­

tion cycles of the Miproc 16F processor).

— 76 —

During these investigations it was necessary to prevent the

distortion of epoch features (other than the amplitude parameter) in

order to study the effect of amplitude signalling on the quality and

intelligibility of speech. To eliminate the distortions introduced

by buffer overflow and reduced mapping (quantisation of epoch dura­

tion and 'shape') the individual Pulse Code Modulation (PCM) samples,

x(n), were input to a First In First Out (FIFO) buffer. At the

output of the FIFO the samples were processed (scaled), depending

upon the particular amplitude parameter being processed, to yield a

new set of samples, x'(n).

By utilising a FIFO buffer the processing retained the original

relative shape of the epoch and the values of the samples relative to

the peak amplitude of the epoch. This differs from conventional TES

where the output speech is synthesised from stylized waveshapes. As

stated briefly above, this process also avoids the quantisation

errors which occur when the encoder performs reduced mapping of the

epoch duration and waveshape (numbers of extrema). Since the TES

codewords are not generated, there is no need for buffering which is

usually associated with the constant-to-variable rate source. This

means that distortions due to buffer overflow are avoided.

An important point to note here is that the peak amplitude

changes were performed coherently at every zero-crossing or after a

group of zero-crossings such that there were no sharp discontinuities

being created in the signal.

The algorithms were implemented such that, after parameter and

variable initialisation, the processor idled until an interrupt was

- 77 -

generated by the Analogue-to-Digital Converter (ADC). This caused

the processor to execute an interrupt service routine which contained

all output, input and sample analysis code. .

The extent of processing required per sample varied depending

on whether the amplitude parameter was updated or an 'end of epoch'

condition occurred. Thus, if the result generated by the interrupt
service routine (ISR) was output at the end of the current routine,

the time period between samples output would have been non-uniform

resulting in speech waveform distortions. To prevent such occurr­

ences, the results were delayed until the next ISR and output at the

beginning of that routine.

The value of the d.c. offset introduced by the system hardware

was determined before processing commenced and the constant OFFSET

was initialised to this value. On entering an ISR the current ADC

output was read from which the constant OFFSET was subtracted which

eliminated the systems d.c. offset. The result of this operation

was stored in a register while the result of the previous ISR was

output. From the time of entry into the ISR to the time of output

of the previous results 1.5Ms (6 single instruction cycles) elapsed.

This time period was constant for all entries into the ISR and there­

fore the period between samples output was a constant 50 Ms. Figure

3.1 depicts how uniform sample output was achieved (DAOUT(l)) when

the result was delayed and output at the beginning of the next ISR

rather than that achieved when 'end of ISR' processing was employed

(DA0UT(2)).

Programmes were developed for the processing of one of three

- 78 -

amplitude parameters :

1) Epoch peak amplitude

2) Epoch mean amplitude

3) Epoch r.m.s value

In the processes where all three measures were directly compar­

able no perceptible differences could be heard. This is partially

in agreement with the findings of Phillips and Thomas [58] who con­

ducted informal listening tests and concluded that adjusting the

signal peak amplitude to a preset level produced the best results

and the most acceptable quality. The author found this to be the

situation only if the mean or r.m.s value of the epoch was amplified

to the same level as that previously employed for scaling the peak

amplitude. The peak amplitude is, by definition, greater than the

mean value of an epoch. Therefore, if the mean value is scaled to a

level previously employed for peak amplitude scaling, severe peak

clipping of the mean value scaled waveform will be experienced. As

demonstrated by Licklider and Pollack [32], this will produce speech

which is intelligible but of poor quality. Similar remarks apply if

the r.m.s value was scaled to a level previously utilised for peak

amplitude scaling.

Although a fast algorithm was developed for the calculation of

the epoch r.m.s value, it suffered severe timing limitations. These

limitations arose from the need for 32 bit register manipulation in

the summation of the squared input samples, divisions for calculating

the mean of the squares and the square root subroutine.

Therefore the peak amplitude measure was preferable to the mean

- 79 -

and r.m.s measures from a computational stand point and, in the

interest of simplicity, was employed exclusively in the subsequent

investigations.

In view of the fact that a minimum bit-rate system was the

overall goal of the work it was decided to commence the investiga­

tions by studying the effects of the exclusion of all amplitude

information in the synthesis process. As the investigations pro­

gressed so the quantity of amplitude information utilised was increa­

sed and the resulting effects upon speech quality and intelligibility

were studied.

It has been assumed that the peak amplitude of the incoming

signal is represented by the maximum sample value. However, a sample

may not coincide with the peak and'there will be an error introduced.

To reduce this error the bandlimited speech was over sampled at 20kHz

which is 2.5 times greater than the required Nyquist sampling rate.

Therefore the inaccuracies introduced by the assumption are signif­

icantly reduced. The original work reported by King and Gosling [30]

was also conducted using a 20kHz sampling rate. Therefore the res­

ults of these investigations will be applicable to the coders devel­

oped to date.

3.2.1 Algorithm Representation

Conventional flow charting has a number of weaknesses as a

working document for representing assembly language programming. To

adequately present the algorithms developed during the investigations

- 80 -

to be reported, the author developed an alternative method of repre­

sentation which has been termed a SYSTEM DIAGRAM. See Apendix 3.

Although superior to conventional flow charting in the repre­

sentation of real-time assembly language algorithms, system diagrams

cannot convey sequence timing information. To overcome this omission

supplementary notes are required. Appendix 4 contains the supple­

mentary notes required for the system diagrams presented in section

3.2.2.

3.2.2 Algorithms Investigated

The initial algorithm, EAMPOO, detected the epoch amplitude

parameter, A%, on an epoch to epoch basis and normalised it to a

preset level, L. The processing of the PCM samples, x(n), may be

represented by equation (3.1).

L.x(n)
x'(n) = (3.1)

Al

The system diagram for this process is given in figure 3.2.

Since all epochs were scaled to the same peak amplitude level, the

background noise signal, as well as the speech signal, was "amplified"

to the same level which enhanced the background noise. To obviate

this, the manipulation of amplitude information for noise reduction

was incorporated into the next algorithm, EAMPIO. To reduce the

background noise and yield speech of more acceptable quality to that

of EAMPOO, a peak amplitude threshold was introduced. If the peak

amplitude of an epoch was less than the threshold level then all of

- 81 -

the samples forming the epoch were assigned a value of zero. The

processing of the PCM samples, x(n), and the application of the

threshold level may be represented by equation (3.2) which is given

below:

L.x(n)
x’(n) = ------ if A% .GE. THRESHOLD

(3.2)
= 0 otherwise

THRESHOLD was a variable stored within the 'receiver’ and could

be adjusted during program execution. This processing was identical

to that of equaton (3.1) if A% was greater than or equal to THRES­

HOLD. Figure 3.3 presents the system diagram for EAMPIO.

The method of implementing equation (3.2) into a system would

determine the transmitted amplitude information per epoch , I. If

the tes-codewords (the epoch duration and shape descriptors) are

transmitted, irrespective of whether the speech is active or in­

active, no amplitude information is required - equation (3.1).

However, if a unique one bit codeword is transmitted when the speech

becomes "inactive" (A% is less than THRESHOLD) and, on receiving

the unique codeword the receiver synthesises all epochs with zero

amplitude until the next unique codeword is received, the transmitted

amplitude information per epoch. I, will equal 1/N where, N is the

number of epochs synthesised with zero amplitude samples. In the

extreme case (where alternate epoch peak amplitudes, A%, are less

than THRESHOLD) N will equal one and a maximum of one bit of ampli­

tude information per epoch is required. Other implementations of

equation (3.2) are possible and, in general, they will utilise diff­

— 82 —

erent quantities of transmitted amplitude information. However, the

technique described above has set an upper limit of one bit of ampli­

tude information per epoch and any implementation of equation (3.2)

which requires more than one bit of amplitude information may be

disregarded.

Since the previous process utilised one bit per epoch of ampli­

tude information, this figure was regarded as a general ’yard stick'

for further investigations.

The next algorithm to be developed, EAMP20, was directed to­

wards the tracking of a generalised amplitude envelope of the signal

rather than that of the individual epochs. To do this the amplitude

parameter was detected over a group of N epochs, Ajj, as well as on

an epoch to epoch basis, A%. Where N was set before program execu­

tion. Each epoch within the group was scaled such that the individ­

ual epoch amplitude parameters, the A%'s, were set equal to that

of the group, Afj. Equation (3.3) defines the processing conducted.

An
x'(n) = — .x(n) (3.3)

Al
The analogue-to-digital converter had a precision of eleven

bits for magnitude. Since An was detected over a group of N epochs

the transmitted amplitude information per epoch. I, was:

I = 11/N bits/epoch (3.3(a))

From equation (3.3(a)) it was clear that as N increased, I

decreased and when the processing was conducted over eleven epochs

the amplitude information was once again one bit per epoch. However,

- 83 -

if N = 1 then the envelope factor degenerated into an individual

epoch amplitude while at the other extreme, an infinite group size

degenerates the system to that of EAMPOO. • The system diagram for

this algorithm is given in figure 3.4.

Exclusion of the slow envelope variations may result in an

increase in the number of bits required to represent the amplitude

parameter on an epoch to epoch basis. However, a more efficient

representation of amplitude might be achieved by applying a conven­

tional speech coding technique such as Deltamodulation or Differ­

ential Pulse Code Modulation (see chapter 1) for the coding of the

amplitude parameter and some variants of this were investigated.

The initial algorithm to be developed, EAMP30, which fell into

this category employed Delta Modulation (see section 1.3) of the

amplitude parameter. On an epoch to epoch basis the amplitude param­

eter, , was detected and compared with its previous processed

value, A'x-l.

If IA'i_i 1 .NE. 0

and A'x_i .LE. A% then A*% = A'j-x + STEP

or A'l-i .GT. Ai then A'l = A*i-i - STEP

If A ’l-i = 0

and IAx I .LT. THRESHOLD then A'x = 0

or IAx I .GE. THRESHOLD then IA’x I = STEP

STEP and THRESHOLD were variables stored within the receiver.

THRESHOLD was implemented to prevent the magnitude of Ax from

being 'decremented’ to a negative value. All PCM samples within the

— 84 —

epoch, x(n), were then processed as defined by equation (3.4).

A'%.x(n)
x' (n) = (3.4)

A i

The values of STEP and THRESHOLD were adjustable during program

execution. This enabled optimisation of the parameters for achie­

ving, subjectively, the best possible quality and intelligibility.

Figure 3.5 is the system diagram for this algorithm.

In an attempt to improve upon the quality and intelligibility

of the speech produced by EAMP30, several Adaptive Deltamodulation

algorithms were developed. The algorithms generally employed a

recursive formula based upon the past history of the amplitude param­

eter. However, due to the computer word size, rounding errors and

truncation errors constraints had to be imposed which severely lim­

ited the algorithms. The quality of speech produced by these algor­

ithms was also subjectively appraised to be inferior to that of

EAMP20 and EAMP30. The adaptive algorithms were therefore abandoned.

Progressing with the conventional speech coding techniques, an

algorithm which utilised 2 bit Differential Pulse Code Modulation

(DPCM) for signalling the epoch amplitude parameter was developed,

EAMP50. On an epoch to epoch basis Aj was detected and compared

with its previous processed value, A'%_i.

If Ia 'i-i I .LE. IAi I

then A'l = A'i_i + STEPH }
} min[Xi,X2]

then A ’l = A ’%_i + STEPL }

where X]̂ = Aj - (A’%_i + STEPL)

— 85 —

and X2 = Ai - (A’l-i + STEPH)

If

then

then

If

and

Ia ’i-i I .GT. IAll

A'l = A'i_i - STEPH }

A'l = A'i_i - STEPL }

where Xi = Ai - (A'i_i

and X2 = Ai - (A'l-i

I At - i 1 = 0

min[Xi,X2]

STEPL)

STEPH)

lA’ .GE. THRESHOLD

or lA'il .LT. THRESHOLD then A'l = 0

STEPL, STEPH and THRESHOLD were variables stored within the

receiver which were adjustable during the program execution. This

again enabled optimisation for achieving, subjectvely, the best

possible quality and intelligibility. Each PCM sample, x(n), within

the epochs was processed as defined by equation (3.4). Figure 3.6

is the system diagram for the algorithm EAMP50.

In section 3.3, which presents an informal subjective appraisal

of the speech produced by the algorithms previously described, all

algorithms are referred to by their codename i.e. EAMPOO etc. At

this point it is informative to present a short summary of the algor­

ithms developed, briefly stating their overall processing function.

EAMPOO : Scaling of the PCM samples such that all epoch peak

amplitudes of the input signal are of the same magni­

tude.

EAMPIO : EAMPOO with peak amplitude threshold. If the peak

— 86 —

amplitude of an epoch was less than the threshold

value the samples forming that epoch were set to zero.

EAMP20 : The scaling is performed over N epochs. In the data

frame, the maximum value of the N peak amplitudes of

the N epochs was detected and all N epochs were scaled

to the same level as the maximum of the peak ampli­

tudes. No thresholding employed.

EAMP30 : First of the algorithms to exploit a conventional

speech coding technique. Deltamodulation of the

epoch peak amplitude, on an epoch to epoch basis, was

employed.

EAMP50 ; This algorithm employed 2 bit Differential Pulse Code

Modulation for signalling the epoch peak amplitude on

an epoch to epoch basis.

3.3 Informal Subjective Appraisal

EAMPOO scaled the PCM samples within an epoch such that the

relative magnitudes were unchanged, but all epochs had the same peak

amplitude value. Low level signals which occurred during periods of

inactive speech were therefore enhanced. The overall effect was to

produce speech of very poor quality which had a harsh metallic char­

acteristic normally associated with synthetic speech. The enhance­

ment of inter-word noise gave the impression of low intelligibility.

Listeners who were not familiar with the utterances had to concen­

trate before being able to understand what phrase was uttered.

The introduction of an amplitude threshold, EAMPIO, for the

— 87 —

indication of active/inactive periods of speech produced a marked

improvement in quality. A threshold level of approximately 36dB

below the maximum peak magnitude of the speech waveform was found to

produce the better quality. The threshold level, although estab­

lished independently, coincided with that utilised by Al-Doubooni

[39] in his TES coder.

Phillips and Thomas [57] investigated a level controller which,

in some respects, was similar to the algorithm EAMPIO. The cont­

roller was developed for implementation at the sending end of a

noisy channel. However, the controller utilised two thresholds (see

figure 3.7(a)) but the system reported was effectively a single

threshold system (see figure 3.7(b)) because one of the thresholds

had been set equal to the smallest quantum of the systems ADC.

The level controller differed to EAMPIO in its treatment of

epochs with a peak amplitude less than the threshold level, T% in

figure 3.7(b). In EAMPIO, all signal samples of such an epoch were

assigned zero amplitude. However, the level controller amplified

the epochs samples by the appropriate gain given by the Input-Output

characteristic of figure 3.7(b). In the two threshold system, if a

peak amplitude was less than the second threshold, T2 in figure

3.7(a), the epoch was not processed.

Although Phillips and Thomas reported that the algorithms prod­

uced speech which had "a significant improvement of intelligibility”

and informal listening tests indicated that "the use of a double

threshold might improve the quality still further" these conclusions

were reached by comparing processed and unprocessed speech which had

— 88 —

been "transmitted" over a noisy channel. The speech produced by

EAMPIO had not been subjected to any simulation of transmission.

It is therefore not appropriate to compare the results of the work

by Phillips and Thomas with those reported here.

However, with the algorithm EAMPIO the speech was still harsh
with spasmodic clicking due to solitary epochs, within the silence

period, having peak amplitudes greater than the threshold level. It

was also discovered that some words were truncated causing the speech

to sound disjointed. The truncation, whether at the beginning or at

the end of an utterance, is a characteristic of employing a static

threshold level for the suppression of background noise. Such thres­

holds introduce a sharp discontinuity between the two modes of opera­

tion of the algorithm, viz. speech/silence. There was no hysterisis

in the decision process which could introduce a gradual transition

from one mode of operation to the other. The truncation was a direct

result of an unintelligent algorithm, it was incapable of discriminat­

ing between regions of speech signal and background noise. There­

fore, when an utterance began (or ended) with a weak fricative, a

weak plosive, had a nasal ending or was the trailing off of a vowel

sound at the end of an utterance, then a degree of truncation of the

utterance was experienced. The frequency of occurrence of this

effect was therefore a function of the speech material. Although the

truncation caused a loss of naturalness in the quality of the speech

output, tests have not yet been conducted to determine whether it

had any effect upon the intelligibility of the speech output.

The algorithm EAMP20 which involved processing groups of N

- 89 -

epochs was developed such that the quantity of amplitude information

per epoch, I, was made variable as indicated by equation (3.3(a)).

The value of N (the number of epochs over which the processing was

conducted) was incremented over the range 1 to 11. This range of

values were studied to examine the effect of decreasing the amplitude

information per epoch from, the unprocessed state when N = 1 (in which
case 11 bits of amplitude information per epoch are utilised) to the

situation where N = 11 (in which case 1 bit of amplitude information

per epoch are utilised). When N was varied from 1 to 2, this being

equivalent to changing the amplitude information per epoch from 11

to 5.5 bits, a perceptible change in speech quality occurred. However

subjectively, no deterioration in intelligibility was experienced.

As N varied from 2 to 4, the most obvious difference was the

increased level of background noise for N = 4. However, it must be

stressed that the background noise was not obtrusive. The change in

level was noted because little change in speech quality had occurred.

It was therefore difficult to distinguish between these algorithms.

The algorithm with N = 8 is of particular interest because King

and Gosling [30] signalled the mean amplitude level of the speech

waveform after every eighth TES codeword. In the algorithm studied

here, with N = 8, the amplitude information per epoch was equivalent

to 1.37 bits. The speech output was subjectively louder than the

original and had a slight, although noticable, "tutting" during some

utterances. This was attributed to the algorithm emphasising speech

or aspirated sounds and was particularly noticable at the beginning

of an utterance.

- 90 -

Because more epochs were captured in each 'frame', if a frame

overlaped a fast transition from one speech sound to another or if

there was a rapid build up in signal level, the smaller epochs within

the frame become amplified. It was this which caused the over emph­

asis of the speech sound, especially when preceded by "silence". A

segment of speech processed by EAMP20, with N = 8, is given in figure
3.8. The original bandlimited speech segment is given in figure

3.8(a) and the output of EAMP20 is given in Figure 3.8(b)

With N = 11, equivalent to one bit of amplitude information per

epoch, similar effects to those described for N = 8 were heard. It

was difficult, but not impossible, to discriminate between the algor­

ithms when N equalled 8 and 11. As expected, for N = 11, the speech

quality had suffered compared with the original yet it was considered

to be superior to that produced by EAMPOO and EAMPIO.

The speech ouput from EAMP20 (with N = 11) had a strained

quality with a slight granular harsh sound. The speech was clearly

intelligible and the inter-word distortions of EAMPOO and EAMPIO

were noticeably absent thus the processed speech was made easier to

listen to and more acceptable.

The first implemention which employed conventional speech cod­

ing techniques was EAMP30. This algorithm utilised Delta Modul­

ation of the amplitude parameter on an epoch to epoch basis. The

step size and threshold levels were adjustable during program execu­

tion and the optimum values were found to be approximately 34dB and

36dB below the maximum peak magnitude, respectively. These 'optimum'

values were established during informal subjective appraisals of the

- 91 -

coders. Listeners were requested to adjust the step size and thres­

hold level until the speech output was (in their opinion) the best

quality achievable. Once the listeners were satisfied with the

quality, the programme was halted and interrogated for the step size

and threshold level.

The speech output by EAMP30 sounded strained and granular and

for some utterances had an aspirated quality. The speech was intell­

igible and superior in quality to that produced by either EAMPOO or

EAMPIO. The inter-word noise was more noticeable for this technique

than with EAMP20 but this characteristic was not detrimental to the

overall speech quality. However, over long utterances some difficulty

was experienced in differentiating between speech output by EAMP30

and EAMP20.

In an attempt further to improve the quality and intelligi­

bility of the speech produced by EAMP30, several programmes were

developed which utilised an adaptive step size. The adaption was,

in general, based on either the previous value of the epoch amplitude

parameter or a history of previous values. It was discovered that

this approach gave no obvious improvement. The quality was generally

inferior to that given by linear Delta Modulation, being coarse and

’dicky' or muffled and fuzzy depending on the adaption algorithm.

The algorithms were also heavily constrained to prevent processor

overflow. Subjectively, the intelligibility of the adaption algor­

ithms were, in general, considered to be inferior to that of EAMP20

or EAMP30. Since the adaption algorithms were highly complex rela­

tive to EAMP20 or EAMP30 and unable to yield speech of similar or

- 92 -

better quality it was considered futile to persue them further.

The final algorithm implemented, EAMP50, again employed a

conventional speech coding technique. EAMP50 coded the amplitude

parameter on an epoch to epoch basis utilising 2 bit DPCM. With the

threshold level set at 36dB below the maximum peak magnitude, the

optimum speech output was achieved with the step sizes set at 42dB
below the maximum peak magnitude and 20dB below the maximum peak

magnitude.

The speech output was subjectively of better quality and less

disturbing to listen to than that of either EAMP20 or EAMP30. Altho­

ugh the speech was of good quality and intelligible, some inter-word

clicking was evident and during some utterances the speech had an

aspirated quality.

3.4 Performance Assessments

During the informal subjective appraisals of the speech prod­

uced by the various algorithms it was realised that listeners exper­

ienced some difficulty distinguishing between EAMP20, EAMP30 and

EAMP50. No single coding technique was thought to be of higher

intelligibility than the others and a great deal of disagreement

over preference occurred.

It was therefore proposed to conduct Diagnostic Rhyme Tests

(DRT) to assess the intelligibility and Direct Comparison Tests (DCT)

in an attempt to establish which, if any, was the more preferable.

In appendix 7 an outline of the DRT and DCT is given.

- 93 -

In both tests the speech output from the microcomputer was

bandpass limited (0,3 to 3.4kHz) using an eighth order Barr and

Stroud variable filter EF3 and recorded using a JVC cassette recorder

(CD 1635 Mk II) onto BASF C60 LH SM cassettes.

3.4.1 Diagnostic Rhyme Test (DRT).

These tests were undertaken in order to determine the differ­

ences, in terms of intelligibility, of the synthesised speech prod­

uced by:

(i) Grouped Epochs (N = 11), EAMP20

(ii) Delta Modulation, EAMP30

(iii) 2 bit DPCM, EAMP50

in comparison with

(iv) 11 bit/sample PCM control

The Diagnostic Rhyme Tests (DRT's) were conducted with a group

of 10 listeners. The tests of the three coding techniques and the

PCM control were conducted in one session lasting approximately 40

minutes.

Table 3.1 presents the Chance Adjusted Percent Correct (CAPC)

scores produced by the DRT’s for each listener in each test. Inclu­

ded in the table are the average CAPC scores for each test presented.

Table 3.2 presents the average CAPC scores for each perceptual phon­

emic attribute in each test. The results given in Table 3.2 are also

presented graphically in figures 3.9 and 3.10.

Before examining the results achieved by each of the coding

- 94 -

techniques it is instructive to examine the scores of the control

test. From Table 3.1 it is observed that the CAPC scores for the

control test varied over a small range of. values (-3.3 to +2.1%)

about an average value of 95.1%. Table 3.2 highlights that the

phonemic attribute which was most difficult to distinguish was Grave­

ness, which had an average CAPC score of only 80%. Voicing also
proved to be a problem in the control test, achieving a score of

95%. The remaining phonemic attributes attained scores greater than

97%. .

Inspection of Table 3.1 revealed that the individual subjects

did not achieve CAPC scores for EAMP20, EAMP30 or EAMP50 which were

greater than that of the control test. However, one listener (No.2)

scored the same for EAMP50 as for the control test. It can also be

seen that there is a small difference of 0.4% in the average CAPC

scores for EAMP20 and EAMP50. Such a small difference is negligible

because the average values presented were calculated from the 10

individual subject scores for each test. The individual scores had

been rounded to one decimal place and so had the average scores. It

would therefore be incorrect to claim that EAMP20 is more intelligible

than EAMP50 based upon the scores achieved. However, it is quite

obvious that these algorithms yielded a greater intelligibility than

EAMP30. All listeners, except for No. 9, achieved CAPC scores for

EAMP20 and EAMP50 which were greater than that of EAMP30.

Table 3.1 shows that, on average, EAMP20 and EAMP50 have sim­

ilar intelligibility yet individual listeners preferences varied

considerably. In order to gain some insight in to the differences

- 95 -

of the various algorithms the scores for each perceptual phonemic

attribute of each test must be considered. These are presented in

Table 3.2 and figures 3.9 and 3.10. Examination of the scores for

each phonemic attribute reveal that :

(i) Nasality : This attribute was impervious to distortions

caused by the coding techniques and no system

yielded a score less than 98.8%.

(ii) Voicing : This attribute EAMP50 scored effectively the

same as the control test. However, EAMP30 gave

a significant loss of this attribute scoring

only 81.7%.

(iii) Compactness : Again EAMP30 was the process which yielded a

poor representation of this attribute, scoring

only 87.5%. EAMP20 and EAMP50 achieved scores

greater than 95%.

(iv) Graveness : This attribute only achieved a score of 80.6%

for the control test. EAMP50 attained a similar

score and EAMP30 was again the technique to

score the least (69.4%).

(v) Sibilation : Although the control test achieved 97.5% for

this attribute all three techniques produced poor

representations of this attribute. The highest

score achieved was 72.5% by EAMP20 while EAMP50

produced the least at 56.3%.

(vi) Sustention : The discrimination of this attribute in EAMP30

was very poor (68.7%) in comparison with EAMP20

and EAMP50 which achieved greater than 92%.

— 96 —

From the results presented so far it can be seen that to the

majority of the listeners EAMP30 was thought to have inferior intell­

igibility to that of either EAMP20 or EAMP50. However, the choice

of "which, if either, of EAMP20 and EAMP50 was of higher intelligibi­

lity?" varied considerably amongst the listening panel and yet they

achieved similar average CAPC scores. From inspection of Table 3.1

we observe that five listeners found EAMP20 more intelligible than

EAMP50, four listeners found EAMP50 more intelligible than EAMP20

and one listener found EAMP20 and EAMP50 of equal intelligibility.

The CAPC scores for each attribute indicated that EAMP20's

scores were at least 2% less than those of EAMP50, except for nasal­

ity which achieved an equal score and sibilation for which EAMP20

scored 15% better than EAMP50. Relative to the scores achieved from

the control test, with the exception of sibilation, EAMP50 achieved

almost 100% for all attributes. It was the sibilation which caused

the mean CAPC scores to be very similar.

As stated previously, the results of Table 3.1 indicated that

EAMP20 was capable of producing speech of greater intelligibility to

that of EAMP50, albeit with only 0.4% difference. On the other hand,

inspection of Table 3.2 reveals that it was the single phonemic

attribute of sibilation which caused a reduction in EAMP50's average

CAPC score. It was therefore decided to conduct preference tests in

order to determine over which of the systems, if either, listeners

would prefer to receive speech transmissions. For this purpose

Direct Comparison Tests were conducted.

- 97 -

3.4.2 Direct Comparison Tests (DCT)

The DCT’s were conducted employing the group of 10 listeners

who took part in the DRT's discussed in the previous section. The

tests were conducted in individual sessions lasting approximately 10

minutes.

The results of these tests are summarised in the preference

matrix of Table 3.3. The results indicate that EAMP20 and EAMP50

are generally more preferable to EAMP30, the preference between

EAMP50 and EAMP30 being very clearly indicated in these tests with

all listeners indicating this distinction. However, the distinction

between EAMP20 and EAMP30 was not so precise. During the first

presentation one listener found no preference and another preferred

EAMP30 to EAMP50. On the second presentation, again one listener

found no preference but the remainder preferred EAMP20 to EAMP30.

Inspection of the preference scores between EAMP20 and EAMP50

demonstrate a very slight bias to EAMP50. However, from such a

small sample no clear preference between EAMP20 and EAMP50 has

emerged.

3.5 Conclusions

The results of the investigations reported indicated that

amplitude information of the order of one bit per epoch produced

acceptable quality in the processed speech. The Diagnostic Rhyme

Tests (DRT) yielded very similar scores of the order of 88% intell­

— 98 —

igibility for algorithms which inserted one amplitude value for

all epochs in a group (EAMP20 was set to one 11 bit amplitude

codeword for 11 epochs) and for algorithms which signalled the

difference in amplitude for successive epochs employing Differ­

ential Pulse Code Modulation (EAMP50 - 2 bit DPCM). The DRT scores

in both cases were appreciably less than for the unprocessed con­
trol PCM samples.

The Direct Comparison Tests (DCT) indicated that EAMP20 and

EAMP50 were generally more preferable to EAMP30, with a very clear

preference being exhibited for EAMP50 compared with EAMP30. The

preference scores for EAMP20 and EAMP50 produced a very slight bias

to EAMP50, but due to the small sample employed no firm conclu­

sions may be drawn from this result.

It must therefore be concluded that even though a minimum of

one bit per epoch has been indicated as sufficient for conveying

amplitude information, the true intelligibility from a TES system

will be dependent upon the amplitude encoding/decoding algorithm

as well as a number of other features of the TES coder/decoder.

- 99 -

2|

< 09 O« 3 "

- 100 -

o o oOJ OO LO
CL Û_ CL

< < <
LU LU LU

< CQ eu
X

<U
O

(U c
(U CJ <u

"3 C c kl
3 o <u lU4-1 09 kl u-l

•H (U (UrH V4 u-4 u(U P. 09 o Q.o S O. u
c (Q e C L
(U o Ciu 0) u C i je
CJ <U j e LJ

U -l k 4-1 4-1
o o GO
u 4-: (U CO ?OL u O

<U •H o je
>- X (Q -C o j e co4-1 co
o o 00 (U 5

c V4 j e 1—4 O"r4 . O 4-1 td 1—4
X x U) U-4 C (UV) e O .n00 00 (U X o 00
c c u *r4 w td 0)Ou Ul u-4 *H 3Ui u X 4J 73 1—4
(U <u (U «0 73 td

E CJ <U >
(U (U > Xu Ui o (U 4-1 0)
C L a. c u p je

a <U eu 4-1
(0 01 0) C i 73 >
u u V4 V4 o 73
V ■ (U C i <u co X 3 C
c C c «4-1 (U td td
OJ <u C i < v "r4
w u L t w 00 co 00 00
U) 0) (0 C L 0) (U c c

•-4 -̂4 4-1 3
r-H f—̂ r-4 C i (0 1—4 kl kl

j e kl td td td
M-l U-4 H a > Ci (U
o o o co je Æ

C i

u u u 00 je 4-1 73
(U C i C i en c H 09 C

X i x > t4 CM
G 6 E e n 1—4
3 3 3 1—4 <U <U

2 Z 2 o cd 00 je 4C
1—I . c 4-1 4-1 4.1

1 1 1 00 CO
td •H W C C

1-4 "O X H CO H "H —4

< CÛ C J

oOO
oeu LO oOJ

oOO
oC Ü o

o
< OOCD

OO

— 101 —

-H- 60C
E—44J
U3
CL4-13O
(04-1(d73
73Ctd
OOc1-4
CO
CO<uoouo.
<u#“4CLGtdco
>4-1O
Co-—4
JJtdu
c(Uco(UV4CL(U06

en
0)w300
U-t

gH-
CL Ul Ul3 qI* cOocc Ul

c D (r eu
LO O

û:z CL

h-DO<Q

- 102 -

11200 l|SR1100 1110BUFF15R

OaCOLD RES.OLD

u

AOC NEW NEW

Z.C Z£
OFFSETAOC

AOCXBUFF
amplitude
PAHAMETTER
DETECTION . PEAKOPEAKNlopg

1010

1210

Figure 3.2 : System diagram for the process EAMPOO.

iSR 1200 1110 ISRm o oBUFF

OLDAOC NEW NEW OLD
RESULT RESULT OAC

Z.COFFSETAOC Z.C AOC

XBUFF
AMPLITUDE
parameter
DETECTION

1000 PEAKOPEAKN
1020

1210

AOC
1010

Figure 3.3 : System diagram for the process EAMPIO.

- 103 -

Il 10 ISRUUO IIÜU

OACa o RESULTOLDNEWAOC NEW

Az_
Z.CZ.COFFSETAOC

IBUFF
AMPLITUDE
parameter
OETECTIOn

PEAKIMAXI

1210

NBUFF

PEAKNMAXN

Figure 3.4 : System diagram for the process EAMP20.

BUFF ISR11101200ISR

RESULT OACOU)OLONEWNEWAOC

1101
1102
1103

1020Az.
Z.CAOC OFFSET Z.C AOC

XBUFF
AMPLITUDE
parameter
OETECTION OAMPAMP1000 MAX

1210

AOC STEP DAMP
ijpio.

Figure 3,5 : System diagram for the process EAMP30.

- 104 —

intoBUFF 'nooISR 1200 ISR

AOC NEW NEW OLD OLD RESULT OAC

1030 1101

1102
1103AOC OFFSET zc zc AOC

XBUFF
amplitude
Pa rameter
DETECTION

1000
MAX AMP damp

1210

AOC STEPL

1010

STEPHAOC
1020

Figure 3.6 : System diagram for Che process EAMP50.

-70 -10
Relative Input (dB)

-70

(A)

- -70

-70 -10
Relative Input (dB)

(B)

Figure 3.7 : Input-Output Characteristics of a Feed-Forward Level Controller[57]

(a) with Tj ■ -21db and T% • -48db and (b) with * -24.1db and T% =

(the smallest system quantum) effectively forming a single threshold

-72dB

system.

- 105 -

§
-s3
O.

O
OL.

en

"u — o o en o o o
co

oCVJo_

v;co

i

1
Q .s-c
g
o
ÔI

1- ~o ̂ -§ o
OO

g

Ë

Ë
«s
s

X
Ü0)<Ü
Ou00
'T3
0}■u

I73
Ccd

00

<uJ3
iwO

(Uen

OO
en
OJk300

00

g:

o
<M

00c
•H
(Q
CO<UOO
o.
(U4->u-l

- 106 —

100 1 rioo

h -

a
û:
cro
u
h-ZLU
LUOL

-30

QLU
h -

<
LUU%<XCJ

-7070-

— voie.
 NASL.
— • 5U S I
• • • SIBL.
— - GRAV.
 COMP

MEAN2 3 4
TEST CONDITION

Figure 3.9 : Diagnostic profile for four speech

processjLOg techniques.

- 107 -

100 noo

w

-90

I—
a
c r
c rou
h-zUJ
a 80-ÜÜ
CL

“80

Q
ÜJJ—

Q<
ÜJ
CJz<X
CJ

“70

—' — — TEST 1
_ ------- TEST 2

60 — ------— " TEST 3
....... TEST 4

-60

VOIC. NASL. SUSI SIBL. GRAV. COMP MEAN

PHONEMIC ATTRIBUTES

Figure 3.10 : Diagnostic profile for four speech

processing techniques.

- 108 -

Chapter 4

Median Filtering

4.1 Introduction

Linear time invariant filters, or equivalently linear smoothers

have recieved considerable attention in digital signal processing

theory and application [59,60]. The frequency selective filtering

of linear systems enables the power spectrum at the output of the

filter to be determined when the input is a stationary random process

with known power spectrum. As a consequence of this it is possible

to eliminate unwanted signal components (like additive noise), if

the signal processing is to be based exclusively on the frequency

content of the processed signal and the contaminating signal. How­

ever, for some applications, linear filtering is inadequate due to

the nature of the data to be smoothed. If the signal is a composite

of the sum of a high frequency noise component and information bear­

ing sharp edges, then a linear smoother, upon removing the noise

signal would also smear out the edges of the original signal. Such

smearing of the data is unacceptable in many applications. To over­

come this difficulty, the use of non-linear smoothing devices must

be contemplated. Tukey [61] is generally credited with the idea of

introducing non-linear filters based on moving sample medians of the

input signal. These are referred to as Median Filters.

The signals processed using Median and Moving Average filtering

techniques are not unlike those produced by the sequential plots.

Figures 4.1(a),(b),(c) and (d) are sequential plots of epoch

durations extracted from a coded speech file. Inspection of these

plots reveals a number of features due to the characteristics of

- 109 -

speech. The most prominant feature being the periodicity within the

epoch sequences due to strong voiced sounds. The epoch sequences

have a definite structure within each 'period', plus locally small

variations (in comparison with neighbouring periods) of the order

of 0.02ms. Such periodicity can be observed in figure 4.1(a),

samples 0 - 50 and 110 - 200.

The epoch sequences due to voiced sounds which are not so

strongly pronounced also exhibit periodicity over very short inter­

vals. A number of examples of this feature are observed in figure

4.1(b), samples 10 - 30 and 215 - 235 and figure 4.1(c), samples 200

- 215.

Within the epoch sequences, unvoiced sounds manifest as short

epoch durations (.LT. 0.6ms) and the epoch sequences are very erratic

within this range. However, occasionally during unvoiced sounds,

epoch durations greater than 0.6ms do occur in isolation producing

an impluse-like appearance in the epoch sequence. Examples of this

may be seen in figure 4.1(d), samples 150 - 250.

Some epoch sequences appear to have little or no structure.

The epoch durations vary between 0.25 and 1.25ms and variations

which are small in comparison with the local topography also exist.

Such sequences generally occur at the transition boundary between

voiced and unvoiced speech, stop consonants and silence. This is

also true for the inverse case. Examples of such sequences occur in

figures 4.1(a), samples 75 - 105, 4.1(c), samples 0 - 120 and 4.1(d),

samples 0 - 130.

- 110 -

As described in Chapter 2 Section 2.2, the epoch durations

corresponding to the silence intervals between utterances had been

removed. However, periods of large epoch duration (.GT. 1.5ms) still

existed. Such segments were believed to be due to the intonation of

the speech at the end of one utterance and the beginning of the next.

In figure 4.1(b) the epoch durations appear to oscillate about the

1.75 ms level. It was surmised that this feature was a result of a

'tone-like' segment of speech with a gradually decreasing d.c offset.

When developing and/or implementing data reduction algorithms,

features such as the locally small variations (observed within strong

voiced sounds), the impulse-like structure during voiced sounds or

the oscillatory effect of the epoch lengths, cause a significant

increase in either coder complexity and/or data required for the

adequate representation of the sequence.

Very little is known concerning the perceptual importance of

these features and what the effect upon the overall synthesised

speech quality would be if these features were either attenuated or

eliminated. It was hypothesised that if a parameter pre-processing

algorithm were developed which attenuated or eliminated these feat­

ures previously described, whilst retaining the basic structure of

the sequence and without causing significant degradation in quality

of the synthesised speech, coding of the pre-processed epoch sequence

for data reduction could be implemented with greater efficiency

and/or less complexity.

The simulation algorithms developed smoothed the epoch duration

sequence only. The amplitude and extrema information was not pro-

- Ill -

cessed. The speech was synthesised employing the algorithm developed

by Al-Doubooni (see chapter 2)

Section 4.2 describes the linear, non-linear and dual stage

smoothers investigated for the pre-processing of the epoch sequences

and the results achieved using these algorithm are presented in

section 4.3. Section 4.4 presents the conclusions of this invest­

igation.

4.2 Smoothing Algorithms

The algorithms investigated as possible candidates for atten­

uating, if not eliminating, many of the features previously described

consisted of two linear, two non-linear and four dual stage smoothers.

In the following sections, 4.2.1 to 4.2.3, the algorithms implemented

are outlined.

4.2.1 Non-Linear Smoothing

Median filtering is a non-linear signal processing technique

useful for noise suppression [62]. Median filters have several

interesting characteristics which can, in some applications, make

them superior to linear filters. If a signal has impulse-like compon­

ents, median filtering can eliminate them without significantly

modifying other components and, if a signal contains step-like compon­

ents, median filtering can preserve these discontinuities. Important

applications in the processing of signals, where edges carry infor­

mation have been reported in the literature. Rabiner et al [63]

- 112 -

used median filters to extract the "smooth" component of a speech

signal and combined median filters with other stages of linear sys­

tems to smooth noisy sequences of a discontinuous signal. Jayant

[64] proposed a median based smoother to improve digital speech

quality in the presence of channel errors. Finally, Huang et al

[65] and Frieden [66] have used median filters in image processing

applications.

However, the majority of existing results are based upon empir­

ical work and few theoretical aspects of median filtering have been

published. Recently, Gallagher and Wise [67] studied and defined

various concepts associated with median filters. In particular they

defined the following signal characteristics.

'A 'constant neighbourhood' is a region of at least N+1 consec­

utive points, all of which are identically valued.

An 'edge' is a monotonically rising or falling set of points

surrounded on both side by constant neighbours.

An 'impulse' is a set of N or less points whose values are

different from the surrounding regions and whose surrounding

regions are identically valued constant neighbours.

4.2.1.1 One Dimensional Median Filtering

Median filtering is a discrete time process in which a window

that spans 2N+1 signal samples, where N is the order of the median

filter, is stepped across the input signal. At each step, the points

— 113 —

inside the window are ranked according to their values, and the

median value (middle number in size) of the ranked set is taken to

be the output value of the filter for each window position. An

example is given below for N = 1 and 2.

Input 1 4 3 3 6 4 8 7 8 9 10

Output (N=l) X 3 3 3 4 6 7 8 8 9 X

Output (N=2) X X 3 4 4 6 7 8 8 X X

4.2.1.2 Initial and Final Conditions

In order to implement a median filter the algorithm must account

for start-up and end effects at the end points of the sampled signal.

In the example given above the initial and final conditions were not

calculated and the missing samples were replaced by x. Rabiner et

al [63] investigated several techniques for generating a set of

initial and final values, including constant, linear and quadratic

extrapolation. For most applications, constant extrapolation from

the initial and final data points proved to be entirely adequate.

For other methods of treating the start-up problem where less emphasis

is given to the first and last values encountered see reference [61].

Unlike many applications, the initial and final conditions are

not so critical for the epoch sequences because these epochs, when

synthesised, correspond to the beginning and end of an utterance

which is generally a low level signal. Therefore, the simulation

algorithm employed constant extrapolation of the initial and final

epoch durations.

— 114 —

The algorithm developed for the simulation of Median filtering

required the user to specify the order of the median filter to be

simulated (maximum order of 5) and the input and output data files.

A flow chart of this algorithm is given in figure 4.2(a). Investiga­

tions were limited to the simulation of first and second order median

filters because the initial results indicated that higher order
filters would give little further benefit.

4.2.2 Linear Smoothing

As stated earlier in section 4.1, linear smoothers (time invar­

iant filters) are useful for eliminating unwanted signal components

based on frequency content. The linear smooothers employed by Rab­

iner et al [63] were 19 point Finite Impulse Response (FIR) low^pass

filters. However, the epoch sequences cannot be described in terms

of frequency components because of the variable rate at which they

are generated and the application of a smoother similar to that

employed by Rabiner et al would result in excessive distortion of

the epoch sequence.

A technique for reducing the variations within the epoch sequ­

ence involving averaging adjacent samples, is termed Moving Average

Filtering. If the number of adjacent samples in the averaging is

kept small, then slowly varying components are retained while the

impulse-like components are attenuated. A moving average filter of

order N-1, where N is the number of samples averaged, is defined by:

N—1
Y(n) = I A^ x(n-m) (4.1)

m=0

- 115 -

where all the coefficients, A^, are equal to 1/N. Equation (4.1)

is also the difference equation of an N point FIR low-pass filter.

In order to implement a moving average filter, once again,

initial and final conditions must be taken into account. For reasons

previously explained in section 4.2.1.2, constant extrapolation was

utilised for the generation of a set of requisite initial and final

values.

.The algorithm developed for the simulation of a Moving Average

filter required the user to specify the order of the moving average

filter to be simulated (maximum order of 10) and the input and output

data files. A flow chart of the algorithm is presented in figure

4.2(b). As in the case of the median filters these investigations

were limited to simulation of first and second order filters only.

4.2.3 Dual Stage Smooothing

Linear smoothers separate signals based on their (approximat­

ely) non overlapping frequency content. Signal separation using

non-linear smoothers is best performed by considering whether the

signal content can be termed rough (noise-like) or smooth [68].

Thus a signal x(n) can be regarded as

x(n) = S[x(n)] + R[x(n)] (4.2)

Where R[m] is the rough part of the signal and S[m] is the

smooth part of the signal. Figure 4.4 shows a block diagram of a

simple smoothing algorithm, the output of which is an approximation

- 116 —

to S[x(n)]. Since the approximation in many instance is not adequate

a second stage of smoothing is incorporated into the smoothing algor­

ithm as shown in figure 4.5.

Since y(n) = S[x(n)] (4.3)

then v(n) = x(n) - y(n) = R[x(n)] (4.4)

The second stage smoothing of v(n) yields a correction signal

which is the ' smooth of the rough’ and is added to y(n) to give z(n),

a refined approximation to S[x(n)]. The signal z(n) satisfies the

relation:

z(n) = S[x(n)] + S[R[x(n)l] (4.5)

If v(n) = R[x(n)] exactly ie. the smoother were ideal, then

S[R[x(n)]] would be identically zero and the correction term would

be unnecessary.

In order to implement the smoothing algorithm of figure 4.5 as

a realisable system account must be taken of the delays in each path

of the smoother. Figure 4.6 shows the block diagram of a realisable

version of the smoother of figure 4.5.

To simulate the dual stage smoother an algorithm was developed

which:

- accounted for the delay introduced by each

stage of smoothing.

- summed or differenced the input signals.

The user specified the operation required (summation or differ­

ence), the two input files and the output file. A flow chart of the

— 117 —

algorithm is given in figure 4.3

Simulating the dual stage smoothers using the 'black box'

principle, enabled combinations of smoothers to be implemented provi­

ded the correct delays were incorporated within the parallel branches

of figure 4.6. The algorithms investigated are listed below in

Table 4.1.

1 First Stage Second Stage
1 ■ 1
I Abrv. 1
1 1

1 First order Median Second order Median

1 1
1 I
I DSA I 1 1

1 First order Median First order Moving Average
1 1
1 DSB 1 1 1

1 First order Median First order Median
1 1
1 DSC 1 1 1

1 Second order Median First order Median
1 1
1 DSD 1
1 1

Table 4.1 Dual Stage Smoothing Algorithms Investigated

As well as the algorithms listed in Table 4.1, a first and

second order median filter were cascaded and implemented as the first

stage of a dual stage smoother with a second stage comprising of

either :

(a) First order Median

(b) Second order Median

(c) Cascade of (a) and (b)

The output of the algorithms was highly distorted and the

speech, synthesised from the resulting epoch sequences, was totally

unintelligible. Very little information could be gained from inspec­

tion of these sequences and they have therefore been omitted.

- 118 -

4.3 Results

The investigations were conducted in two stages. Initially,

only the first and second order moving average and median smoothing

algorithms were simulated.

Comparisons of the input and output sequences indicated that

higher order moving average smoothers were required to produce ade­

quate smoothing. However, a further increase in the extent to which

the sequences were smoothed would have resulted in highly distorted

synthesised speech. Also, to implement the moving average filter as

the first stage of a dual stage smoother would have little effect

because: the difference signal, v(n), would consist of small varia­

tions about zero. Thus w(n), the smoothed signal derived from v(n),

would generally be zero and therefore not introduce any correction.

Thus the second phase of these investigations simulated the dual

stage smoothers listed in Table 4.1.

For the purpose of making comparisons, the epoch sequences

within the output files corresponding to figures 4.1(a) and (c) were

isolated and plotted. Several sections of the isolated epoch sequ­

ences were selected and employed for speech synthesised. Using a

Digital Fast Fourier Transformation software package the power spec-

trums for the segments of synthesised speech were calculated and

plotted.

Section 4.3.1 gives a comparison/discussion of the epoch sequ­

ences while in section 4.3.2 the quality of the synthesised speech

is discussed. Finally, in section 4.3.3 the power spectrums are

- 119 -

discussed Table 4.2 provides a cross reference and guide to the

relationship between the diagrams referred to in sections 4.3.1,

4.3.2 and 4.3.3.

4.3.1 Epoch Duration Sequence Comparisons

Figures 4.1(a) and 4.1(c) present the epoch duration sequencies

input to the smoothing algorithms.

The First Order Moving Average (FOMA) smoother attenuated a

significant proportion of the impulse-like features present in the

epoch sequences (figure 4.7(b)), and eliminated the locally small

variations observed in the periodic segments. However, some epochs

within the periodic sections exhibited substantial distortions which

resulted in epoch extentions of up to 75%. These epochs corresponded

to a segment of strong voiced sound.

The Second Order Moving Average (SOMA) smoother produced great­

er attenuation and elimination of the impulse-like features (figure

4.8(b)) but resulted in 100% epoch extention during strong voiced

sounds. However, a sequence of samples (No. 0 to 50 of figure 4.8

(a)) was not severely distorted and retained all but its minor

features.

The first non-linear smoother implemented was a First Order

Median (FOM) smoother. This smoother had a similar effect on the

epoch sequences to that produced by the FOMA, resulting in the elimin­

ation of the impulse-like features and locally small extrema (figure

4.9(b)). Comparing the output and the periodic input sequence

- 120 -

(figures 4.1(c) and 4.9(a)) demonstrates only too clearly the effect­

iveness of a median smoother. The initial periodic sequence retained

all but the minor features while the epochs corresponding to the

strong voiced sound were distorted and in some instances, experienced

extensive epoch extention.

The Second Order Median (SOM) smoother resulted in almost

total elimination of the periodic sequence as well as the impulse­

like features. The resulting sequences contained little of the des­

ired features and served only to highlight the very general trend of

the original sequence (figures 10(a),(b)). Obviously, a SOM smoother

alone was too severe for the processing of epoch sequences.

The first dual stage smoother (DSA) to be implemented produced

an output very similar to that of a EOM, with less attenuation of the

impulse-like features. The similarity between DSl and FOM is believ­

ed to be due to the nature of the difference signal, v(n). Since

the ouput of the FOM was similar to the original a large proportion

of the difference signal, v(n), was zero and the output signal of

the SOM, w(n), with v(n) as the input signal was therefore also

generally zero. Thus the output of the dual stage smoother, z(n), of

figure 4.6, was approximately equivalent to the ouput of the FOM.

In order to combat these effects the second dual stage smoother

(DSB) employed a FOMA as the second stage of smoothing while the

first stage remained a FOM. The resulting output epoch sequences

retained the majority of their periodic structure and only the first

two periods (figure 4.12(a) samples 110 - 120) experienced substant­

ial epoch extention. The remainder experienced relatively minor

- 121 -

distortions (0.1 or 0.15ms). The impulse-like features remained

present to a greater extent but the smoother still eliminated the

larger impulses, figure 4.12(b).

The third dual stage smoothing algorithm to be implemented

(DSC) utilised FOM smoothers in each stage. The reasons for invest­

igating this configuration were the same as those of the previous

algorithm, namely: Where a SOM produced a signal, w(n), which was

mainly zero in DSA, it was hypothesised that a FOM smoother may

produce a correction signal which was non-zero for a greater percent­

age of the time.

The output of the FOM (figure 4.9) and the output of DSC

(figure 4.13(a)) were seen to be very similar. The main differences

exist in the impulse-like features. The second stage smoother

appeared to have produced a correction term which re-introduced some

of the features eliminated by the FOM. However, they were still

highly attenuated in comparison with the input sequence.

A SOM produced an output sequence, y(n), which was, predom­

inantly highly distorted. If this had been the first stage of a

dual stage smoother, the difference signal, w(n), would have been

highly active. Smoothing the difference sequence produced a correc­

tion sequence which, when added to the output of the SOM, y(n),

reduced the extent of the distortion. If the second stage was

another SOM, the corrective sequence would be zero and therefore

have no effect upon y(n). Conversely, if a FOMA was employed, it

would have little effect upon the difference sequence, w(n), and

therefore the final output signal, z(n), would be almost identical

- 122 -

to the original sequence. Thus the fourth algorithm investigated

(DSD) consisted of a SOM as the first stage smoother which would

yield a highly active difference signal and a FOM in the second

stage to smooth the difference signal.

The periodic sections of the output sequence were severely

distorted with many epochs showing extentions/contractions of over

50%. However, the erratic sections were similarly smoothed to that

produced by a SOMA.

4.3.2 Informal Subjective Appraisal

The speech synthesised employing the unprocessed coded speech

files (CSF) (the data input to the smoothing algorithms) was of high

quality and intelligibility. The description of distortions in the

speech synthesised utilising processed CSFs are therefore relative

to that produced employing the unprocessed CSFs.

The processed CSFs output of the smoothing algorithms were

utilised as the input files for the speech synthesis algorithm descr­

ibed in chapter 2. The synthesised speech was output, bandlimited

(300 to 3400Hz) and informal subjective comparisons of the synth­

esised utterances were conducted.

The quality of speech synthesised using the epoch sequences

output from the linear smoothing algorithms was noticably different

to that for the non-linear smoothers. The speech synthesised from

the epoch sequence output of the SOM smoother was totally unintelli-

igible.

— 123 —

During informal listening, one listener who was not familiar with

the sentence was able to discern the word "telephone" after a great

deal of concentration and several repeats of the sentence.

The speech synthesised from the FOM smoothed epoch sequence

was intelligible but sounded gargled, particularly if originating

from a female utterances. The female fricative /s/ of 'yes’ was
masked by noise. The male voiced sounds had a rough, dry throated,

husky quality which affected the accent of the speaker but not the

intelligibility, while the plosives were indistinct. Nasal sounds

within both the male and female utterances appeared to be less dis­

tortion than the 'main body' of the complete utterance.

The epoch sequence output from the FOMA smoother, when synth­

esised, produced speech which was grainy and fuzzy but still clearer

than that produced using the FOM epoch sequence. The male utterances

contained prominent low frequency components which were probably due

to excessive pitch period distortion. The female frication of 'yes'

was severely distorted and was perceived as impulse 'dicky' noise.

The plosives and nasal consonants were well preserved.

The synthesised speech from the SOMA smoothed epoch sequence

was very similar to that of the FOMA. After informal listening, one

listener did state that they thought its quality was marginally

better than that of the FOMA.

The speech synthesised using the epoch sequence output from

the dual stage smoothers DSA and DSB were subjectively identical to

that produced by the FOM smoother. The major differences existed in

- 124 -

the segments of erratic epochs which correspond to stop consonants

and fricatives and transitions from one to another. In such regions,

the synthesised speech from FOM smoothing .was noisy and frication

were perceived as noise. Unless gross distortions have occurred

within the corresponding epoch segments output from DSl and DS2, the

differences in quality are extremally difficult to distinguish.

The speech synthesised using the epoch sequence output from

DSC was intelligible and speaker recognition was possible. However,

the quality was similar to that produced by a dirty gramophone rec­

ord: random clicking and noisy background. During some of the male

utterances, the speech had a nasal quality to it. The plosives of

'Balam* and 'Walam' were very robust to the distortions. The nasal

sounds were severely distorted by dicky, scratchy sounds. During

the female utterance of 'yes', the frication /s/ was highly distorted

yet the /c/ of 'can' was easily distinguished.

The final section of speech, synthesised from the epoch sequ­

ence output from DSD, was highly distorted and not very different to

that produced by the second order median smoother.

In retrospect perhaps it is not surprising that a significant

reduction in speech quality/intelligibility occurred. Licklider [69]

found that the locations of the real zeros of the speech waveform

were very important. The smoothing algorithms introduced distortions,

in some instances severe, of the epoch durations which causes the

distortions of the location of the waveforms real-zeros during synth­

esis.

- 125 -

4.3.3 Power Spectral Density Measurements

The original speech was unavailable and therefore a segment of

speech (figure 4.15(a)), synthesised from the unprocessed CSF (figure

4.1(c)), was utilised to compute a power spectrum (figure 4.15(b))

with which generalised comparisons of power spectra, computed from

speech synthesised using processed CSF, were conducted. The aim of

this section is, in general, to highlight the changes in the power

spectra due to epoch duration sequence smoothing. For this purpose

the examples given were selected because the synthesised speech from

which the power spectral density plots (PSD?) were calculated differed

in quality and intelligibility.

When the epoch sequences were input to the speech synthesis

algorithm, the distortions in the epoch duration sequence due to the

smoothing algorithm manifested as time distortion of the waveform.

These resulted in an increase and/or decrease in the power spectrum

over bands of frequencies. However, due to the non-linear nature of

some of the smoothing techniques used and the transformation from

TES domain to time domain these effects cannot simply be catagorised.

The time distortions were a result of both the data and algorithms

which cannot be compensated for by post-filtering.

Investigations using differential discrimination of changes in

the formant amplitudes and frequencies using synthetic vowel sounds

have been reported by Flanagan [70,71]. It was demonstrated that a

change of approximately 1.5 dB in the amplitude of the first formant

and a 3 to 5% change in formant frequency were just discrimrainable.

— 126 —

Due to the resolution of the power spectral density plots

(PSDP), changes of less than 2dB in amplitude and 10% in frequency

are difficult to resolve. Therefore by comparing the PSDP with that

of the original speech it can be stated, with near certainty, that

any differences observed exceed the 'just discrimminable' levels.

This gives some indication as to the source of some of the distor­
tions perceived.

It was generally observed from the PSDP's that the higher

frequencies (greater than 3.5kHz) had been distorted to a greater

extent than the lower frequencies (less than 1.5kHz). In fact the

first and second spectral peaks, although distorted in amplitude

and/or frequency, had not incurred distortions of the same magnitude

as that of the higher frequencies. Distortions in the higher fre­

quencies generally varied between 10 and 20dB over complete bands of

frequencies and not in isolation, which was the case of distortions

in the lower frequencies.

If we consider the distortions introduced by the smoothing

algorithms, it is not so difficult to understand the causes of the

trends indicated above. Within the TES domain those epochs distorted

(increased or decreased in duration) are affected by varying percent­

ages depending on their original length, irrespective of the incre­

mental change. For example, consider epochs of duration 0.5 and

1.25 ms. Both are increased by 0.25 ms thus having durations of 0.75

and 1.5ms. The percentage change being 50% and 20% respectively.

Given a sequence of epochs produced by sampling speech at 20klfe

it is not strictly true to say that an epoch of N ms in duration,

- 127 -

extracted from the sequence, would produce a component at 1/2N kHz

within the power spectrum because of inter-epoch relationships.

However, it does help to give an indication as to why the higher

frequencies experience the greater distortions. Applying this relat­

ively simplistic approach, the epoch distortions described previously

would result in the original components of 2.0kHz and 0.8kHz being

distorted to 1.3kHz and 0.6kHz, changes of 0.7kHz and 0.2kHz, respect­

ively .

As stated earlier these distortions are not predictable and

may occur across the spectrum, the cummulative effect being an in­

crease and/or decrease in power spectrum over bands of frequencies.

Figure 4.16(b) is the PSDP for the speech synthesised from the

CSF processed by. the SOMA smoother, figure 4.16(a). The reason for

the prominent low frequency components, described in section 4.3.2,

are very clear. The first and second spectral peaks were distorted,

and inparticular, the second spectral peak was attenuated (by approx­

imately lOdB) and decreased in frequency. The spectrum below 600Hz

was highly attenuated yet the speech was still judged to be highly

intelligible.

The speech synthesised from the CSF processed by the SOM smoo­

ther, figure 4.17(a), was judged to be totally unintelligible. The

PSDP computed from the segment of speech of figure 4.17(a) is given

in figure 4.17(b). Compared with figure 4.16(b) it is clearly obser­

ved that the first and second spectral peaks had merged, the result­

ing spectral peak had also been increased in frequency. The majority

of the spectrum below 800Hz was attenuated while at frquencies

- 128 -

greater than l.OkHz the spectrum had been amplified. Such signif­

icant spectral changes resulted in the speech being unintelligible.

Finally, figure 4.18(b) is the PSDP for the speech of figure

4.18(a), which was synthesised from the CSF processed by the third

dual staged smoother, DSC. Comparing figures 4.18(b) and 4.17(b) it

is observed that the spectra are very similar. However, the speech

output from DSC was intelligible and speaker recognition was possible

whereas the speech output from the SOM smoother was totally unintell­

igible. It was therefore presumed that the epoch duration sequences

these power spectra related to had experienced very similar distor­

tions when smoothed and this resulted in the similar spectra on

synthesis.

4.4 Conclusions

The smoothing algorithms investigated were found to be effect­

ive in the elimination and/or attenuation of the erratic and ’impulse­

like' features within the epoch sequences. In so doing, the smoo­

thers introduced significant distortions into the periodic epoch

duration sequences.

It was observed that the Second Order Median smoother yielded

the greatest smoothing but the speech synthesised from the resulting

epoch duration sequence was unintelligible.

The First and Second Order Moving Average smoothers output the

least attenuated sequence and the speech synthesised from this was

intelligible though noticeably degraded.

- 129 -

The First Order Median and Dual Stage smoothers output differed

in the extent to which smoothing was achieved and hence the quality

of synthesised speech.

These investigations have sought to demonstrated that only

modest levels of smoothing may be applied to the epoch duration

sequences before significant degradation in speech quality occurs.

Since the smoothing algorithms were investigated as possible

pre-processors to enhance the effectiveness of other data reduction

techniques, it must be concluded that a pre-processor of the epoch

duration sequence, involving simple numerical smoothing, is of little

value for it appears to degrade the quality/intelligibility of

the synthesised waveform in an unacceptable manner. However, it

has been suggested that median smoothing may be a useful tool if a

more sophisticated epoch classification technique were to be adopted

[72] .

- 130 -

1 SEGMENT I ALGORITHM I
1 PROCESSED 1 ALGORITHM OUTPUT 1

1 1(a) 1
1 1(c) 1

1 1(a) 1 1st. Order 7(a) 1
1 1(c) 1 Mov. Ave. 7(b) 1

1 1(a) 1 2nd. Order 8(a) 1
1 1(c) 1 Mov. Ave. 8(b) I

1 1(a) 1 1st. Order 9(a) I
1 1(c) 1 Med, Filt. 9(b) 1

1 1(a) 1 2nd. Order 10(a) I
1(c) 1 Med. Filt. 10(b) 1

1 1(a) 1 Dual Stage 11(a) 1
1 1(c) 1 Smoother A 11(b) 1

1 1(a) 1 Dual Stage 12(a) I
1 1(c) 1 Smoother B 12(b) 1

1 1(a) 1 Dual Stage 13(a) 1
1 1(c) 1 Smoother C 13(b) 1

1 1(a) 1 Dual Stage 14(a) 1
1 1(c) 1 Smoother D 14(b) 1

Table 4.2 : Cross reference of figure numbers

and algorithms.

- 131 -

E

i

250Sample Number100

Figure 4,1(a),(b) : Sequential plots of Epoch duration output

from Al-Doubooni’s TES coder.

3.0

E

1.0

100 250Sample Number

- 132 -

3.U

E

I

1.0

250ICO Sample Number

Figure 4.1(c),(d) : Sequential plots of Epoch duration output

from Al-Doubooni's TES coder.

2.0

250100 Sample Number

- 133 -

M
O COCL

C&, M O J a

CO

w
Ex]
CO CO CM CO

COCO MCOEx]
CQ

>-•

&]
CO

1-4

e
44
woÙ0

00c

c(0"W73
Z
0)

U 4O
U(0J3U
>o

«0
CM

<uk
3oo
i4

— 134 —

CO

M)-*

eu
Oi <; CO
CO CO 2

<J W M hJ o H
<H a: 23 M04 >CJ 3

CO
CO

CO1-4

CO3 O
Z CKi M CxJ

M<
C O

3I— (CO
I— I M I— I

e

wo00iH
<
00ct4k0)

Eu
0)00
COV4
(U

00c
■H>o
2
<u

(0
j:o
g

3
C N
-O'
(Uu300

- 135 -

en en en M
'ât

eu en
w en

enW-JMk
O
M
wenOijo

OioHen
w

w w

w w H ej

Q
>*
-3WO
O
cU

oe Mw O Zw 2= O QEH gM
M

M3 bk g 3O'M 33 WH O en Od=) enS C P3 MH-l

s
wo00

ÜOc

ooGen
0)âO0)uen
cd3Q
<U

xJuceÆ0
1
r—I
P<4

m
sf
(Uw
300

- 136 -

x(n) SMOOTHER

Figure 4.4 : Black box representation of a Single

stage smoother.

2(n)y(n)x(n)

w(n)v(n)

1st. STAGE
SMOOTHING

2nd. STAGE
SMOOTHING

Figure 4.5 : Black box representation of a Dual

stage smoother.

y(p)x(n)

w (n)
DELAY

DELAY1st. STAGE
SMOOTHING

2nd. STAGE
SMOOTHING

Figure 4.6 : Black box representation of a

realisable Dual Stage Smoother.

- 137 —

2.5r

0.5

100 Sample Number 250

Figure 4.7 ; (a) Epoch sequence of Figure 4.1(a) processed by a

1st order Moving Average Filter.

(b) Epoch sequence of Figure 4.1(c) processed by a

1st order Moving Average Filter.

2.5

250100 Sample Number

- 138 -

E

I

0.5

100 250Sample Number

Figure 4.8 : (a) Epoch sequence of Figure 4.1(a) processed by a

2nd order Moving Average Filter.

(b) Epoch sequence of Figure 4.1(c) processed by a

2nd order Moving Average Filter.

2.5

È

0.5

250100 Sample Number

- 139 -

2.5

0.5

\J

100 Sample Number 250

Figure 4.9 : (a) Epoch sequence of Figure 4.1(a) processed by a

IsC order Median Filter.

(b) Epoch sequence of Figure 4.1(c) processed by a

1st order Median Filter.

2.5

250100 Sample Number

- 140 -

2.5,---

250Sample Number100

Figure 4.10 ; (a) Epoch sequence of Figure 4.1(a) processed by a

2nd order Median Filter.

(b) Epoch sequence of Figure 4.1(c) processed by a

2nd order Median Filter.

2.5

100 250Sample Number

- 141 -

2.5

0.5

Ia J

100 Sample Number 250

Figure A.11 : (a) Epoch sequence of Figure 4.1(a) processed by the

Dual Stage Smoother A.

(b) Epoch sequence of Figure 4.1(c) processed by the

Dual Stage Smoother A.

2.5

\ ! L

250100 Sample Number

- 142 -

2.5

w

100 Sample Number 250

Figure 4.12 : (a) Epoch sequence of Figure 4.1(a) processed by the

Dual Stage Smoother B.

(b) Epoch sequence of Figure 4.1(c) processed by the

Dual Stage Smoother B.

2.5,---

250100 Sample Number

- 143 -

s

s

1.0

250100 Sample Number

Figure 4.13 : (a) Epoch sequence of Figure 4.1(a) processed by the

Dual Stage Smoother C.

(b) Epoch sequence of Figure 4.1(c) processed by the

Dual Stage Smoother C.

3.0

100 250Sample Number

- 144 -

2.5

100 250Sample Number

Figure 4.14 ; (a) Epoch sequence of Figure 4.1(a) processed by Che

Dual SCage Smoother D.

(b) Epoch sequence of Figure 4.1(c) processed by the

Dual Stage Smoother D.

2.5

0.5

250100 Sample Number

- 145 -

800 ---

-1000 --

Figure 4.15 : (a) Segment of speech waveform synthesised using the

input epoch duration sequence of Figure 4.1(c).

(b) Corresponding power spectral density plot .

Frequency (kHs) 5.0

- 146 -

800

Figure 4.16 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 4.10(b)

(b) Corresponding power spectral density plot.

Frequency (kHz) 5.0

-30

- 147 —

800

Time (ms)

-1000

Figure 4.17 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 4.12(b).

(h) Corresponding power spectral density plot.

5.0
Frequency (kHz)

- 148 —

800

Time (ma)

Figure 4.18 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 4.15(b)

(b) Corresponding power spectra density plot.

40

5.0

Frequency (kHz)

-30

- 149 -

Chapter 5

Predictors, Interpolators and

Extremal Coding

5.1 Introduction

Numerous redundancy reduction and data compression techniques

have been investigated by independent researchers for applications

within communication systems [73-78]. Their common goal being to

ensure that only significant data is transmitted. The techniques

reported were, in general, waveform coders rather than source coders.

The most effective and widely used of these techniques being poly­

nomial predictors and interpolators.

The polynomial prediction algorithms were based on a finite

difference technique by means of which an n-th order polynomial was

to be passed through n+1 data points. The polynomial was extrapol­

ated one data point at a time to yield the predicted data. If the

next data point fell within a tolerance band (or aperture) about the

predicted value, it was rejected as redundant since that data point

could be reconstructed (within a specified tolerance) using previous

values. If the new data point was outside the aperture then it was

transmitted.

A First Order Predictor (FOP) utilises an extrapolation

polynomial of the form

y(n+l) = 2.y(n) - y(n-l) (5.1)

This extrapolation is a straight line between the last two

data points. Initially the first two data points are transmitted

and a straight line is extrapolated through them for one data point.

An aperture is placed about the predicted point. If the next data

- 150 -

point is within the prediction aperture then that point is not trans­

mitted and the line is extrapolated a further data point. If the

next point is outside the prediction aperture then the data point is

transmitted and the line extrapolated through the present data point

(which is transmitted) and the previous data point. The functional

operation of a FOP algorithm is shown in figure 5.1.

Inspection of figures 5.2(a), 5.3(a) and 5.4(a) reveal that,

between extrema of an epoch sequence, the epochs appear to lie approx­

imately on a straight line. Pilot investigations were conducted in

order to estimate the data reduction achievable using FOP alogrithms

on a sequence of epoch durations.

When applied in the time domain, FOP's employed an aperture

whose width was a constant value. For the TES domain, a choice of

aperture width was difficult because a small aperture (%.lms) meant

that the shorter epoch durations had a realistic tolerance band

while the larger epoch durations had a much tighter tolerance and

this reduced the extent of the achievable data reduction. The con­

verse situation arose when a larger aperture (^.4ms) was employed.

Here the larger epoch durations had a realistic aperture while that

of the shorter epoch durations was excessive. For such an aperture,

a data reduction of 1.2:1 was achieved yet the synthesised speech

was totally unintelligible.

A possible strategy was to make the aperture a function of the

predicted sample or past samples. The simplest function being a

percentage of the predicted value. For example, if the predicted

value was y(n) then the corresponding aperture would be O.ly(n) for

— 151 —

a 20% tolerance band. However, unless the tolerance band was greater

than 20%, no significant data compression would be achieved since

the shorter epochs (.LT. 0.5ms) would have no aperture. With toler­

ance bands greater than 20%, data réductions were achieved although

but the speech synthesised was not intelligible.

It was soon realised that the application of a FOP to the epoch

duration sequences would not yield a suitable degree of data reduction

while maintaining a high degree of intelligibility in the synthesised

speech. Higher order polynomial predictors may yield marginally

better results than the FOP but due to the qua si-stationary nature

of the epoch duration statistics the synthesised speech would still

be of very poor quality.

It was stated previously that interpolators have also been

widely used for data compression. Interpolators differ from the

corresponding prediction algorithms by the fact that all sample

values between the last transmitted value and the present value

affect the interpolation. Interpolators are more efficient in envi­

ronments where the samples are perturbed by low level, high frequency

noise [73]. A number of examples of interpolators for data compress­

ion are given in the literature [73-76]. Even though the epoch

sequences may be thought of as a sequence plus noise (chapter 4),

the 'noise' cannot be considered to be low level and, in order to

achieve useful data reductions, large apertures would be required.

The effect of such an aperture would be similar to that described

earlier in case of the prediction algorithms. Therefore, for epoch

sequences these interpolation algorithms would not yield better data

- 152 -

compression than that of the predictors.

It was therefore concluded that predictors and interpolators

of the type described could not achieve useable levels of data comp­

ression. To minimise distortions would result in an increase in the

required data due to the rapid changes in epoch sequences.

In 1959 the results of investigations into Extremal Coding for

Speech Transmission were reported by Mathews [53]. The paper descri­

bed h(vf time positions of a waveforms extreme were located and the

waveform was reconstructed employing an interpolation function between

extrema. The synthesis was such that the original extreme were

retained and no discontinuities existed in the waveform nor its

derivative at its extrema. The information transmitted consisted

of the signal amplitude at the extreme and Çhe time interval between

successive extrema. Subjectively, extremal coding was found to

require approximately half the channel capacity of companded PCM for

equivalent speech quality transmission.

From the work by Mathews it was hypothesised that extremal

coding of epoch duration sequences, employing a suitable interpol­

ating function for reconstruction, may yield a significant data

reduction whilst retaining a high degree of intelligibility together

with reasonable quality of synthesised speech. As previously noted

the interpolators and predictors investigated were unable to 'track*

the sudden changes of the epoch sequences. However, Extremal Coding

does not attempt to predict the extrema but utilises them for the

prediction of the 'samples' between extrema. This technique would

eliminate the need to transmit the epoch durations which exist between

- 153 -

the extrema or alternatively lie outside some preset tolerance band

about a predicted value.

In order to investigate the hypothesis, two sets of algorithms

were developed. Such a set consisted of a transmitter and receiver

algorithm. The first set employed extremal coding of the epoch

duration sequence only and the remaining TES parameters were 'trans­

mitted* unprocessed. This algorithm was developed to isolate the

type and extent of the distortions introduced by extremal coding of

the epoch duration sequence. The second set of algorithms involved

processing of the peak magnitude sequence as well as extremal coding

of the epoch duration sequence.

5.2 Extremal Coding Algorithms

In section 5.1 it was stated that two sets of algorithms were

developed and that they differed in their treatment of the peak

magnitude information. This section describes a) the encoding,

decoding and synthesis of the epoch sequences and b) the encoding,

decoding and synthesis of the peak magnitude sequence (hereafter

referred to as magnitude sequence).

5.2.1 Epoch Encoding

From inspection of the epoch sequences in figures 5.2(a),

5.3(a) and 5.4(a) it was noted that, besides the existance of eas­

ily defined extreme, as seen in figure 5.5(a), conditions do occur

where it may be argued that the extreme exists in one of two posit­

— 154 —

ions, or that both positions are true extrema. This condition can

be observed in figure 5.4(a). In general, for speech waveforms,

interpolation is employed to determine the precise position and

amplitude of the extreme thus removing any uncertainty. Unfortun­

ately, this technique is not applicable to the epoch sequences

because the the data originates from a discrete source and is undef­
ined between data points. For the purpose of extremal coding the

extreme must exist in one of the two positions, but which ?.

A number of options were considered for resolving this dil­

emma. One possibility was to allocate an extra codeword which the

receiver would interpret as meaning that two consecutive points of

equal value formed the extreme. The receiver algorithm would then

interpolate between the previous extreme and the first extreme posit­

ion of the current extreme. The second extreme position would then

be treated as the previous extreme thus retaining both extrema posit­

ions .

An alternative option involves the principle of a biased de­

cision. When two samples 'contend* the extreme position, the en­

coder allocates it to either the first or second sample position

under all conditions.

The inclusion of an extra codeword for signalling the occurr­

ence of a dual sampled extreme would at least prevent the distor­

tion of one epoch sequence sample. However, it was decided that,

for an increase in algorithm complexity, no increase in quality

would be perceived due to the masking effect of the distortions

introduced by the surrounding epoch durations distorted by the encod-

- 155 -

and synthesis. It must also be noted that the use of a special

codeword requires more data to be transmitted with little, if any,

gain in quality therefore reducing the overall efficiency of the

algorithm.

A decision on which position to choose for the option of bias­

ing, or alternatively restricting the extreme position to the first

or second sample position was an arbitrary choice. The extent of

the distortion experienced by the rejected sample position was

dependant upon the value of the next extreme if the first sample

were chosen, or the previous extreme if the second sample were chosen.

Clearly, the number of samples between extrema was also be a contrib­

uting factor. Since the biasing technique requires no extra codewords

and enabled the algorithm to yield greater data reduction with little

or no effect upon the overall speech quality, the final algorithm

employed biasing to the first sample position. The choice of bias

direction was arbitrary.

Figure 5.5(c) depicts the conditions where three samples of

equal value form an extreme. Without added complexity, the algor­

ithm would treat this condition in the same manner as that of the

two sample extreme. However, this would result in excessive dis­

tortion of the samples between the current extreme and the next

extreme detected. It is arguable that the second, or central, sample

position should be treated as the extreme sample. If this were the

case the neighbouring samples would be subjected to distortions

similar to those experienced in the two sample extreme biasing. In

one respect to choose the central position would be a suitable

— 156 —

solution, but, contingencies had to be made for the condition where

four or more samples of equal value formed an extreme, albeit uncommon

within the current coded speech file. If an even number of samples

(greater than 2) formed an extreme, then ambiguity of extreme position

existed since two samples contended the central sample position.

Another disadvantage of choosing the central position would be the

extent of epoch duration distortion. If, for example, an extreme

was formed by five equal valued samples and the central sample was

chosen as the extreme position, four of the five samples would be

distorted. The degree to which these samples were distorted increased

as the separation distance between sample position and chosen extreme

sample position increased. Distortions of so many samples would

become apparent since five undistorted epoch durations could repre­

sent upto 16ms. of synthesised speech.

Another factor considered was that of algorithm complexity and

processing time. The greater the number of possible types of extreme

the greater the algorithm complexity. Also the delay required before

a decision as to which type of extreme had been detected would also

increase. Clearly, a real-time implementation of such an algorithm

would have an upper limit to the processing time available to be

dedicated to such decisions. If too much processing time were spent

on parameter analysis then the input sample buffer could rapidly

fill resulting in data loss.

Rather than process 3, 4, 5, ... sample position extreme as

separate events, where special measures were employed to handle even

numbered sample events, it was decided that all extreme of 3 or more

- 157 -

sample positions would be processed identically.

If 3 successive sample positions had the same value then the

first sample position was chosen as one extreme position and its

value, with a code to represent the number of sample positions since

the last extreme (distance measure) were transmitted. A count of

the number of equal valued sample positions was then maintained.

When a sample position which differed in value was detected the

sample position prior to it was chosen as an extreme and its value

and distance measure were transmitted. This technique is shown in

figures 5.5(c) and (d) for extreme of 3 and 4 sample positions,

respectively.

This technique has a number of advantages. The algorithm

complexity is minimised. The extreme detection, processing and coding

time is the same as that of the two sample extreme irrespective of

the number of sample positions forming the extreme and the original

extreme sample values remained undistorted. The algorithm complexity

was minimised by the ’arbitrary* choice of biasing the two sampled

extreme to the first sample.

While describing the real-time digital voice channel in chapter

2, silence signalling was also discussed. The codeword employed to

signal silence was, in general, taken from the amplitude dictionary.

However, there is no reason why a codeword from the tes-dictionary

could not be employed. In such a situation the occurrence of extrema

with at least three equal valued samples positions would be very

frequent. Distortion of these samples could not be tolerated as

they would be decoded by the TES decoder (not the extremal decoder)

- 158 -

as an ordinary epoch parameter. However, the technique described

above would prevent distortions of this nature from occurring.

5.2.2 Peak Magnitude Encoding

In order to distinguish between the two algorithms developed

they shall in future be referred to as EXTRl and EXTR2, respectively.

In section 5.2 it was indicated that the algorithms differed in

their, treatment of the magnitude information. In fact EXTRl did not

attempt to encode the magnitude information and transmited all values.

If N samples occurred between extrema, the information transmitted

was the extreme value and N+1 magnitude values. The distance measure

was redundant and the (N+l)th magnitude was the value associated

with the current extrenje.

EXTRl was developed in order to demonstrate (a) the quality of

speech achievable without added distortions introduced by magnitude

encoding, (b) that extremal coding affects the various speech sounds

and (c) the average data required per epoch.

The algorithm EXTR2 utilised the extrema detection of the

epoch duration sequence to signal coding of the magnitude sequence.

Comparing the sequential epoch duration plots of figure 5.2(a),

5.3(a) and 5.4(a) with the corresponding sequential magnitude plots

of figure 5.2(b), 5.3(b) and 5.4(b), it can be seen that when pro­

nounced epoch sequence repetition occurs the extrema of the epoch

and magnitude sequences coincide. This feature may be observed in

greater detail by comparing figures 5.10(a) and 5.14(a) which are an

- 159 -

enlarged section of figures 5.4(a) and 5.4(b), respectively. During

periods of erratic epoch sequence the magnitude values tend to be

low levelled which hindered observations for similar epoch-magnitude

relationships. To determine whether such a "phase" relationship

also existed during erratic epoch sequences, enlarged sections of

sequential epoch and magnitude plots were taken.

Comparisons of the enlarged epoch sequential plots of figures

5.7(a), 5.8(a) and 5.9(a) with their corresponding enlarged magni­

tude sequential plots of figures 5.11(a), 5.12(a) and 5.13(a), respec­

tively, revealed, in general, for the short duration epochs (less

than 0.75ms), the minima of the magnitude sequence coincides with

those of the epochs. Unlike the periodic epoch sequences, from

observations to date, no generalisation may be made concerning the

magnitude sequences corresponding to the erratic epoch sequences.

It has previously been mentioned that the low level erratic

epoch sequence occurs during unvoiced sounds. From the model of

speech production and the discussion of vocoders in chapter 1 we

have seen that the unvoiced sounds are generated by a random noise

source. Singh [79] demonstrated that unvoiced sounds could be re­

placed by a noise source but "sharper synthesis" was achieved when

spectrally shaped noise sources were employed.

The coding of the magnitude sequence utilised the "phase"

relationship of the epoch and magnitude sequences. When an epoch

extreme was detected, the corresponding epoch magnitude was trans­

mitted with the extreme value and distance measure. At the recei­

ver, the epoch and magnitude sequence were reconstructed in parallel.

— 160 —

Even though distortion of the magnitude sequence would be

greatest within the unvoiced segments it was speculated that the

distortions introduced into the synthesised speech would be more

pronounced for the voiced rather than unvoiced segments. As reiterated

above, unvoiced sounds can be represented by a random noise source

and therefore it was conjectured that the erratic epoch segments

would tolerate a greater degree of magnitude distortion than the

periodic segments.

5.2.3 Decoding

Mathews [53] proposed two interpolation functions which pres­

erved the extrema of the original signal and synthesised the wave­

form so that no discontinuities existed in that waveform or its

derivative at its extreme. Once again such techniques are not applic­

able here due to the nature of the data. The epoch sequences between

extrema are most accurately approximated by straight lines due to

the rapid changes of epoch durations which exist. Also the epoch

and magnitude sequences do not require an interpolation functions

which ensures continuity at the extreme.

Straight line interpolation was therefore employed for the

synthesis of the sequences betweem extrema and the extrema retained

their original value. The interpolated values were rounded to the

nearest integer.

EXTR2 also employed straight line interpolation for the synth­

esis of the magnitude sequence. However, it was discovered that

— 1 61 —

epoch elimination within the synthesised speech was possible during

erratic epoch/low level magnitude sequences. Epoch elimination

occurred when an epoch extreme was detected whose corresponding

magnitude was zero valued and if the next extreme detected also had

a zero valued magnitude, then on synthesis all magnitude values

between these extrema would be zero valued. Figure 5.6 depicts the

functioning of the algorithms EXTRl and EXTR2 and includes an example

of epoch elimination. Epoch elimination would resulted in periods

of silence being inserted into the synthesised speech. The frequency

of occurrence of epoch elimination was not a predictable parameter

but the periods of silence introduced were, in general, would probably

be of very short durations (0.3ms or less). Miller and Licklider

[80] conducted investigations into interrupted speech which demon­

strated that speech intelligibility would not be grossly affected by

this form of distortion, although the quality would suffer.

In order to determine the average data rate and information

per epoch, several counters and one dimensional arrays were incorp­

orated into each algorithm. Their function was to establish the

number of epoch/magnitudes processed, the number of codes trans­

mitted and the frequency distribution of (a) the distance measure

and (b) the epoch durations occurring as extreme. Neither algor­

ithm set a limit upon the distance measure because observations

upon the epoch duration sequences revealed that, unless the TES

encoder utilised silence signalling, the distance measure between

extrema rarely exceeded seven sample positions. In order to cal­

culate data rates, a fictitious limit had to be imposed upon the

distance measure.

— 162 —

5.3 Results

After processing the coded speech files (CSF) with either EXTRl

or EXTR2, sections of epoch and magnitude sequences which corresponded

to the enlarged sections of the original sequence were plotted. This

This enabled detailed comparisons of the original and processed

sequences to be conducted and to establish the sources and extent

of the distortions due to extremal coding. An algorithm for the

synthesis of speech from the processed CSFs was then implemented.

Informal comparisons of speech synthesised from both the processed

and unprocessed CSFs were conducted to gain an insight into the way

the distortions within the Tes domain were manifest in the time

domain. Section 5.3.1 presents the discussion concerning the sequence

comparisons and section 5.3.2 gives an informal subjective appraisal

of the synthesised speech achieved using the CSFs output from EXTRl

and EXTR2. Section 5.3.3 presents the results of the power spectral

density measurements.

5.3.1 Sequence Comparisons

Figures 5.2(a), 5.3(a) and 5.4(a) present the epoch duration

sequencies input to the extremal coding algorithms and figures 5.2(b),

5.3(b) and 5.4(b) present the magnitude sequencies input to the

extremal coding algorithms.

Table 5.1 defines the segments of the input epoch duration and

magnitude sequencies for which enlarge sequential plots have been

produced. For comparison purposes enlarged sequential plots were

— 163 —

also produced for the processed epoch duration and magnitude sequences

These plots are also defined in Table 5.1.

The initial comparisons of the original and processed epoch

sequences gave the impression that extremal coding had been capable

of reproducing the sequences without excessive distortion. Close

comparison of figures 5.7(a) and 5.7(b) reveals that the majority of

the sequences are identical for single sample position extreme and

the deviations occurred where extrema were formed by two sample

positions. The description of the encoding algorithm in the previous

section had already highlighted the possible occurrence of such

distortions at the extreme. Comparing figures 5.8(a) and 5.9(a)

with their processed equivalents, figures 5.8(b) and 5.9(b), indicates

that the majority of distortions again occurred when epochs of similar

value were encountered. However, in these examples, the original

epoch durations were, in general, less than 0.5ms.

Figure 5.10(a) gives the epoch sequence produced by a strong

voiced sound, while figure 5.10(b) is the same sequence after extremal

coding. These figures highlight two possible situations. The first

exists when the algorithm yields a perfect reproduction of the orig­

inal sequence (samples 100 to 125) and the second is that of the

distortion caused by dual valued extreme, or a series of epoch durat­

ions of similar value occurring between extrema. These distortions

result in an increase in the high frequency component when that

section is employed for speech synthesis. The perceptual effect

will be equivalent, atleast, to low level background noise.

From inspecting the reconstructed epoch sequences it was appar­

— 164 —

ent that time distortion would exist within the synthesised speech.

The perceptual affect this has on the synthesised speech could not

be predicted because the shorter epochs were distorted to a higher

degree than the larger epochs when distorted by 'equal' amounts (see

section 4.3.3).

The effect of the pseudo extremal coding of EXTR2 on the magni­

tude sequence was not unlike that previously described. The extent

of the distortion depended on the distance measure. When a maximum

distance measure of two occurred, the magnitude sequence was, in

general, reproduced very accurately. This may be seen by comparing

figures 5.11(a) and 5.11(b), inparticular sample numbers 115 to 145.

The difference between these sections was minimal. The distortions

became more pronounced as the distance measure increased or the

"phase" relationship became non-existant. Referring back to figures

5.11(a) and 5.11(b), close inspection of samples 85, 95 and 110

reveal high attenuation of the original sequence. Since these samples

originated from a voiced segment and originally were of both large

epoch duration and magnitude then they were perceptually significant

since distortions of voiced speech were more obvious than those of

unvoiced speech.

Comparing figure 5.12(a) with 5.12(b) and 5.13(a) with 5.13

(b) there are a number of instances where excessive distortions had

occurred. A large extreme value, at sample 105 of figure 5.12(a),

has suffered severe attenuation. In figure 5.12(a), samples 127 to

133 and figure 5.13(a) samples 12 to 15, and 23 to 25 have been

eliminated. The magnitude extreme at samples 135 to 137 and 148 to

- 165 -

150 of figure 5.12(a) have been merged. In this particular instance,

as drastic as the distortions appear to be, the perceptual effect

will probably be insignificant because this section corresponds to

the transition between the /a/ and /1/ of "operator", where the /1/

is a voiced stop consonant and so the build up to the /1/ sound

(which this section corresponded to) was low level noise. The occurr­
ence of such a distortion else where within the sequence, would have

had a dramatic effect upon the speech quality.

Finally, a very interesting comparison is that of the epoch

duration probability distribution before and after extremal coding,

presented in figures 5.14(c) and 5.14(d). The probability of an

epoch duration of 0.05 or 0.1ms remains approximately the same,

while that of epoch durations of 0.15 to 0.3ms, which were the most

probable originally, has been reduced significantly. The most prob­

able epoch duration within the extremal coded sequence was 0.7ms in

duration. This was a result of the interpolation. As will be

shown later, the majority of the extrema were either the short epoch

durations of unvoiced sound (.LT. 0.5ms) or durations greater than

1.0ms (during voiced sounds). The linear interpolation between

extrema caused the increase in intermediate values of epoch duration.

For epoch durations greater than 1.5ms, the probability distribution

remained very similar to that of the original. The shifting of the

epoch duration probability distribution may manifest as an increase

in the mid-band frequency components. Table 5.1 summaries the

figures discussed within this section.

- 166 -

5.3.2 Informal Subjective Appraisal

The speech synthesised employing the unprocessed coded speech

files (CSF) (the data input to the transform algorithms) was of high

quality and intelligibility. The description of distortions in the

speech synthesised utilising processed CSFs are therefore relative
to that produced employing the unprocessed CSFs.

The CSFs output from the transform algorithms were utilised as

the input files for the speech synthesis algorithm described in

chapter 2. The synthesised speech output was bandlimited (300 to

3400Hz).

Informal listening of the speech synthesised from the CSF

output of the epoch duration extremal coding algorithm (EXTRl) indic­

ated that a high degree of intelligibility had been retained. The

quality varied over the test utterance and in the most severe cases

sounded grainy and rasping. The speakers were still recognisable

but it was the utterances of the male speaker which had incurred the

majority of the distortions. The female utterances, in general, had

a very crisp sound to them.

The male utterance of "I'd like to make" had a very drawled

quality, while the utterance of "No I said Balam in England" took on

a more irrate tone than that of the original speech. These effects

were believed to be a result of the time distortion introduced by

the linear interpolation. The slow drawling sound being a result of

an increase in the total time of the utterance and the irrate charac­

teristic due to a decrease in time.

- 167 -

The majority of the nasal and stop consonant sounds were very

distinct. The /1/ of "what" was distorted but the extent of which

was not sufficient to affect the passage. The grainy rasping sounds

mentioned previously were prominent during voiced sounds. This was

understandable since a number of epoch durations during the voiced

sounds had suffered considerable distortion.

As expected, the quality of the speech produced by the synth­

esised of speech employing the output of EXTR2 was less than that of

EXTRl. The male speaker sounded muffled and raspy. The female spoken

sections were again found to be more robust against distortion. The

female utterance "did you say" was very clear with the ending of

"say" beginning to become raspy. The nasal sounds /m/ of "Balam" by

the male speaker was totally obscured. Again the female nasal sounds

were more distinct even though they had suffered some distortion.

However, although the quality of the female spoken sections

were believed to be better than that of the male, this was only true

when one compensated for the interrupt nature of one female utterance.

The utterance "What part of England is that" was broken up by several

short silence intervals due to the occurrence of magnitude elimination

in the Tes domain. This, combined with the poor reproduction of the

plosive sounds, gave the speech a hesitant quality, yet intelligibil­

ity and speaker identification were not unduly affected. Once again

time distortion was very evident.

- 168 -

5.3.3 Power Spectral Density Measurements

Extremal coding of the epoch duration sequence and pseudo-

extremal coding of the magnitude sequence are non-linear, signal

dependant techniques. The effect of these coding techniques, combined

with the Tes transformations, had upon the power spectra of the

speech cannot be predicted. However, from figures 5.14(c) and (d)

it was observed that the probability of epochs in the region of

0.4ms (8 samples) and 1.4ms (28 samples) had been significantly

increased by the interpolation process. It was therefore conjec­

tured that the increased probability would result in considerable

mid-band changes within the power spectra. However, in general,

comparisons of the power spectra have not revealed any significant

trends which could be attributed to this.

The speech segment and Power Spectral Density Plot (PSDP) of

figures 5.15(a) and (b) correspond to a transition from a stop conson­

ant to a voiced sound. Comparing these with figures 5.16(a) and

(b), which are the equivalent segment after the epoch durations had

been processed by EXTRl, the spectra are seen to differ considerably

at frequencies greater than 600Hz . In the Tes domain, some some

voiced sounds do not exhibit high periodicity in the epoch duration

sequence. The power spectrum for such sequences after processing by

EXTRl differed from the original spectrum but followed its general

trend. Major departures were observed for the epoch duration sequ­

ences relating to the unvoiced and transitional sounds. During

such sounds the spectra were, in some instances, vastly different

to that of the original yet, from the previous discussion on the

- 169

informal listening, the unvoiced sounds appeared to be more robust

to the distortions introduced by the extremal coding than the voiced

sounds.

The variations within the power spectrum were due to the distor­

tion introduced by the linear interpolation synthesis of the epoch

duration sequence. These distortions were similar to those intro­

duced by the smoothing algorithms investigated in chapter 4. The

extent of the distortions were dependant upon the relative position

of the epoch duration sample position to the extreme, between which

the interpolation was being conducted, together with the accuracy of

the interpolation of the sequence compared with the original. Al­

though individually the distortions were not very significant, the

overall effect was very apparent on inspection of the synthesisd

speech and Power Spectral Density Plots, PSDP.

The effects of magnitude elimination in the Tes-domain, as

described in sections 5.2.3 and 5.3.2, can be seen by comparing

figure 5.15(a) (the original waveform) with figure 5.17(a) (the wave­

form synthesised using the output of EXTR2). A segment which origin­

ally corresponded to 2.1ms. of silence became extended to 4.4 ms.

The pseudo-extremal coding of the magnitude sequence caused

only locally small variations of the power spectra, when compared

with the power spectra for EXTRl. However, the differences that

existed were clearly significant because the quality and intelligi­

bility of the speech produced by synthesising EXTR2's output was

informally judged to be inferior to that for EXTRl.

- 170 -

5.4 Data Reductions

The output of counters embeded into the algorithms indicated

that 13,824 epoch durations were processed and 6,659 codes were

transmitted. On first inspection a compression ratio of 2:1 had

thus been achieved. However, a code consists of the epoch duration

and a distance measure. The transmitted epoch durations were of the

same accuracy as those processed (6 bits), thereby eliminating quant­

isation errors and distortions during the encoding and decoding,

and the distance measure was not restricted. Therefore, to calculate

the average number of bits per epoch the distance measure distribution

had to be inspected. Using this, the average number of bits per

epoch were calculated for specific values of restricted distance

measurements (r.d.m).

The probability distribution of the distance measure is given

iti figure 5.18(a). As expected, the shorter and zero distance

measures were the more probable and distance measures greater than 9

were not encountered.

To implement r.d.m extremal coding it was envisaged that when

the maximum distance occurred and no extreme has been detected, the

last sample would be designated an extreme. The relevant codes

would be transmitted and the processing would continue until an

extreme was detected or the maximum distance measure was once more

reached. If the distance measure were restricted to 3 (thus requiring

two bits) then a distance measure of five would be transformed into

two sets of codes. That is, one set of codes for the maximum distance

— 171 -

of 3 plus the value of the epoch duration at that point and another

for a distance measure of 2 plus the extreme value.

In order to calculate the average data per epoch two case of

r.d.m were investigated. These were:

(a) r.d.m of 3 (2 bit representation)

(b) r.d.m of 7 (3 bit representation)

If an r.d.m of 3 were implemented the number of codes trans­

mitted would have been 7,594, each consisting of 2 bits for distance

and 6 bits for extreme representation. Therefore, a total of 60,753

bit would be required to represent 13,824 epoch durations resulting

in an average representation of 4.4 bits per epoch.

An r.d.m of 7 would have resulted in 6,961 codes being trans­

mitted, each consisting of 3 bits for distance and 6 bits for extreme

representation. A total of 62,649 bits would therefore be required

yielding an average representation of 4.5 bits per epoch.

For an r.d.m of 3 or 7 an average data compression ratio of

1.36:1 and 1.33:1, respectively, may be achieved using r.d.m extre­

mal coding of the epoch duration sequence.

These results apply only to compression of the epoch duration

sequence. The data compression achieved by EXTR2 would be greater

since the magnitide sequence is also encoded. For an r.d.m of 3 and

the magnitude values transmitted with the same accuracy as within

the coded speech files (9 bits) a total of 17 bits per exteme would

be required. This was equivalent to 129,098 bits for the represent­

- 172 -

ation of 13,824 epochs, an average representation of 9.34 bits per

epoch instead of 15 bits (6 bits epoch duration and 9 bits magnitude).

For an r.d.m of seven 18 bits per code transmitted would be required,

a total of 125,298 bits for representing 13,824 epochs, an average

of 9.06 bits per epoch.

Therefore, with an r.d.m of 3 or 7 an average data compression

ratio of 1.61:1 and 1.65:1, respectively, may be achieved using

extremal coding with r.d.m of the epoch duration sequence. Table

5.2 summaries the results presented above.

5.4.1 Parameter Coding

In section 5.4 it was shown that EXTR2 yielded better data

compression than EXTRl. However, the quality of speech from EXTRl

was subjectively better than that of EXTR2. In order to further

increase the data compression ratio the possibilities of transmitting

different parameters to those currently employed or non-linear quant­

isation of the extrema values was inspected.

Given two extrema, E% and E2 , and the number of sample positions

between extrema, N, the interpolation value, ly, can be calculated.

The interpolation value, which may be calculated using equation (5.1)

(El - E2)
ly = (5.1)

N + 1

is the increment by which E]̂ is adjusted to yield the first inter­

polated sample between E]_ and E2. Figure 5.18(b) gives the First

- 173 -

Order probability distribution of the absolute values of the interpol­

ation value. From the distribution, we see that the probability of

an interpolation value greater than 1.6ms is less than 0.0025. It

was therefore suggested that instead of transmitting the extreme

value and distance code, the interpolation value could be calculated

to 5 bit accuracy (32 level) within the transmitter and transmitted

with the distance measure. The receiver would assume alternating

polarity of I^, except for when 1^ = 0.

On first inspection this approach appeared to be a plausible

technique. However, when r.d.m*s are imposed, some polarity diffi­

culties occur. An example where an r.d.m of 3 has been applied, and

the distance measure exceeds this value, is depicted in figure 5.19

(a). When the distance measure equals the maximum value, the corres­

ponding sample position is chosen as an extreme. The interpolation

value is calculated and coded along with the distance measure and

transmitted. At the receiver, the codes are decoded and the interpol­

ation values are given alternating polarity. However, the polarity

of the interpolated values did not alter when the distance between

extrema was greater than the r.d.m but, the epoch duration sequence

would be reconstructed as if the polarity had changed. Thus the

sequence is severely distorted. It may not be assumed that when a

value for the distance measure which equals the r.d.m, is transmitted,

the next interpolated value and distance count received are a contin­

uation of the previous distance measure because distance measures

equal to the r.d.m have a finite probability of occurrence.

In order to overcome the problems associated with the intro­

- 174 -

duction of an r.d.m, the polarity of the interpolated value must be

transmitted. This means that, for increased complexity in the trans­

mitter algorithm and possibly no improvement in speech quality, more

data must be transmitted resulting in a reduction of the data compress­

ion so far achieved.

A further technique suggested was to implement 4 or 5 bit non­

linear quantisation of the epoch duration extrema values. Figure

5.19(b) illustrates the probability distribution of the epoch dura­

tions occurring as extrema for the unrestricted distance measure.

However, a major problem perceived with this technique is one of

changing distributions. The probability distribution is dependant

upon the utterance and is therefore quasi-stationary. To impose

non-linear quantisation would be sub-optimal resulting in degradation

of certain speech sounds. Further degradation of the speech may

cause severe loss of intelligibility, particularly for EXTR2.

5.5 Conclusions

These investigations have demonstrated that the restricted

distance measure (r.d.m) extremal coding of the epoch durations

(EXTRl) can yield data compression ratios of 1.36:1 (with an r.d.m

of 3) and 1.33:1 (with an r.d.m of 7). The synthesised speech was

informally judged to have retained a high degree of intelligibility

but varied in quality. The characteristics of speakers, in partic­

ular the male utterances, were found to have altered.

When the peak magnitude sequences were pseudo-extremally coded

- 175 -

(EXTR2) overall data compression ratios of 1.61:1 (with an r.d.m of

3) and 1.65:1 (with an r.d.m of 7) were achieved. However, a feature

of this form of coding was the "zeroing" of epoch peak amplitudes

which manifested as silence in the synthesised speech. The overall

quality was judged to be inferior to that synthesised from the output

of EXTRl.

- 176 -

1
1 Enlarged
1

Plots i

1 1
1 1
1 Section |
1 1

Samples

1 1
1 Original Epoch I
1 Durations 1

Processed by 1
EXTRl and EXTR2 |

1 1
1 5.2(a),(b) 1 65 - 145

1 1
1 5.7(a) 1 1 1 5.7(b) 1

1 5.3(a),(b) 1 100 - 170 1 5.8(a) 1 I 1 5.8(b) 1

1 5.4(a),(b) 1 0 - 50 1 5.9(a) 1 1 1 5.9(b) 1

1 5.4(a),(b) 1 70 - 150 1 5.10(a) 1
I 1

5.10(b) 1

1 1 1
1 Enlarged Plots I
1 1

1 1
1 1
1 Original Peak I Processed I

1 Section I
1 1

Samples 1 Magnitudes 1
1 1

By EXTR2 |

1 1
1 5.2(a),(b) 1 1 1 65 - 145 1 5.11(a) 1 5.11(b) 1

1 5.3(a),(b) 1 1 1 100 - 170 I 5.12(a) 1 1 1 5.12(b) 1

1 5.4(a),(b) 1 1 1 0 - 50 1 5.13(a) 1 1 1 5.13(b) 1

! 5.4(a),(b) 1 70 - 150 1 5.14(a) 1 5.14(b) 1

Table 5.1 : Cross reference of Figures and summary of epoch

duration and magnitude sequencies processed.

Restricted Distance Measure (r.d.m). (bits) I ____________11
2 1 3

----------- 1
1

1 Process Bits/epoch I Compression Bits/epoch I
----------- 1
Compression ______ 1

1 EXTRl 1 1 4.4 1I 1.36:1 1 1 4.5 1 1 1.33:1 1 11
1 EXTR2 1
1

9.34 1
1

1
1.61:1 1

1

1
9.06 1

1

1
1.65:1 1

1

Table 5.2 : Summary of Data Compression achieved.

— 177 —

%

ÜJ
Û L

m

LU

LU

CL

<1

(U
M34JLi0>O.
e t)

00d
•H4_>
0)O

PL,

à

T30)S-i
Wi(UT3Ui0
IXJ01 t-l

o
0>
r-4
CL

•HO
C
•rW
>-ieu

0)M300
•HCx,

?

- 178 -

J.U

0.5

25050 Sample Number

Figure 5.2 : (a) Sequence of epoch durations output from

Al-Doubooni's Tes coding algorithm.

(b) Corresponding sequence of epoch peak, magnitudes.

600

200

250Sample Number50

- 179 -

3.0

0.5

50 250Sample Number

Figure 5.3 : (a) Sequence of epoch durations output from

Al-Doubooni's Tes coding algorithm.

(b) Corresponding sequence of epoch peak magnitudes

600

200

50 Sample Number 250

- 180 -

2 . 5

0.5

Sample Number 250

Figure 5.4 : (a) Sequence of epoch durations output from

Al-Doubooni's Tes coding algorithm.

(b) Corresponding sequence of epoch peak magnitudes

600

200

250Sample Number50

- 181 -

B

f 1

D

f f

Figure 5.5 : Possible Epoch sequences with the extreme detected

by EXTRl and EXTR2 indicated.
- 182 -

CL

Sample No.

Actual
Interpolated

Sequence

TD

cn

Sample No.

Figure 5.6 : Functional representation of the algorithms

EXTRl and EXTR2.

- 183 -

0.75

75 Sample Number

Figure 5.7 : (a) Enlarged segment of Figure 5.2(a).

(b) Equivalent segment to Figure 5.7(a) after

processing by EXTRl.

2.5

a

i

0.5

75 145Sample Number

- 184 -

3.0

8

§

1.0

170110 Sample Number

Figure 5.8 : (a) Enlarged segment of Figure 5.3(a).

(b) Equivalent segment to Figure 5.8(a) after
processing by EXTRl.

3.0

110 Sample Number

- 185 -

0.5

5010 Sample Number

Figure 5.9 : (a) Enlarged segment of Figure 5.4(a).

(b) Equivalent segment to Figure 5.9(a) after

processing by EXTRl.

2.5

5010 Sample Number

- 186 -

1.5

a

I

0.5

15080 Sample Number

Figure 5.10 : (a) Enlarged segment of Figure 5.5(a).

(b) Equivalent segment to Figure 5.10(a) after

processing by EXTRl.

80 ISOSample Number

- 187 -

100

Sample Number

Figure 5.11 (a) Enlarged segment of Figure 5.2(b).
(b) Equivalent segment to Figure 5.11(b) after

processing by EXTR2.

100

- 188 -

160

40

110 170Sample Number

Figure 5.12 : (a) Enlarged segment of Figure 5.3(b).

(b) Equivalent segment to Figure 5.12(b) after

processing by EXTR2.
160

AC

170no Sample Number

— 189 —

Sample Number

Figure 5.13 : (a) Enlarged segment of Figure 5.4(b).

(b) Equivalent segment to Figure 5.13(b) after

processing by EXTR2.

50

I

10

5010 Sample Number

- 190 -

500

100

80 150Sample Number

Figure 5.14 : (a) Enlarged segment of Figure 5.5(b).

(b) Equivalent segment to Figure 5.14(b) after

processing by EXTR2.

500

100

15080 Sample Number

- 191 -

o

Figure 5.14(d) : Epoch duration probability distribution

after extremal coding.

Figure 5.14(c) : Epoch duration probability distribution

before extremal coding.
- 192 -

22.510.0 Time (ms)

I

-1000

Figure 5.15 : (a) Segment of speech waveform synthesised utilising

the input epoch durations of Figure 5.4(a) and

the peak magnitudes of Figure 5.4(b).

(b) Corresponding power spectral density plot.

Frequency (kHz)

3.0 5.0

-30

- 193 -

noo

22.5Time (ms)

-1000

Figure 5.16 : (a) Segment of speech waveform synthesised utilising

the epoch durations of Figure 5.9(b) and the peak

magnitudes of Figure 5.4(b).

(b) Corresponding power spectral density plot.

Frequency (kHz) 5.02.5

-30

- 194 -

1000

10.0 22.s
Time (ms)

-800

Figure 5.17 : (a) Segment of speech waveform synthesised utilising

the epoch durations of Figure 5.9(b) and the peak

magnitudes of Figure 5.13(b).

(b) Corresponding power spectral density plot.

Frequency (kHz) 5.02.5

-30 L. .

- 195 -

Figure 5.18(b) : Absolute value of the interpolation

values probability distribution.

-O

Figure 5.18(a) :-Distance Measure Probability

Distribution.

- 196 -

o

o r.
oo
CL co
<u ë

(U
M

O ■u
Xc <uo■H 00JJ co3
00«H c

U "pU
JJ MCO M•H 3
C OU
>> Ou
•H 00r-i c1-4 o
U3 "M
CO,3 cflO Vuk 3pu •a

o\
f-U
m
0)k
300•Hta

00c•H
f-4P-
I
tsOc"r4T3Ou
cO
Ik4JXta

6*CQXPd

o\

(UVj300•HPE4

Uwo
(US-i3CO
CO(Ue
<uocCO

T3<u

uCO<u
u

- 197 -

Chapter 6

Orthogonal Transformations

6.1 Introduction

Orthogonal transformation techniques for digital speech pro­

cessing have been suggested and researched to various degrees by a

number of investigators [81,82,84-87]. The general approach is to

choose an arbitrary sample block, N, which offers effective spectral
resolution as well as computational efficiency. The performance of

discrete Karhunen-Loeve (K-L), Fourier and Walsh orthogonal trans­

formations applied to bit rate reduction for the transmission of

speech signals have been measured and reported by independent re­

searchers [84-86,88]. Their results tended to indicate that the K-L

transformations offered greater efficiency in terms of data compress­

ion, while the remainder may be rated in the order they appear above.

For the K-L transformation [85], the orthogonal functions used

were a special set determined from the autocorrelation functions

computed over an ensemble of talkers and utterances typical of those

to be processed. These have been reproduced along with the equi­

valent Fourier and Walsh discrete orthogonal functions in figure

6.1, for N = 16.

The K-L and Fourier transformations favour smooth-varying sig­

nals whereas the Walsh transformation favours rectangular, or more

precisely, discontinuous signals. It was therefore not quite so

surprising that the K-L and Fourier transformations achieved superior

data reductions to that of the Walsh transformations.

The fact that Walsh transformations favour discontinuous signals

gave rise to the initial impetus for these investigations. As des­

- 198 -

cribed earlier (chapter 4), sequences of epoch durations exhibit

periods of both erratic and periodic behaviour. During erratic

sequences, the differences between successive epoch durations varies

considerably and this is manifested as pronounced discontinuities

within the sequential plots. The segments of periodic sequences

were formed by the repetition of a sequence of 6 or 8 epoch dura­

tions which were produced by the coding of voiced sounds within the

input speech. The "boundary" between one sequence and the next

repeat exists at the transition from an epoch duration of typically

0.2 to 0.4ms to that of 1.0 to 1.2ms long. At these points prominent

discontinuities exist. To "adequately" represent sequences with

such discontinuities, the K-L and Fourier transformations would

require a greater number of transform coefficients in comparison to

that of the Walsh transformation. '

6.2 Terminology

During initial literature searches an inconsistent vocabulary

pertaining to Walsh functions and transformations was found to exist.

An unsuccessful attempt was made by Ahmed et al [89] to introduce a

more compact and standard notation. It is therefore the purpose of

appendix A5 to introduce and define the three general classifications

of the continuous and discrete Walsh functions.

Using the three classes of Hadamard matrices of appendix A5,

one can define the corresponding transformations as follows :

Y(N) = Hw(N).X(N) (6.1)

Y(N) = Hh(N).X(N) (6.2)

- 199 -

Y(N) = H p (N) .X (N) (6 . 3)

where X(N) is a column input vector

and Y(N) is a column transform vector

In the literature, the expression (6.3) has been referred to as

the dyadic-ordered and Paley-ordered Walsh transform, while (6.1) and

(6.2) have been referred to as Walsh [91], Hadamard [83,85], Walsh-

Hadamard [86], Walsh-Fourier [90] and BIFORE transform [92]. To

eliminate ambiguity when referring to the three possible transforms

Table 6.1 was produced. This table presents the full and short-form

names of each transform, the abbreviations used and the name given

to the elements of the column transform vector, Y(N).

6.3 Data Reduction with Hadamard Transforms, (WT)^.

A Fortran program was developed which employed the Fast Hada­

mard Transform (FHT) subroutine given in appendix A5. The program

required the user to specify the following information:

(a) Input and Output files

(b) Number of points (samples) per transform

(c) Forward or Inverse transform required.

Using the Hadamard transform, three data reduction techniques

were implemented and investigated. These techniques were incorp­

orated into the main program as subroutines. When the user specified

that the inverse transform was required a menu of coefficient pro­

cessing techniques were presented to the user. The menu also inclu­

ded a "no action" option. The data reduction techniques were based

- 2 0 0 -

upon the objective of achieving a direct 2:1 data reduction, as well

as spectral considerations (in the sequency sense), of the input

sequence. The techniques employed are outlined below:

6.3.1 Dominant Coefficient Retention - retain N/4 + 1 coefficients.

For an N point transform only n dominant coefficients (in

terms of the largest absolute value in the transform domain) were

retained [86,88]. In so doing this the majority of the selected

components were in the high energy region of the spectrum. This

then preserved the dominant characteristics of the input sequence.

Since the sequency of the dominant coefficients depends on the charac­

teristics of the input sequence, information was also transmitted to

specify the sequency positions of the coefficients retained.

6.3.2 Sequency-based Vector Filtering

Two different sequency-limited filters were implemented. The

filters utilised were:

(a) Low-pass Sequency Filtering - Elimination of alternate Hadamard

coefficients.

The elimination of alternate coefficients auto­

matically reduced the data requirements by a

factor of 2. It also eliminated the N/2 highest

sequency components thereby low-pass filtering

the input sequence.

- 201 -

(b) Multiple Band-pass Sequency Filtering - Elimination of the last

N/2 Hadamard coefficients.

Once again an immediate data reduction by a

factor of 2 was achieved. However, in terms of

sequency N/4 "stop-band", each of two sequency

components, were imposed. The filter retained

the highest and lowest sequency components plus

mid-band components in groups of two.

Figure 6.2 depicts each of these filters for (a) the Hadamard-

ordered Walsh Transform and (b) the Sequency-ordered Walsh Transform.

To implement these filters, the column vector was "multiplied" by an

(NxN) diagonal filter matrix before re-transformation took place.

The diagonal elements of the filter matrix were Himited in value to

either 0 or 1.

The values of the input sequence were limited to the range of

{1,64}. The discarding of coefficients before inverse transforma­

tion may have resulted in samples having values outside the permitted

range of the input data. Contingencies for this eventuality were

therefore incorporated into the Fortran program.

The first row of all three classes of the transform consisted

of only +l's. Since the input data was limited to the range {1,64},

following a forward transformation, the first coefficient, y^, repre­

sents the summation of the N samples of the input vector. Thus, in

all situations, the first coefficient was of the greatest absolute

value and represented the total duration of the N epochs of the

- 2 0 2 -

input vector. It was, therefore, ensured that this coefficient was

not distorted by any of the data reduction techniques.

The value of y g was recorded before the inverse transformation

was performed. On completion of the inverse transformation, the new

data sequence was inspected for the occurrence of values outside the

permitted range, {1,64}. If none were encountered then the data

was stored in the output file, otherwise further processing was con­

ducted. If a sample value was greater than 64, then its value was

automatically truncated to 64. In the event of negative or zero

valued samples being encountered, the summation of all the samples,

x'(i), with values greater than zero was performed. The difference,

DIFF, between y^ and the resultant of the summation was calculated.

If the difference was zero then all samples, x’(i), with values less

than one were set to one. However, if the difference was greater

than zero, and L of the N samples were less than one, then DIFF was

divided by L and the resultant was rounded to the nearest integer

(greater than zero). The L samples were reset to this value. These

operations are summarised below:

N
DIFF = y@ - 'I x'(i) for all x'(i) greater than zero

i=l

If DIFF .EQ. 0 : Then for all x'(i) .LT. 1, x'(i) = 1

If DIFF .GT. 0 : Then LDIFF = Round {d IFF/L }

However,

If LDIFF .LT. 1, Then LDIFF = 1,

and for all x'(i) .LT. 1, x'(i) = LDIFF

- 203 -

6.4 Bit Allocations and Reductions

The input sequence consisted of positive integer data in the

range {1,64} which required six bits per sample. It was the philo­

sophy of these investigations not to quantise the transform coeffic­

ients. Thus distortions due to the data reduction techniques were
highlighted and not masked by distortions resulting from coefficient

quantisation.

Since the input data were positive integer values and numerical

division did not take place in the forward transformation, the range

of values to which the coefficients were limited may be estimated.

6.4.1 Maximum Coefficient Value

As stated previously, the first row of the transform matrix

consisted of only 4-1’s. If the N samples of the input vector were

equal to 2®, where ra is the bit accuracy, then after transformation

the first coefficient, y^, equalled;

Yo = N.2™ (6.1)

Thus for constant length codewords

m + log2 (N) bits (6.2)

are required to accurately represent y^.

- 204 -

6.4.2 Minimum Coefficient Value

Apart from the first row of the transform matrix, the elements

of all other rows consist of N/2 +l's and N/2 -I's. If an input

vector were composed of N/2 samples equal to 2®, with the remaining

N/2 samples equal to one, and the order of the data in the input

vector was such that, positionally, the N/2 samples of one coincided

with the N/2 +1 elements of the nth row. After transformation the

nth coefficient, y^, equalled:

y^ = - N.2™ + N (6.3(a))
2 2

= - N.2®"^ + N (6.3(b))
2

re-arranging equation 6.3(a),

y^ = - N.(2™ - 1) (6.4)
2

Thus for constant length codewords

or

log2 (2” - 1) + l o g j W bits
2

log2(2” - 1) + log2 (N) - 1 bits (6.5)

were required to accurately represent the absolute value of y^» From

equation 6.3(b), equation 6.5 may be approximated by:

(m - I) f log2 (N) bits (6.6)

Comparing equations 6.2 and 6.6, it is observed that the positive

- 205 -

range of the coefficients required one bit more than the negative

range. To distinguish between positive and negative coefficient

values, a polarity bit would be required. Therefore, employing

constant length codewords

m + 1 + log2(N) bits (6.7)

are required to represent the full range of the transform coeff­

icients. As specified earlier, the input samples were represented

with six bit accurracy. Therefore equation 6.7 becomes :

7 + log2 (N) bits (6.8)

With the number of bits required to represent each transform coeff­

icients established, it is then instructive to compare the number of

bits required by the data reduction techniques of section 6.3, for

the representation of a block of N epoch durations, with that orig­

inally employed.

6.4.3 Dominant Coefficient Retention - Retain N/4 + 1 Coefficients.

Theoretically, for each coefficient transmitted, its sequency

position must also be transmitted. However, from previous dicussions

it is known that the first coefficient, y^, was the summation of the

elements of the input vector and always had the greatest absolute

value. It was not therefore necessary to transmit its sequency pos­

ition. Therefore N/4 + 1 coefficients and N/4 sequency positions

were transmitted. Thus for a block of N "samples" the number of

bits, B, required for each transform was:

- 206 -

B = (N + 1).(7 + log2(N)) + N.log2(N) (6.9)
4 4

= N.(2.1og2(N) + 7) + log2 (N) + 7 (6.10)
4

Substituting values for the transform block size, N, into

equation 6.10 the bit requirements per transform and per epoch was
calculated. This information is summarised in Table 6.2 for N = 2^,

where k = 2, 3, ... ,6. Inspection of Table 6.2 revealed that the

optimum transform block size (from a bit reduction piont) occurred

for N = 16, where a compression ratio of 1.35:1 was achieved (4.44

bits per epoch).

6.4.4 Low-pass Sequency Filter - Elmination of Alternate Hadamard

Coefficients. :

For an input vector of N samples, N coefficients were produced

by the transformation, of which only N/2 were transmitted. The

number of bits, B, required per transformation was :

B = N.(7 + log2(N)) bits (6.11)
2

Substituting values for the transform block size, N, into

equation 6.11 the number of bits required per transform, and hence

per epoch, was calculated. This information is summarised in Table

6.3 for N = 2^, where k = 2, 3, ... ,6. Inspection of Table 6.3

revealed that, for a transform block size of 32 "samples", data

compression was not achieved and, for block sizes greater than 32,

more bits were required for the representation of the transform

- 207 -

coefficients than the original sequence required.

It has been shown in appendix A6 that the elements of the

output vector x ’(i), for the above data compression technique may

also be derived as follows:

Given an input sequence

• • • » » ^n+l * ^̂ 4-2 * * * * for n — 0,1,2, ...

x ’(i) = (x(i) + x(i + 1)) for i = 1,3,5, ... (6.12)
2

and x'(i+l) = x'(i)

From equation 6.12, it was observed that this process only

involved calculating the average of two adjacent input samples and

replacing them with the average value. This process required a

system delay of only one input sample, a single addition and division

by 2 (one bit shift left). The average value, which has an accuracy

of six bits, would be transmitted and thus represent two input samples.

Therefore an average of 3 bits per input sample would be employed

for transmission, resulting in a data reduction ratio of 2:1.

An N point Hadamard Transform requires a system delay of N

input samples, N.log2N additions/subtractions (employing the fast

transform) and, depending on the input vector size, varying degrees

of data reduction ratios were achieved, all less than 1.5:1. An

interesting feature of equation 6.12 is that this technique is not

restricted to transform block sizes of N, which are a power of two.

In fact, any even valued length of input vector may be considered.

- 208 -

6.4.5 Multiple Band-pass Sequency Filter - Elimination of Last N/2

Hadamard Coefficients.

For an input vector of N samples, N coefficients were produced

by the transformation, of which only N/2 were transmitted. The

number of bits, B, required per transformation were:

B = N.(7 + log2(N)) bits (6.13)
2

Comparing equations 6.11 and 6.13, it is noted that they are

identical and therefore the information contained in Table 6.3 also

applies to this data reduction technique.

It has been shown in appendix A6 that the elements of the

output vector x'(i), for the above data compression technique may

also be derived as follows:

Given an input sequence

•••> ^^+1» ^^n+2> *** for n — 0,1,2, ...

x'(i) = (x(i) + x(i + N/2)) for i = 1,2, ... ,N/2 (6.14)
2

and x'(i+N/2) = x’(i) over a block of N samples.

The process, defined by equation 6.14, only involves calculating

the average of two input samples, and replacing those samples with

the average value. For an input vector of N samples, a system delay

of N/2 input samples would be incurred before the above process

could be performed. Some N/2 additions and divisions by 2 (one bit

- 209 -

left shift's) are involved and the resulting N/2 average values,

which have six bit accuracy, would be transmitted to represent the N

input samples. Therefore, an average of 3 bits per sample would be

employed for the transmission which represents a 2:1 data reduction.

As with the process of equation 6.12, equation 6.14 is not

restricted to transform block sizes of N, where N is a power of 2.

Once again, any even valued length of input vector may be processed

using this technique.

6.5 Results

The results presented were output from the following processes:

Transformation of (1) N = 8,16 and 32 - retaining the N/4 + 1

coefficients of the greatest absolute value.

(2) N = 16 - retaining alternate coefficients

Ci, i = 0,2,4, ... , N-1

(3) N = 16 retaining the first N/2 coefficients

Ci, i = 0,1,2, ... , N/2 - 1

A series of different transformation sizes were implemented for

process (1). Table 6.2 shows the optimum transform size, N, to be

sixteen for which only 4.44 bits per epoch were required. The next

best value for N was eight, for which 4.5 bits per epoch were re­

quired followed by a third best transform size of N = 32, which

resulted in 4.625 bits per epoch being utilised. These three trans­

form sizes were therefore investigated.

- 2 1 0 -

It was observed that during periodic segments of epoch sequ­

ences, the periodic structure comprised, in general, six or eight

epoch durations. Section 6.4, and appendix A6, demonstrated that

the same result would be achieved with process (2) irrespective of

the transform size, N. However, in process (3), N specified the

delay over which the epoch "average and repeat" operation occurred

and the number of epochs to be repeated, ie. N/2. A transform size

of 8 would have involved the inclusion of a maximum of one complete

periodic segment. For process (3), this would have introduced

severe distortion because epochs at the beginning of the transform

window would have been averaged with the epochs beyond the centre of

the transform window and these would have a significantly different

value. To have adopted a transform window of 32 would have involved

the averaging of epoch durations separated by 16 "samples". In such

a window, approximately 3 repetitions of an epoch sequence may exit.

Therefore, it is possible that the transform might average the orig­

inal sequence with the second repetition of the epoch sequence and

also average the first repetition of the epoch sequence with the

third repetition. However, the correlation between neighbouring

repetitions will, in general, be greater that that of repetitions

which are separated by a repetition. Therefore, distortions will be

introduced by a transform window of 32. Also, if a transition from

periodic to erratic epoch durations, or visa versa, occurs within

the transform window then the periodic segment would be averaged

with the erratic segment resulting in distortion of the periodic

sequence. It was therefore decided to employ a transform window of

N = 16. Thus, in general, neighbouring periodic segments would be

- 211 -

averaged and the distortions which arise during the transition be­

tween the different type of epoch duration sequences would be re­

duced. Since the distortions introduced by process (2) are independ­

ent of transform size, N, a transform of N = 16 was also employed.

Two segments of epoch duration sequence with differing charac­

teristics were chosen for detailed comparison. One was of an erratic

nature, figure 6.3(a), while the other exhibited a strong periodic

element, figure 6.3(b). To perform the comparisons the epoch dura­

tion sequences of the output files which corresponded to figures

6.3(a) and (b), were isolated and plotted. Segments of speech were

synthesised using the processed CSFs which corresponded to the unpro­

cessed CSF of figure 6.3(b). Employing a Digital Fast Fourier Trans­

formation software package, the short-term power spectral density

was obtained and plotted for comparison purposes.

Section 6.5.1 discusses the output epoch duration sequences,

section 6.5.2 presents an informal subjective appraisal of the synth­

esised utterances and, finally, section 5.3 inspects the power spec­

tral density plots. Table 6.4 provides a cross reference between

the processes utilised and the diagrams presented.

6.5.1 Epoch Duration Sequence Comparisons

Figures 6.3(a) and 6.3(b) present the epoch duration sequencies

input to the transform algorithms.

The epoch duration sequences output from process (1) (Dominant

Coefficient Retention) with N = 8 are presented in figure 6.4(a) and

- 2 1 2 -

(b). Comparisons of figures 6.3(a) and 6.4(a) indicated that the env­

elope of the original sequence was retained, albeit slightly atten­

uated. As expected, varying degrees of distortion of the epoch dura­

tions were experienced but the erratic nature of the input sequence

appeared to have been preserved. Sample 17 to 40 of figure 6.4(a)

exhibited a "step-like" characteristic. A more detailed examination
revealed that this was a similar effect to that which occurs due to

low-pass sequency filtering. With a transform size, N, of eight

this effect occurred on three consecutive transforms. Examination

of the data revealed that the dominant coefficients of the transform

were the same as those which would have been utilised by a low-pass

sequency filtering transform. Therefore, these occurrences were a

function of the data and the similarity was purely coincidental.

The epoch duration sequence of figure 6.4(b) retained the general

envelope of the original sequence (figure 6.3(b)). However, no

obvious periodic characteristics could be perceived. Varying degrees

of sample distortion occurred and these eliminated the periodicity

which was so predominant within the original sequence.

The epoch duration sequences of figures 6.5(a) and (b) were

produced utilising process (1) (Dominant Coefficient Retention) with

N = 16. The sequence of figure 6.5(a) retained the envelope of the

original sequence plus the erratic characteristics. However, an

interesting feature emerged over the samples of 20 to 25, 33 to 36

and 37 to 48. This feature either "Assymmetric" or "Symmetric Mirror

Imaging". Assymmetric Mirror Imaging occurred when samples x^-i =

Xn+i, Xn_2 = x^+2» ••• le. the samples were centred about the sample

at Xjj. However, Symmetric Mirror Imaging occurred when x^ = x^-1,

- 213 -

x̂ i+l “ x^_2, ••• ie. the samples were centred about a point halfway

between samples x̂ j and x^-i. All three examples cited above were

of symmetric mirror imaging ie. samples 33 and 36, 34 and 35 were

equal in value. This feature also occurred in figure 6.5(b) over

the samples 9 to 16 an 18 to 31. Another feature, termed "delayed

sample repetition" can be seen in figure 6.5(b). Samples 32 to 36

were repeated at samples 38 to 42. This feature was predicted to

occur due to the multiple band-pass sequency filtering (process (3))

of the epoch duration sequence. However, this occurrence was not

due to process (2) because the repeated sequence was separated from

the original by a "spurious" sample. No. 37. Apart from these "patt­

erns" a periodic characteristic was not evident within figure 6.5(b).

For N = 32 in process (1), the epoch duration sequences of

figures 6.6(a) and (b) were produced. The sequence of figure 6.6(a)

retained the envelope of the input waveform and had an erratic charac­

teristic. Asymmetric mirror imaging centred on sample number 51,

over the range of samples 48 to 55 occurred. Otherwise, apart from

the expected sample distortions, no other features existed. The

sequence of figure 6.6(b) preserved the envelope of the original

sequence. Symmetric mirror imaging occurred between samples 36 to 61.

It was demonstrated in appendix A6, section 2(ii) that symmetric

mirror imaging would be produced when alternate coefficients of a

Sequency-Ordered Walsh Transform were discarded ie. sequency of 1,

3, 5 and 7 for N = 8. However, in the Hadamard domain this does not

manifest as a pattern and therefore cannot be attributed to any

particular feature of the Dominant Coefficient Retention technique.

- 214 -

For N = 16, the Low-pass Sequency Filtering (process (2))

produced the epoch duration sequencies of figures 6.7(a) and (b).

As shown in appendix A6, these sequences are identical to that achie­

ved by calculating the average of two ajacent epoch durations and

replacing the original values with the averaged values. Thus the

sequences exhibit a square/step-like characteristic. Much of the

erratic form of figure 6.3(a) was eliminated (figure 6.7(a)). How­

ever, the envelope of the original sequence was retained. Figure

6.7(b) shows that a periodic characteristic of the original sequence

(figure 6.3(b)) was preserved but the shorter epoch durations (less

than 0.5ms) were severely distorted.

Multiple Band-pass Sequency Filtering (process (3)) with N = 16

produced the epoch duration sequences of figures 6.8(a) and (b).

Without prior knowledge of appendix A6 it was not immediately obvious

that samples 9 to 16 were identical to those of 1 to 8 for each trans­

form window. The sequence of figure 6.8(a) appear to have retained

its erratic form but its envelope is not so well defined. The per­

iodic characteristic of figure 6.3(b) was almost non-existant in

figure 6.8(b). The majority of epoch durations had values in the

range of 0.5 to 0.75ms and any periodic structure perceived may be

attributed to the average and repeat process.

6.5.2 Informal Subjective Appraisal

The speech synthesised employing the unprocessed coded speech

file (CSF) (the data input to the transform algorithms) was of high

quality and intelligibility. The description of distortions in the

- 215 -

speech synthesised utilising processed CSFs are therefore relative

to that produced employing the unprocessed CSF.

The CSFs output from the transform algorithms were utilised as

the input files for the speech synthesis algorithm described in

chapter 2. The synthesised speech output was bandlimited (300 to

3400Hz).

The synthesised speech produced, using the CSF output from

process (1) with N = 8, was intelligible and time warping was very

evident. Due to the distortions of the epoch durations inflicted by

the transformations, the time duration of the synthesised utterance

was less than that of the original. This caused the speech to sound

"speeded up". Some granular noise was perceived in the background

but otherwise the speech was of good quality.

The synthesised speech created, utilising the CSF from process

(1) with N = 16, was, marginally, of inferior quality to that pro­

duced with N = 8. Once again, granular noise was evident and time

warping of the speech had occurred. The male utterance of the word

"Balam" was muffled. This disturbance was not significant enough to

cause loss of word intelligibility but sufficient enough for it to

be highlighted by the remainder of the utterance and therefore give

an impression of reduced quality to the complete utterance.

The synthesised speech generated from the CSF output of process

(1) with N = 32 was found to contain some low frequency disturbances.

This caused masking of the true quality of the synthesised speech.

The low frequency cut-off of the band-pass filter was increased to

- 216 -

400Hz before the disturbances were eliminated. The resulting speech

was however severely time warped to such an extent that truncation

of the last word of the complete utterance occurred. These effects

resulted in a loss of naturalness within the speech, which in turn

gave an impression of reduced quality in comparison with that pro­

duced for N = 8 and 16 in process (1). Word and sentence intell-

igibity were retained.

The speech synthesised using the CSF output from process (2)

was of high quality and intelligibility. Some granular background

noise at a very low level was detected, but its level was such that

it did not distract the listeners attention from the utterance.

The utterance synthesised employing the CSF output of process

(3) had a gargled/muffled quality, this being more pronounced in thé

male utterance of "Balam". The female utterance of the word "yes"

was less 'crisp* than the original and had a "flat and drawled"

quality. The /s/ of "yes" was obscurred by noise. Time distortion

was not evident but any such occurrences may have been masked by the

poor quality and reduced intelligibilty.

6.5.3 Power Spectral Density Measurements

When the processed epoch duration sequences were input to the

speech synthesis algorithm the distortions in the sequences (due to

the transformations) manifested as time distortions of the waveform.

As described in the previous section, the resulting distortion,

termed "time warping", was predominantly of the variety which caused

- 217 -

the complete utterance to occur over a shorter time period. Distor­

tions of this nature caused variations in the power spectrum over

bands of frequencies. However, due to the non-linear nature of the

distortions introduced by the transformations implemented (Tes-domain

to Time-domain) these effects cannot be catagorised nor can the fre-

quecies affected be predicted. The time distortions were a function
of the data, the bit reduction and transformation algorithms which

cannot be compensated for be post filtering.

Inspection of the power spectral density plots (PSDP) revealed

that the majority of the differences, in comparison with the original

spectra, occurred over the mid-band frequencies (1.5 to 3.0kHz).

These differences were, in general, an increase in the power spectra

of the synthesised speech.

Figures 6.9(a) and (b) presented the speech synthesised from

the epoch duration sequence of figure 6.3(b) and the computed power

spectrum. A general comparison of power spectra revealed that the

power spectrum of the speech segment synthesised using the Low-pass

sequency filtered epoch durations, figure 6.13(b), had incurred the

least distortions. The second spectral peak was attenuated while

the midband frequencies were amplified. The distortions of the

power spectra produced from the speech synthesised utilising the

epoch durations output from the Dominant Coefficient Retention algor­

ithm, appear to have increased as the transform size, N, increased.

The second spectral peak was merged into the spectrum for transforms

of 8 (figure 6.10(b)) and 16 samples (figure 6.11(b)). For the

transform of 32 samples the second spectral peak began to separate

- 218 -

from the power spectrum (figure 6.12(b)). The power spectra resulting

from the Multiple Band-pass Sequency Filtered epoch durations had

incurred the greatest distortions with both the first and second

spectral peaks experiencing frequency shifts and/or attenuation to

a greater extent than any of the other power spectrums, figure

6.14(b).

6.6 Conclusions

A maximum data reduction of 1.35:1 was achieved employing

Dominant Coefficient Retention with N = 16 in a Hadamard Transform.

The resulting speech was intelligible but of moderate quality.

The speech synthesised from the Low-pass Sequency Filtered

Hadamard coefficients was of high quality and intelligibility. A

maximum data reduction of 1.33:1 was achieved for N = 4. However,

analysis of this process demonstrated that an identical epoch dura­

tion sequence (to that output from the transform) is achieved if the

average of pairs of adjacent epoch durations was calculated and the

original epoch durations were replaced with the average value. This

process yielded a 2:1 data reduction in the epoch duration sequence

because only the average value need be transmitted. This process

also reduced the system delay from N epoch durations to two epoch

durations, where N is the size of the Hadamard transform, ie by a

factor of N/2.

- 219 -

m o m o *n
lA vO vO

GO O GO CM

(M n ̂ (A

S-a
H

M a «r w w «W M

I m 0)
I I

i l e <4-i c^ «W «I g « 4-1
I S

 H

5 * .cl IS«d9B 41 6
xl

■g g

i i
J

ta a01 a 0 uw C W o4» o 0ta *9u U ao e O 01 0 wM 1 HM H2 >% .fiB 0<d rH0 0Pu3pa 3

M-l S

- 2 2 0 -

F O U R IE R

IIIIIIIIIIIJIIII

TTTTTTT

W

"Ww
à 4ÉJÈ./IyMin/w
dUUMLiHTWw
U lM Â j

VéM
i A ï L Â â U
ï W m

ïTI/ I;

¥ s m

H A D A M A R D KARHUNEN-I.OeVE

i l l i l l l l i i l l i l i l
I I . I ' ' i n

i i T i i i i r ^ i I I I k ______
j i i i i i n : < i i i F

% m i F

W m
/ l l f W l l ï h ,

W

W ¥

V W h A / y v

i . , E Æ & IE . Û A f t ,
W i n f i i i i ' M] Ü

w y i
üLliïlLilM! m

u m

: |: ?}! ;t: :(l

Figure 6.1 : Discrete Orthogonal Functions, N= 16 (After

Campanella and Robinson [84]).

- 221 -

inûOc
U
(U

CD
oc
(U
3
C
CI
ai
coco
(0CL,

m
•oc
co
P3

Ou
•H
■U

CO

e
uoCM
CO
Cco
M
H

"O
M

CD

LO

OO

CNJ

00
II

z

EMOCM
CO
C
COMH

OO
C

•MM
O
■U

oc
(U
3
O 'QJCO
CO
CO
COOw
3o

CDcO

inCD

(D

ro

O

4J
C
(U
r—I
CO>•H
3
c rCJ
<v

j=Ml
TO
C
co

00
c"r4
M
(U
Ml

M
O
MJ
O
0 >

•3
CD
CO
CO

Æ
1
Oc
(U3
cr
<u

co

EM
O
CM
CO
C
cOM

H

•OM
CO
E
cOTJ
CO3S

CM
uO
(UM
300

00c

M
0
Ml
ÇJ01 >
*o
(U
co
coXI
L
CJc
3
3
cr01
ai
EM
O

CM
CO
C
CO
M
H

-C
co

r—I
CO
z

- 222 -

1.5

S

I

0.5

60Sample Number

Figure 6.3(a),(b) : Discrete sequential plots of epoch durations output

from Al-Doubooni's TES coder.

1.25

0.5

10 Sample Number
60

- 223 -

0.23

60Sample Number

Figure 6.4 : (a) Sequence of Figure 6.3(a) after Forward and

Inverse Hadamard transformation (N = 8)

employing Dominant Coefficient Retention.

1.25

0.25

10 Sample Number

Figure 6.4 : (b) Sequence of Figure 6.3(b) after Forward and

Inverse Hadamard transformation (N = 8)

employing Dominant Coefficient Retention.

- 224 -

60

1.25

0.25

6010 Sample Number

Figure 6.5 : (a) Sequence of Figure 6.3(a) after Forward and

Inverse Hadamard transformation (N = 16)

employing Dominant Coefficient Retention.

1.5

0.5

10 S a m p le N u m b e r

Figure 6.5 : (b) Sequence of Figure 6.3(b) after Forward and

Inverse Hadamard transformation (N = 16)

employing Dominant Coefficient Retention.

_ nos _

60

1.25

0.25

10 Sample Number 60

Figure 6.6 : (a) Sequence of Figure 6.3(a) after Forward and

Inverse Hadamard transformation (N = 32)

employing Dominant Coefficient Retention.

1.25

0.25

10

Figure 6.6

S a m p le N u m b e r

(b) Sequence of Figure 6.3(b) after Forward and

Inverse Hadamard transformation (N - 32)

employing Dominant Coefficient Retention.

: - 226 -

60

0.25

Sample Humber

Figure 6.7 : (a) Sequence of Figure 6.3(a) after Forward and Inverse

Hadamard transformation (N = 16) employing Low Pass

Sequency Filtering of the transform coefficients.

1.25

0.25

10 60Sample Number

Figure 6.7 : (b) Sequence of Figure 6.3(b) after Forward and Inverse

Hadamard [rans f o rma c i. oo f N' = 16) employing Low P a s <

Sequency Filtering of ch<- transform coefficients.

- 227 -

1.25

0.25

6010 Sample Number

Figure 6.8 : (a) Sequence of Figure 6.3(a) after Forward and Inverse

Hadamard transformation (N = 16) employing Multiple

Bandpass Sequency Filtering of the transform coefficients

1.25

0.25

10 Sample Number

Figure 6.8 : (b) Sequence of Figure 6.3(b) after Forward and Inverse

Hadamard transformation (N = 16) employing Multiple

Bandpass Sequency Filtering of the transform coefficients

- 228 -

HüO

22.510.0

-1 0 0 0 ___

Figure 6.9 : (a) Segment of speech waveform synthesised using the

input epoch duration sequence of Figure 6.3(b).

(b) Corresponding power spectral density plot.

40

F r e q u e n c y (V H r)

- ?0

- 229 -

«00

5.0

-800

22.

Figure 6.10 : (a) Seginenc of speech waveform synthesised using

the epoch duration sequence of Figure 6.4(b).

(b) Corresponding power spectral density plot.

40

Frequency (kHz)

5.0

-20

- 230

«00

10.G

Time (ms)

-800

22.5

Figure 6.11 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 6.5(b),

(b) Corresponding power spectral density plot.

Frequency (kHz)

- 20
- 231

8üO

22.5
10.0

Time (ms)

-800 ---

Figure 6.12 : (a) Segraenc of speech waveform synthesised using

the epoch duration sequence of Figure 6.6(b)

(b) Corresponding power spectral density plot.

Frequency (kHz)

- 232 -

800

22.51 0 .0

Time (ms)

-800

Figure 6.13 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 6.7(b).

(b) Corresponding power spectral density plot.

40

5.0Frequency (tcHz)

-20

233

800

22.5

-800

Figure 6.14 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 6.8(b),

(b) Corresponding power spectral density plot.

Frequency (kHt) 5.0

-20

- 234 -

CHAPTER 7

Real-Time Implementations of TES

and TES related Systems

7.1 Introduction

The development of a versatile real-time simplex digital voice

channel was presented in section 2.3 of chapter 2. This system was

developed for the real-time implementation and investigation of

speech coding systems, and in particular TIME ENCODED SPEECH (TES).

This chapter highlights the implications of embodying TES and

TES related algorithms upon the real-time simplex digital voice link

for various bit-rates, system delays and data reduction techniques.

Section 7.2 reviews King and Goslings simulation algorithm and

relates its real-time implementation to the algorithm developed for

the real-time simplex digital voice channel. Al-Doubooni's simula­

tion algorithm is reviewed in section 7.3. Also presented are the

restrictions imposed/alterations required upon the coder before a

real-time implementation was possible.

The system considerations for the implementation of the real­

time coders are presented in section 7.4. The system parameters and

a discussion of the implications of the real-time implementations are

also included in this section.

Section 7.5 describes the TES coders which have incorporated

either the differential or group amplitude signalling techniques

investigated in Chapter 3.

The real-time TES coders with Hadamard Transformation of the

epoch sequence are presented in section 7.6. The technique employed

was investigated in chapter 6.

- 235 -

Section 7.7 presents an informal assessment of the coders

developed and highlights some of the issues related to quality.

Finally, section 7.8 presents the summary of the chapter.

7.2 TES Coder : King and Gosling

The Time Encoded Speech (TES) originally reported by King and

Gosling utilised a coding alphabet of 23 coded shape descriptors

[30]. ' Each data frame of the TES coder comprised of eight "coded

shape descriptors" (tes-codewords) and a single eight bit codeword

to communicate the mean amplitude of the preceding eight codewords.

The waveshapes utilsed for the synthesis of the speech signal were

square waves. Further research by King and Holbeche [93] demonstra-

ated that a coding alphabet of 28 tes-codewords produced speech of

superior quality to that utilising 23 tes-codewords. These invest­

igations also inspected the utilisation of "rounded" waveshape for

synthesis. However, the quality of the speech synthesised was judged

to be poorer than that synthesised for square wave synthesis wave­

shapes .

From the description of the digital voice channel it is obser­

ved that the software for the channel does not require any altera­

tions for the implementation of King and Goslings TES coder. The

software support enabled a coding alphabet of 28 tes-codewords to be

formed. The synthesis waveshapes of the alphabet are presented in

figure 7.1. Inspection of figure 7.1 reveals that, for some of the

multiple extrema segments, an element of skewness was incorportated.

Informal appraisal of speech synthesised from coding alphabets with

- 236 -

varying degrees of skewness indicated that, subjectively, skewness

towards the right most extreme yielded higher quality. The philos­

ophy of King and Gosling was that epoch durations greater than 2ms

(40 samples at 20kHz sampling) occur due to low frequency components

and may be clasified as noise. Therefore, the synthesis waveshape

for codeword 28 is shown to be a square wave of 40 samples. However,

this waveshape, when implemented in a TES coder by King and Gosling,

had zero amplitude. Figure 7.2 shows the coding matrix for the 28

codeword alphabet. This diagram also highlights the quasi-logarithmic

quantisation of the epoch durations described by King and Gosling.

The exception to this is the epoch duration of 0.05ms (1 sample)

which was signalled as an epoch of 0.1ms (2 samples). The codeword

numbers of figure 7.2 are positioned at the synthesis "co-ordinates".

For example, when an epoch of 0.75ms duration and 3 minima is detec­

ted codeword 12 is transmitted. On receiving this codeword the

receiver synthesised an epoch of 0.85ms duration with 2 minima.

7.3 TES Coder : Al-Doubooni

Al-Doubooni's TES coder [39] differed from that originally

developed by King and Gosling. As described in chapter 2, mapping of

the quantised time and shape descriptors onto a reduced alphabet was

excluded and the amplitude information was communicated on an epoch

to epoch basis, rather than after every eight epochs. To reduce the

effects of background noise and the data required for encoding per­

iods of silence, symmetrical thresholding of the speech signal was

applied. Epochs with a peak magnitude less than the threshold level

- 237 -

were assigned a zero valued peak magnitude. A succession of such

epochs were combined to form a single epoch of zero magnitude and

duration equivalent to the sum of the durations of those epochs

combined.

The epoch parameters 'transmitted* were : Epoch duration.

Number of minima and peak magnitude. Al-Doubooni employed the full

quantisation range for peak magnitude (0 to 511) and epoch duration

(1 to 2047 samples) encoding. Extra codewords were required to

signal the extrema information.

To implement such a coder, the real-time channel software

required alterations to accommodate a data frame comprised of one

amplitude codeword and one tes-codeword. Although Al-Doubooni trans­

mitted extrema information when synthesising the speech signal a

half waveform with either one or three extrema was used. Thus, in

the real-time system only two stylised waveshapes were required.

These are given in figure 7.3.

Due to the symmetrical thresholding, epoch durations of the

order of 0.1ms (2000 samples) were possible in the simulation algor­

ithm. To encode epochs of such duration in a real-time system would

involve excessively large alphabets and system delay (since the min­

imum system delay must be equal to the largest epoch duration). To

overcome this, all epoch durations between 0.05 and 1.95ms (1 to 39

samples) inclusive were considered valid. Any single epochs of a

duration greater than 1.95ms (39 samples) were classified as silence

and represented by a single codeword representing an epoch of 2.0ms

duration (40 samples) and zero amplitude. To preserve polarity, the

- 238 -

number of epochs combined by the symmetric thresholding was restric­

ted to odd values. When the sum of the epoch durations of the comb­

ined epochs, Tj., was greater than 1.95ms, a codeword representing

an epoch of 2.0ms and zero amplitude was transmitted and T(. was set

equal to T̂ . - 2.0ms. Thus, time warping was not introduced by this

technique and the excessively large epochs produced by Al-Doubooni's

simulation algorithm did not occur.

In the simulation algorithm the number of extrema were sig­

nalled for all epoch durations. However, epoch durations of 0.05

and 0.1ms (1 and 2 samples, respectively) may only be represented by

half waveforms with one extreme. Since the synthesis routine requir­

ed only one of two waveshapes the represention of extrema information

required only one bit codeword.

The digital voice link of chapter 2 was developed for the

transmission of two independant codewords. Significant software

alterations would have been necessary for the transmission of amp­

litude information, epoch duration and the number of extrema. It

was therefore chosen to combine the extrema and epoch duration infor­

mation to prevent the need for software alterations. To represent

all valid epochs 2 codes were required for the represention of epoch

durations of 0.05 and 0.1ms, each of the epochs in the duration range

of 0.15 to 1.95ms inclusive, may be represented by 2 codewords per

epoch (either a single or multiple extrema synthesis waveform) and

one codeword to represent epoch duration of 0.2ms was required.

Therefore, to implement a real-time equivalent of Al-Doubooni's TES

coder an alphabet of 77 tes-codewords was required for the coding

- 239 -

matrix. This is given in figure 7.4. As in Figure 7.2 the codeword

numbers of figure 7.4 are positioned at the synthesis co-ordinates.

7.4 System Considerations

The performance of a real-time digital voice transmission

system depends upon transmission rate, length of transmitter (Tx.)

and receiver (Rx.) buffers and the overall system delay introduced

by the buffer arrangment. Operating at modest transmission rates

with finite buffer lengths and system delay, which enable effective

two way communications, will inevitably introduce buffer overflowing

and underflowing, causing further distortions which degrade the

speech quality.

(i) Buffering

Figures 7.5(a) and (b) illustrate the variations in source

symbol generation rate for two utterances possessing widely different

characteristics. To produce these figures the symbol rate was de­

fined over a period of 5ms and plotted against time. The speech

signal had a bandwidth of 0.1 to 4.5kHz.

These utterances were characterised by an approximately uniform

mean symbol generation rate in the range 0.5 to 1.5 ksymbols/second

for the majority of the time, which corresponds mainly to voiced

sounds, while sustained bursts of high generation rate occurred due

to unvoiced sounds. Constant rate transmission of the symbols

therefore required buffering to smooth out the fluctuations in

— 240 —

generation rate.

The buffer structure employed in the simplex digital voice

channel was such the transmitter (Tx.) and receiver (Rx.) buffer

lengths were defined by the maximum number of codewords the buffers

were capable of storing, and not the maximum number of bits. There­

fore, if the buffers employed in each coder were of equal lengths

(in the sense of the number of codewords they were capable of stor­

ing) then the maximum number of data frames which may be stored in

Al-Doubooni*s coder (hereafter referred to as ADcoder) will be grea­

ter than in King and Gosling's coder (hereafter referred to as KGco-

der). However, the data frames stored in the buffers of the HScoder

represent more epochs than the data frames stored in the buffers of

the ADcoder. Using the same argument, if the length of the buffers

were specified in bits then again the ADcoder would be capable of

storing more data frames than the K3coder but, the data frames stored

in the K3coder would represent a greater number of epochs and there­

fore a greater period of time (segment of speech).

Since buffers of the same length (whether defined in terms of

data frames, codewords or bits) were capable of storing codewords

which represent segments of speech of differing lengths, so the rates

at which the Tx. buffers filled, for the same segment of speech,

also differed. This implied that the point at which Tx. buffer over­

flow became imminent would differ in the ADcoder and R]coder. Al­

though the mechanisms for Tx. buffer overflow managment were identical

in each coder, its interaction occurred at different points within the

speech signal. Therefore, the auditory effects would be dissimilar.

- 241 —

As stated earlier, the data frames employed by Al-Doubooni

differed from that originally specified by King and Gosling. To re­

iterate, Al-Doubooni structured a data frame employing one 9 bit

amplitude codeword and one 7 bit tes-codeword (Coded Shape Descrip­

tor), a total of 16 bits per data frame. King and Gosling utilised

one 8 bit amplitude-codeword and eight 5 bit tes-codewords, a total

of 48 bits per data frame.

If N data frames were to be discarded to prevent buffer over­

flow, then a total of 16.N bits (N tes-codewords) in the ADcoder, or

48.N bits (8.N tes-codewords) in the R]coder, would be discarded.

To discard a set number of data frames for the prevention of Tx.

buffer overflow results in a greater number of tes-codewords being

discarded in the HGcoder than in the ADcoder. Therefore, a larger

segment of speech is discarded by the Rlcoder than the ADcoder. If

the discard were conducted in terms of bits then, 3 data frames of

the ADcoder must be discarded for each data frame discarded by the

HGcoder. However, once again more epochs are discarded by the HGco­

der than the ADcoder.

From the above it was clear that, even in the ideal situation

of distortionless transmission within both coders, for the storage

of either an equal number of codewords or data frames within each

coder buffers of different lengths were required in each coder.

This situation occurred because the structure of the buffers in the

digital voice channel were word-storage orientated. To specify

buffers of different lengths in each coder implied different dura­

tions of transmission delay.

- 242 -

Only if the buffer lengths were defined in bits would each

coder have identical values of system delay. However, in this situa­

tion they had different characteristics since they were capable of

storing different quantities of dataframes/codewords.

The implementation of the coders was to be bit orientated since

each coder was to be studied using various serial bit transmission

rates. It was therefore decided to specify the length of the buffers

and the extent of the data discarded/repeated to prevent Tx. buffer

overflow/underflow, in bits. However, due to differing lengths of

codewords in each coder identical values of Tx. and Rx. buffer len­

gths could rarely be achieved.

(ii) Transmission Delay

Time Encoded Speech involves the coding of variable-rate source

signals into constant-rate signals for transmission. Buffer storage

at transmitter and/or receiver is required to permit this "variable-

rate to constant-rate" transformation. As a result, delays are

introduced into the communication process. This form of delay is

commonly referred to as Transmission Delay.

The mechanisms involved, the influences of buffer size and the

delays associated with TES systems were described by Turner et al

[34], who concluded that "fairly long delays (of the order of two

seconds round trip delay) may be involved in the distortionless trans­

mission of speech encoded using information about the waveform seg­

ments linking successive real zeros from speech signals". Extending

— 243 —

this analysis Mason and Balston [35] proposed a modest increase (by a

factor of 1.5 to 1.9) in transmission rate over the average source

generation rate for the distortionless transmission of time encoded

speech with a tolerable transmission delay of 200ms (400ms round

trip delay). Turner et al [36] derived explicit expressions for the

limiting delay in time encoded speech type systems operating at data

transmission rates higher than the average rate at which the infor­

mation is produced by the variable-rate source. However, King and

Holbedhe [37] offered experimental evidence which indicated that

transmission delays in time encoded speech may be reduced an order

of magnitude by utilising sub-optimum bounded entropie codes in

place of constant length codes.

A number of researchers have studied the effects of delay upon

voice transmission. Krauss and Bricker [94] had male and female

subjects converse and solve puzzles over circuits with round trip

delays of zero, 600ms and 1800ms. Measurements of word counts and

subjective opinions indicated no significant differences between

zero and 600ms delays, but the 1800ms delay caused an increase in

reports of "difficulty in communicating due to the circuit".

Klemmer [95] found that users were very seldom disturbed by

delays of 600ms and 1200ms. These studies appeared to indicate that

subjects were generally unaware of, and undisturbed by, round trip

delays of upto 1200ms.

Transmission delay is a highly contentious subject in the field

of communications. The contention is, in the main, due to the tech­

niques utilised for the testing of telephonic systems. The majority

— 244 —

of results presented are based upon "subjective opinions".

The previous discussion of buffering highlighted the fact that

the codewords in the two coders were of different bit lengths and

that the number of codewords which constituted a data frame were not

always the same. Since the buffers of the coders were word-storage

orientated the buffer lengths could not be precisely specified in

bits. Instead they were specified to a length which enabled the

storage of an integer number of codewords.

For many data frames and codewords implemented it was imposs­

ible to define the transmission delay precisely in each coder.

Therefore, the delay nearest to 300ms (or whatever value) was util­

ised.

To implement the real-time algorithms presented in this thesis,

upon the simplex digital voice channel, it was chosen to employ a

transmission delay of the order 300ms (equivalent to round trip delay

of the order of 600ms) since the majority of researchers dispute

the results obtained for delays greater than this figure.

(iii) Transmission Rate

The subject of digital speech encoding and bit-rate compression

has been one of considerable interest in recent years. Attention has

focused strongly on bit rates in the range of 9.6 to 16kb/s for applic­

ations where good "communications quality" and robustness across a

wide range of background noise conditions and speaker variations is

required [96]. The bit rate of 9.6kb/s appears, at present, to be

- 245 -

about the lowest practical rate at which "communication quality" and

robustness can be readily achieved. Below 9.6kb/s presently known

techniques have a noticable synthetic quality and are considered

more fragile to differences in speakers and background conditions

[96].

Although this thesis investigated data reduction techniques for

TES it has not strived to develop the ultimate TES coder. In fact,

the real-time implementations of Al-Doubooni and King and Gosling

coders still require extensive research before they may be claimed

to be in any sense the "optimum" TES coder.

The MIPROC system, upon which the real-time digital voice

channel was implemented, has several pre-set clock signal generators

which may be employed for transmission timing. The pre-seTt clock

rates are 5, 10, 15 and 20kb/s.

Since the algorithms implemented in Real-time were not "opti­

mum" it was chosen to employ the pre-set clock rates of 10 and 15kb/s

for the transmission timing. In some instances a transmission rate

of 4.8kb/s was inspected.

7.4.2 System Parameters

Table 7.1 presents the system parameters utilised for the real­

time implementation of Al-Doubooni’s and King and Goslings coder.

This table highlights the differences in the size of data frame

employed in these coders. Because the data frames were of different

- 246 -

sizes so the filler-words, which prevent Tx. buffer underflow, also

differed since each filler-word had to have the same number of bits

as the complete data frame.

The extrema sensitivity parameter of the extrema detection

algorithm was set at 44dB below the maximum possible peak magnitude,

in all the coders developed. This parameter, which is described in

chapter 2, eliminated the very small extrema generated by either low

level noise or last bit uncertainty within the analogue-to-digital

converter.

7.4.2 Discussion

From figures 7.5(a) and (b) it is observed that the rate of

generation of epochs for undifferentiated bandlimited speech may

vary from as low as 200 epochs/second, which results from voiced

segments of speech, upto 8000 epochs/second which occurs due to

bursts of unvoiced speech. The speech employed to produce the plots

of figures 7.5(a) and (b) was bandpass filtered from 0.1 to 4.5kHz.

To impose the telephone bandwidth of 0.3 to 3.4klfe would reduce the

upper generation rate to approximately 5000 epochs/second. Convers­

ely, the lower generation rate would be increased to approximately

800 epochs/second.

To signal epoch information the ADcoder utilised 16 bits per

epoch. Therefore, the rate at which symbols (bits) were generated

varied from 12.8kb/s upto 80kb/s. Clearly, with transmission (Tx.)

buffer delays of the order of 100ms and serial transmission rates of

- 247 -

10 or 15kb/s, Tx. buffer overflow was a frequent event in the ADcoder.

Increasing the system buffer delay reduced the extent of buffer

overflow. However, distortion began to arise due to the buffer

managment dicarding/repeating technique. As the length of the Tx.

buffer was increased the condition arose where the Tx. buffer was

able to store a small segment of voiced speech and a complete segment

of unvoiced speech. At this point the Tx. buffer began to overflow

and data was discarded. Because of the discarding of data by the

Tx. buffer the Rx. buffer began to underflow. The last M data frames

within the Rx. buffer were therefore repeated to prevent total Rx.

buffer underflow. However, the repeated segment represented a voiced

segment of speech and the repetition of such a segment produced a

grossly distorted waveform.

The situation also arose where the TES codes repeated repres­

ented a segment of inter-word silence. The repetition of such seg­

ment also resulted in a significant loss of input speech.

The HGcoder employed 48 bits to signal information for a group

of eight epochs. Therefore, the symbol generation rate for this

coder varied from 4.8kb/s upto 30kb/s. The extent of Tx. buffer

overflow was significantly less than that of the ADcoder for the same

parameters. If the system delay was increased such that the occurr­

ences of Tx. buffer overflow were reduced until a condition of distor­

tionless transmission was achieved, the audible effects encountered

with the ADcoder did not occur.

- 248 -

7.5 Amplitude Signalling

The results of the investigations reported in chapter 3 indic­

ated that amplitude information of the order of one bit per epoch

produced speech of acceptable quality. The speech of highest intell­

igibility and acceptability was produced utilising the following

techniques:

(a) Employing 2 bit Differential Pulse Code Modulation

(DPCM) for successive epoch amplitude parameters.

(b) Signalling the amplitude parameter for a group

of N epochs.

Implementation of the 2 bit DPCM of the epoch peak amplitude

(hereafter referred to as amplitude) required substantial software

changes within the analysis and synthesis routines of the real-time

algorithms. The alterations required within the ADcoder were relat­

ively straight forward and a data frame consisted of a 2 bit ampli­

tude-codeword and a 7 bit tes-codeword. To retain the data frame

structure of the HGcoder would have significantly increased coder

complexity and therefore reduced the viability of TES. It was there­

fore chosen to employ the same data frame structure as utilised by

the ADcoder. Thus a data frame consisted of a 2 bit amplitude-

codeword and a 5 bit tes-codeword.

The signalling of the amplitude parameters for groups of epochs

involved detection, over N successive epochs, of the maximum epoch

amplitude as well as the individual epochs amplitudes. Each epoch

within the group was normalised such that the individual epochs

- 249 -

amplitudes were equal to that of the maximum amplitude of the group.

The signalling of amplitude information over groups of epochs

was precisely what King and Gosling originally proposed. The only

difference being the group size. In the investigations of chapter 3

an 11 bit amplitude-codeword was employed for signalling the ampli­

tude of 11 epochs. King and Gosling utilised an 8 bit amplitude-

codeword for a group of 8 epochs. However, the intrinsic information

differs. To employ an 8 bit codeword, instead of an 11 bit codeword,

results in the amplitude information being coarsly quantised which

increases the quantisation noise. However, to code a group of

eight epochs instead of eleven reduces the extent of the amplitude

distortions introduced by normalisation of each epoch within the

group to the maximum value within the group. The investigation

reported in chapter 3 indicated that it was difficult, but not im­

possible, to discriminate between algorithms using groups of 8 and

11 epochs. However, in those investigations a group size of eight

was equivalent to 1.37 bits of amplitude information per epoch.

The algorithms which incorporated amplitude signalling over

groups of N epochs were developed from the original HGcoder. Clearly,

no alterations were required for the inclusion of this technique

within the HGcoder. However, a threshold level was incorporated

within another version of this algorithm such that, if the maximum

amplitude of the group of epochs, A^, was less than the threshold

level, then Aĵ was set equal to zero.

The data frames employed were: (a) one 8 bit amplitude-codeword

and eight 7 bit tes-codeword (for the ADcoder) and one 8 bit amplitude-

- 250 -

codeword and eight 5 bit tes-codeword (for the HGcoder).

7.5.1 System Parameters

The system parameters for the implementation of the ADcoder

and HGcoder with amplitude information signalled for groups of eight
epochs are presented in Table 7.2. From comparison of the parameters

for the coders employing the King and Holbeche coding alphabet (KHal-

phabet) of Tables 7.1 and 7.2 it is observed that they differ only in

the number of data frames manipulated by the buffer managers.

Although the number of codewords forming a data frame were the

same for each coder the number of bits per data frame differed. There­

fore, to ensure that the filler—word was unambiguously decoded by

the receiver of each coder, the filler-word was formed from four 16

bit words. Since the number of bits forming a data frame differed so

the number of data frames discarded/repeated by the buffer managment

software had to differ to ensure that the same quantities of data

were being discarded by each coder.

The system parameters for the coder which incorporated differen­

tial amplitude signalling are given in Table 7.3 which shows that,

for this particular coder, a filler-word of only 16 bits was required.

Due to the differing sizes of data frame 3 data frames were discarded

by the coder when Al-Doubooni's coding alphabet (ADalphabet) was

implemented compared with 4 data frames when KHalphabet had been

incorporated.

- 251 -

7.5.2 Discussion

The algorithms which employed amplitude signalling over groups

of 8 epochs yielded very similar bit generation rates to that of the

HGcoder of Table 7.1. The extent of Tx. buffer overflow experienced

with the original ADcoder was significantly reduced in the version of
Table 7.4 because the information employed for signalling epoch

amplitude had been reduced from nine to one bit per epoch. However,

the ADcoder of Table 7.2 yielded a greater bit generation rate than

that of the HGcoder.

The buffer managment technique of discarding and repeating data

frames created its own problems in the differential amplitude signal­

ling implementation. The differential step sizes were set at 42dB

and 20dB below the maximum possible peak amplitude. When an imminent

Tx. buffer overflow condition occurred, the buffer manager discarded

N data frames. At some time after this event the Rx. buffer reached

a condition of imminent underflow and the buffer manager repeated

the last N data frames. This technique had been sufficient for the

coders described so far. However, since this coder utilised differ­

ential amplitude signalling, the discard and repeat of the codewords

destroyed the amplitude sequence. This resulted in the incorrect

levels being synthesised and the speech synthesised was noisy and

unintelligible. If left sufficiently long enough, the system occas­

ionally recovered from this situation until the next discard/repeat.

This distortion was considered unacceptable and measures were

required to prevent this or to ensure a quick recovery. One tech-

- 252 -

nique would be to encode the amplitude information prior to trans­

mission. This would ensure that the discarding of data would not

affect the amplitude signalling. However, the point.in time, after

the Tx. buffer discard, at which the Rx. buffer repeats a segment

cannot be predicted. Therefore, the data transmitted cannot be appro­

priately adjusted to prevent a discontinuity of amplitude levels
caused by the repetition at the receiver.

It was chosen to employ a technique which ensured a quick recov­

ery from the effects of buffer overflow rather than attempt to adapt

the codes at such times. To do this, four different step sizes were

specified for the coder such that, the rate of decay of the synth­

esised speech was much greater than the rate of attack. The step

sizes for increasing the amplitude were 42dB and 20dB below the

maximum possible peak amplitude and the step sizes for decreasing

the amplitude were 36dB and 14dB below the maximum possible peak

amplitude.

When using these step sizes, if a discard/repeat was performed,

which totally corrupted the sequence for decoding, resulting in unin­

telligible speech, it was found that the speech level was quickly

forced to zero eliminating the disturbing audiable effects. The

algorithm also tended to recover quickly from this situation where

if the standard algorithm managed to recover, in general, it a signif­

icant period of time had elapsed before recovery.

This technique had two advantages. Firstly, instead of the

listener having to tolerate, sometimes quite loud, noise the level

was rapidly forced to zero. This produced a significant perceptual

- 253 -

effect upon the speech quality and intelligibility. Secondly, the

algorithm recovered from the disturbances introduced by the discard/

repeat mechanism.

7.6 Orthogonal Transformations

A maximum data reduction of 1.35:1 was achieved employing

Dominant Coefficient Retention within a Hadamard Transform (N = 16).

The resulting speech was intelligible but of moderate quality.

The speech synthesised from the Low-pass Sequency Filtered

Hadamard coefficients was of very good quality and intelligibility.

A maximum data reduction of 1.33:1 was achieved for N = 4. However,

analysis of this process (appendix 6) demonstrated that an identical

epoch duration sequence (to that output from the transform) was achie­

ved if the average of pairs of adjacent epoch durations was calcu­

lated and the original epoch durations were replaced with the average

value. This process yields a 2:1 data reduction in the epoch duration

sequence because only the average value need be transmitted. This

process also reduced the delay introduced by the transformation

from N epoch durations to two epoch durations, where N was the size

of the Hadamard transform, ie. by a factor of N/2.

The coded shape descriptors contain information concerning the

epoch shape as well as duration. To implement the transformation of

epoch duration only, within a real-time system, would have increased

the data required for the representation of epoch parameters within

the HGcoder. Significant software alterations and redesign of the

- 254 -

codeword alphabets would also have been necessary for such an imple­

mentation. It was therefore decided that the epoch duration and

shape information (extrema count) were to be 'transformed* simult­

aneously .

The pseudo-Hadamard Transform (here after referred to as Had-

amard Transformation only) yielded the greatest data reduction for

the least system delay and complexity of implementation. This tech­

nique was therefore adopted rather than implementing a standard

Hadamard Transformation within transmitter and reciever.

Two algorithms were developed for the inclusion of Hadamard

Transformations of the epoch duration and extrema count. The first

algorithm developed utilised the structure of the ADcoder. A data

frame within this coder, the Hadamard Transform ADcoder (HTADcoder),

consisted of two 9 bit amplitude-codewords and one 7 bit tes-codeword.

To incorporate such a data frame the Receiver Interrupt Service and

Analysis and Synthesis routines of the ADcoder were altered to develop

the HTADcoder.

These alterations were necassary because the HTADcoder trans­

mitted two consecutive amplitude-codewords per tes-codeword while

the ADcoder transmitted one amplitude-codeword per tes-codeword. If

the KHalphabet was utilised within the HTADcoder algorithm then the

data frame consisted of two 8 bit amplitude-codewords and one 5 bit

tes-codeword.

The second algorithm was developed from the IGcoder. Once

again the majority of software changes were conducted within the

- 255 -

analysis and synthesis routines. However, a data frame within this

coder, the Hadamard Transform KEcoder (HTKÎcoder), was comprised of

one 8 bit amplitude-codeword and four 5 bit tes-codewords. If the

ADalphabet was incorporated within the HTICcoder then one 8 bit

amplitude-codeword and four 7 bit tes-codewords formed the data

frame.

7.6.1 System Parameters

The system parameters for the HTADcoders implemented are pres­

ented in Table 7.4. The filler-word for both coders was 32 bits

(two 16 bit words). The number of data frames discarded/repeated by

the buffer manager were 4 (for the HTADcoder with ADalphabet) and 6

(for the HTADcoder with ^Halphabet). This represents 100 and 126

bit discarded/repeated, respectively. As in the case of the coder of

section 7.5, to discard an equal number of bit from each coder would

have required extensive data to be discard which would have been

impractical.

The HTR3coder also employed a filler-word of 32 bits. These

coders signalled amplitude information for groups of eight epochs.

Comparing Tables 7.1 and 7.5 it is observed that the filler-word

required by the H T coder is half that for the R3coder. The data

required to form a data frame has been reduced by ratios of 1.5:1

and 1.7:1 when the coders include the ADalphabet and KCalphabet,

respectively.

— 256 —

7.6.2 Discussion

The symbol generation rate for each of the algorithms of sec­

tion 7.6 was less than that of the algorithms of section 7.2, irres­

pective of which coding alphabets were employed. This was a result

of the reduced data requirement for each epoch. The HTADcoder with

ADalphabet required 12.5 bits for signalling epoch information comp­

ared with 16 bits required by the ADcoder. If the KHalphabet was

implemented in the HTADcoder then the bit requirement per epoch was

further reduced to 10.5 bits.

The HTHJcoder with KHalphabet transmitted 28 bits per data

frame which was equivalent to 3.5 bits per epoch compared with 48

bits per data frame (6 bits per epoch) for the KJcoder. If the

ADalphabet was implemented then the data frame was 36 bits (4.5 bits

per epoch).

Table 7.4 indicates that the prevention of Tx. buffer overflow/

Rx. buffer underflow in the HTADcoder involved the discarding/repeat­

ing of 4 data frames when the ADalphabet was utilised and 6 data

frames for the HTADcoder with the KHalphabet. In the HTADcoder a

data frame consisted of two amplitude-codewords and one tes-codeword.

However, the tes-codeword represents two epochs and therefore the

discard/repeat of 4 or 6 data frames actually involved 8 or 12 data

framesof an ADcoder, repectively.

The HTADcoder (of Table 7.4) employ 10.5 bits per epoch (for

the application of the KHalphabet) or 12.5 bits per epoch (for the

application of the ADalphabet) compared with 16 bits in the ADcoder.

- 257 -

Therefore, for every data frame stored in the Tx. buffer of the

ADcoder 1.3 data frames, when utilising the ADalphabet, or 1.5 data

frames, for the application of the IGalphabets, were stored in a

HTADcoder Tx. buffer which was of the same bit length to that of the

ADcoder.

Table 7.5 shows that the prevention of Tx. buffer overflow/Rx.

buffer underflow within a HTKGcoder involved the discarding/repeating

of 3 data frames when ADalphabet was utilised and 4 data frames for

the implementation which employed the KHalphabet. In this coder a

data frame consisted of one amplitude-codeword and four tes-codewords.

A tes-codeword within a HTKGcoder represented two epochs and there­

fore, the information contained in a HT M3 coders data frame was equal

to that of a KGcoders data frame.

The HTH3coder (of Table 7.5) employed 3.5 bits per epoch (for

the application of the HSalphabet) or 4.5 bits per epoch (for the

application of the ADalphabet) compared with 6 bits in the ADcoder.

Therefore, for every data frame stored in the Tx. buffer of the

M3 coder 1.3 data frames, when utilising the ADalphabet, or 1.7 data

frames, for the application of the KHalphabet, were stored in a

HTKGcoder Tx. buffer which was of the same bit length to that of the

ADcoder.

The above, indicates that the HTADcoder and the HT M3 coder

store a greater number of epochs than the ADcoder and M3 coder, respec­

tively, for buffers of the same bit lengths. Therefore, the rate at

which the Tx. buffer of the Hadamard Transform coders reached a cond­

ition of imminent overflow differed to that of the standard coders.

- 258 -

The perceptual effects Introduced into the synthesised speech by Tx.

buffer overflow/Rx. buffer underflow within the coders utilising

Hadamard Transformations were therefore different to those of the

ADcoder and M3 coder.

7.7 Informal Subjective Appraisal

In section 7.4 it was indicated that the TES and TES related

real-time coders presented within this chapter, in the opinion of the

author, are by no means the final versions and further research is

still required. Therefore, it would have been unjust to have con­

ducted quality and intelligibility assessments for each coder. How­

ever, having discussed the various coders it would have been equally

unjust not too have commented upon the present quality and intelligi­

bility achievable at set transmission rates and delay. The system

parameters utilised in these assessments have been specified in

Tables 7.1 to 7.5.

In the following comments, unless otherwise specified, the

transmision (Tx.) delay was approximately 300ms.

With a Tx. rate of 15kb/s the speech output from the ADcoder

sounded very granular with spasmodic clicking. In the female seg­

ments of speech this effect was more severe and some truncation of

words was detected. The female spoken fricative of the word 'Yes*

was very distorted, mainly by Tx. buffer overflow/Rx. buffer under­

flow, which resulted in the 'Yes' sounding like 'Yeah*. Other utter­

ances such as the word 'Newcastle* sounded very gargled and the 'ch*

- 259 -

of 'Charles* was distorted such that it sounded very "squeaky".

Overall, the speech was of moderate to fair quality, intelligible

and speaker recognition was possible.

When the Tx. rate was reduced to lOkb/s the fricatives of the

speech output were very distorted. Clearly, buffer underflow/over­

flow was playing a significant part in the introduction of distor­

tions. The speech output was not considered to be of lower quality

than that produced by the coder at 15kb/s but occasionally sounded

slightly synthetic.

At a Tx. rate of 15kb/s the speech output from the MGcoder

sounded very synthetic, almost musical, and was of low quality and

intelligibility. Because the speech sounded so synthetic in the

subjective listenings no differences in quality and intelligibility

were readily perceived for a Tx. rate of lOkb/s.

For a Tx. rate of 15kb/s, the algorithm which employed ADalpha­

bet and encoded amplitude information over groups of eight epochs

was found to produced a higher level of background noise yet much

cleaner speech to that of the ADcoder. Utterances sounded more

'crisp* with only the occasional 'clicking*. When the Tx. rate was

set at lOkb/s the speech took on a more granular quality with 'click­

ing* occurring more frequently than at 15kb/s. The quality and

intelligibility of this coder at either 10 or 15kb/s was considered

to be superior to that of the ADcoder and vastly superior to that of

the M3 coder for a Tx. delay of 300ms.

The speech output from the algorithm employing differential

— 260 —

amplitude signalling and the KHalphabet was of similar quality and

intelligibility to that of the M3 coder at both 10 and 15kb/s.

For the application of the ADalphabet in this coder, at 15kb/s,

the background and inter-word noise was found to be very prominent

and distracting. The speech was "crackly" which was found to inter­

fere/interupt the utterance. The speech was very distinct and of

fair quality and intelligibily. For a Tx. rate of lOkb/s the back­

ground and inter-word noise was again very prominent and the 'crack­

ly ' sound had increased. This caused a subjective reduction in

quality and intelligibility. The increase in speech distortion was

attributed to an increase in the frequency with which the buffers

were over flowing/under flowing.

: There were no obvious differences in quality/intelligibility of

the speech output by the HTADcoder with the KHalphabet and that

output from the H3coder at data Tx. rates of 10 or 15kb/s. The

speech sounded synthetic and was of low intelligibility.

With the ADalphabet in the HTADcoder at 15kb/s the background

noise was quite loud and the female utterances were not as distinct

as the male. The speech output was of fair quality and intelligi­

bility. When the Tx. rate was lOkb/s, the background noise sounded

discontinuous, as though it was being interrupted. The speech was

slightly 'garbled’ during some utterances and was not as clear as

that for 15kb/s data transmission. The male uttered 'Yes' was very

indistinct and the female version was of similar quality. The

speech output was considered to be of moderate to fair quality and

intelligibility.

- 261 —

The HTADcoder with the ADalphabet was assessed for a data Tx.

rate of 5kb/s. For Tx. delays of both 300 and 600ms the background

noise was found to be very broken up and of a lower level to that for

lOkb/s transmission. The speech output with a delay of 300ms was of

low quality and intelligibility because it sounded very synthetic.

For a delay of 600ms the speech sounded slightly less synthetic but

was still of low quality and intelligibility.

The final group of algorithms were the HTHScoders. Once again,

with the KHalphabet implemented the quality was only marginally bett­

er than that of the HScoder, for Tx. rates of 10 and 15kb/s«

With the ADalphabet implemented in the HTH3coder the speech

produced was slightly gargled and some words were not very clear

because of the ’crackly' noise inparticular, the 'c' of the words

'centre' and 'code' were very distorted by this. For a Tx. rate of

lOkb/s similar effects were heard and it was difficult to distinguish

between the speech output at lOkb/s and 15kb/s. The speech quality

and intelligibility at both data rates, was considered to be fair.

At a Tx. rate of 5kb/s and delays of 300 and 600ms the speech

was 'crackly' with the occasional 'clicking'. This caused the speech

to be subjectively perceived as of lower quality to that produced at

10 and 15kb/s. When the delay was 300ms the speech was considered

to be slightly clearer than that output for a delay of 600ms.

— 262 —

7.8 Summary

In this chapter the real-time implementation of the Al-Doubooni

and King and Gosling TES coders have been discussed. Also discussed

were the TES related coders which have incorporated techniques for

reducing the data required for signalling of epoch amplitude and

duration information.

It was discovered that the subjective quality of the speech

output from the Al-Doubooni TES coder was superior to that output by

the King and Gosling TES coder at all Tx. data rates with a Tx.

delay of 300ms. In all the real-time applications which employed

the King and Holbeche coding alphabet the speech output had a very

synthetic quality. The algorithm which synthesised the speech of,

subjectively, the highest quality and intelligibility at 10 and

15kb/s was the Al-Doubooni coder with amplitude information signalled

for groups of eight epochs. This technique yielded a 2:1 data

reduction to that required within the original Al-Doubooni coder.

The coders which included Hadamard Transformations of the epoch

duration sequence and the Al-Doubooni coding alphabet produced speech

of moderate to fair quality and intelligibility at Tx. rates of 10

and 15kb/s and Tx. delay of 300ms. With the King and Holbeche coding

alphabet implemented the speech output sounded synthetic and was of

very poor quality and intelligibility.

- 263 -

li<

îl

S 4 3 • S - g (0 - a

T3 w 0 H 4J » 0 -H
5- •H U •H V T3 3 ^

S
.0

0) 0 3
U-4 0 a

q>
•t)

%W 0
0

0 01 0 X
0 0 0 10 0

5

Z u • 0)

5 ^ "
z g

k
tâ

>>
(0

.a
>> c ^ 0)

û Q
G

> m w w

•H >> IM 8 0^ w
<u 8 (Q (M B (d

D 3 • 60G g OJ PQ A X -H
<9 a H 4J

en u 0)
H X X 0)

H Pd
1

!l 2 1

£ s
et! 4J

a
OJ

1 •3
0

(0
0)
w

4) S
0)

.£
W
0

0 G
CQU <0

0) G CN0
a
CQ cd CU 0G G
eu

a
8 0) «
0) 0 .

a
>\ ■H 0

en

4)

ctf
H

— 264 —

O

îl
“ I

a «->00

II Is 8 >
B rH25

: I

- 265 -

f

1 coCD

LD

<-

W

CO

•3Cca
00c•H
0) .

m
y>oU-l jj(Um - JO
<Ü - 3eu Æco CLtH00 3
Q)
> 60CO C) - •H*3'3 O0) U00■H 31-4 JC>\ ÜJJ 300 J2r4co OCM X

CNI e n

(Uw
3ùo•H

0 0

- 266 -

sil
a-05

05

10

10

13

17

1-5

22

20 28

MINIMA PER EPOCH

14

18

23

12

15

16

19

20

24 25

21

26

27

Figure 7.2 : King and Holbeche coding matrix for a

real-time implementation.

- 267 -

f

-4

ItH
<
uou-t
003a.3JCm3>33
*333
>%JJ

CO

ONm

3-o
3Æ
CL

60C•H*oou
cooX)DoQ

en

3ki3
60

- 268 -

c/îE

Lü GC

0*05

0 5

10

1-5

20

MINIMA PER EPOCH

1

2

3 4

.

. •

• 1 •
1

1

• •

• .
71 72

73 74

75 76

77

Figure 7.4 : Al-Doubooni coding matrix for a

real-time implementation.

- 269 -

o<uco
caI—IO•i
co

(Uuca
ca

c
(Uo
o
S
en

-..fer av<a--y
A n

9 0

a-Q

7-0

6 *0

5*0

f» 0
3-0

2*0
1*0

2*0 sec
0*30*2 Time

ü 9-0 0) ca^ 8-0

6-0

co
^ 1*0
c01
C5

W

sec1-40*2 0-4 0*6 0*3
Time

Figure 7.5(a),(b) : Symbol generation races for the two
utterances (After Senevlratne [97])

- 270 -

Chapter 8

Conclusions and Recommendations

For Further Research.

8.1 Conclusions.

This thesis has presented:

a) The development of a simplex digital voice channel which is

a powerfull tool for the study of speech coders, and in

particular TIME ENCODED SPEECH (TES), in real-time.

b) A study of techniques for the pre-processing of TES param­

eters for the enhancement of other data reduction techniques.

c) Investigations into techniques for achieving a reduction in

the information requirements for the signalling of TES param­

eters.

and d) The real-time implementation of TES and TES related coders

for various transmission bit rates and delays.

The real-time studies of chapter 3 have indicated a minimum of

one bit per epoch as sufficient for conveying amplitude information

for the synthesis of speech of acceptable quality. Diagnostic Rhyme

Tests (DRT) yielded scores of the order of 88% intelligibility for

algorithms which utilised one and two bits of amplitude information

per epoch. The DRT scores, in both cases, were appreciably less

than for the unprocessed control PCM samples. Direct Comparison

Tests did not highlight any clear preference between the two coding

techniques assessed in the DRT's.

These investigations were conducted such that only the ampli­

tude parameter was distorted, all other TES parameters were undis­

torted and buffering was not incorporated. Therefore, it must be

concluded that the true intelligibility from a TES system will be

- 271 -

dependant upon the amplitude encoding/decoding technique as well as a

number of other features of the TES system.

The simulation investigations into median and moving average

smoothing algorithms for the pre-processing of the epoch duration

sequences demonstrated that only modest levels of smoothing may be

applied to such sequencies before significant degradation in the

speech quality occurs. Therefore, it must be concluded that the

application of epoch sequence pre-processing which involves simple

numerical smoothing, is of little value for it appears to degrade

the quality of the synthesised speech in an unacceptable manner.

The simulation investigations into extremal coding have demon­

strated that the restricted distance measure (r.d.m) extremal coding

of the epoch durations (EXTRl) can yield data compression ratios of

1.36:1 (with an r.d.m of 3) and 1.33:1 (with an r.d.m of 7). The

synthesised speech was informally judged to have retained a high

degree of intelligibility but varied in quality. The character­

istics of speakers, in particular the male utterances, were found to

have altered.

When the peak magnitude sequences were pseudo-extremally coded

(EXTR2) overall data compression ratios of 1.61:1 (with an r.d.m of

3) and 1.65:1 (with an r.d.m of 7). However, a feature of this form

of coding was the "zeroing" of epoch peak amplitudes which manifested

as silence in the synthesised speech. The overall quality was judged

to be inferior to that produced from the output of EXTRl.

The investigations, which were conducted in simulation, into

- 272 -

Orthogonal Transformations of the epoch duration sequences yielded a

maximum data reduction of 1.35:1 which was achieved employing

Dominant Coefficient Retention in a 16 point Hadamard Transform.

The resulting speech was intelligible but of moderate quality.

The speech synthesised from the Low-pass Sequency Filtered

Hadamard coefficients was of high quality and intelligibility. A

maximum data reduction of 1.33:1 was achieved for N = 4. However,

analysis of this process demonstrated that an identical epoch dura­

tion sequence (to that output from the transform) is achieved if the

average of pairs of adjacent epoch durations was calculated and the

original epoch durations were replaced with the average value. This

process yielded a 2:1 data reduction in the epoch duration sequence

because only the average value need be transmitted. This process

also reduced the 'transformation' delay from N epoch durations to

two epoch durations, where N is the size of the Hadamard transform,

ie. by a factor of N/2.

The real-time implementation of the Al-Doubooni and King and

Gosling TES coder were presented in chapter 7. Also discussed were

the TES related coders which have incorporated techniques for reduc­

ing the data required for signalling of epoch amplitude and duration

information.

It was found for the system delays under investigation, viz.

600ms round trip delay, that the subjective quality of the speech

output from the Al-Doubooni TES coder was superior to that output by

the King and Gosling TES coder at all data Tx. rates. In all of the

real-time applications which employed the King and Holbeche coding

- 273 -

alphabet the speech output had a very synthetic quality. The algor­

ithm which synthesised the speech of, subjectively, the highest qual­

ity and intelligibility at 10 and 15kb/s was a modified Al-Doubooni

coder with amplitude information signalled for groups of eight epochs.

This technique yielded a 2:1 data reduction to that required within

the original Al-Doubooni coder.

The coders which included Hadamard Transformations of the epoch

duration sequence produced speech of moderate to fair quality and

intelligibility.

From the research presented in this thesis it may be con­

cluded that data reduction is possible in low complexity TES systems

without producing speech of unacceptable quality. However, it is

clear from the real-time investigations that further work is required

in the development of TES algorithms which are less vulnerable to the

mutilations inherent in real-time implementations before the quality

of speech output in simulation exercises may be achieved in a real­

time TES coder.

8.2 Recommendations for Further Research.

During the course of this thesis a number of aspects of Time

Encoded Speech have been investigated. However, it is the authors

opinion that further work is required in the following areas:

(1) The three main attributes of a TES system are: amplitude, epoch

duration and shape. The amplitude information has been investi­

gated in real-time while preventing the distortion of the other

— 274 —

attributes or the introduction of buffering and its associated

problems. The remaining attributes also need to be studied

independatly in real-time. The isolation of the results of all

three investigations may aid the development of a superior coder

to that of the present art.

(2) A powerful tool is now available to the researcher in the Time

Encoding field, namely the simplex digital voice channel des­

cribed in this thesis. Using this system, extensive studies of

buffer management stratergies may be conducted to assess the

effectiveness of, and distortion introduced by, such techniques.

This system may also be utilised for the instantaneous compari­

sons of stylised waveform segments for speech synthesis, applica­

tion of variable/run length coding, effects of system parameter

variations or the development of coding alphabets.

(3) Median and moving average filters have been seen to be of little

value when applied directly to the TES epoch duration sequences.

However, the selective application of this technique via an

"intelligent" algorithm may enhance its effectiveness and there­

fore be of interest for further work. Fricative segments of

speech have the greatest symbol generation rate and the smoothing

of such segments could enable more effective encoding.

(4) During unvoiced speech the spectral descriptors are slowly vary­

ing and only require updating over periods of the order of 20ms.

The incorporation of a repeat codeword and an intelligent inser­

tion routine may be used for the repetition of a 3ms segment of

unvoiced speech. This could achieve data reductions of the order

- 275 -

of 6:1 and assist in the reduction of transmission buffer over­

flow. Such a method would also require a technique within the

receiver for the prevention of the disturbing effects which

result when a segment of speech is repeated several times.

- 276 -

APPENDICES

Appendix 1

Listing of Commented Mnemonic Code for

Transmitter and Receiver Algorithms

Hardware Data and Peripheral Codes

Analodue-to-DiSital Converter(sidnals)
Board number = 00575
Operational model 16 sinSle ended inputs

12 bit resolution
-100 to +100 input ranse
2's complement representation

a d m u l t : ♦ EQ *30 fMultiplexer channel
ADCTRL: .EQ ♦ 31 ; Control channel
a d s t a t : .EQ ♦ 32 TStatus channel
a d i n : ♦ EQ ♦ 33 rData channel
»
i Parallel Interface Card
T Board number = 00403
T
p a i n : *EQ ♦CO ; Input channel A
p a o u t : ♦ EQ ♦Cl ; Output channel A
p a s t a t : ♦ EQ ♦ C2 TStatus channel A
p a c t r l : ♦ EQ ♦C3 ÎControl channel A
p b i n : .EQ ♦C4 ? Input channel B
p b g u t : .EQ ♦ C5 rOutput channel B
p b s t a t : ♦ EQ ♦C6 rStatus channel B
p b c t r l : ♦ EQ • ♦C7 ÎControl channel B
r Hardware Multiplier Card
r Board number = 00581
MX: ♦ EQ ♦ AO fLoad X (no roundinS)
MXR: ♦ EQ ♦ A1 îLoad X (roundins)
m y : ♦ EQ ♦ A2 rLoad Y
MXYMS: ♦ EQ ♦ A3 îDump product (ms word)
MXYLS: ♦ EQ ♦ A4 y Dump product (Is word)
r Seria 1 Interface Card
r Board number = 00401
s i n : ♦ EQ ♦ 10 y input data
sour: ♦ EQ ♦ 11 y output data
s r s t a t : ♦ EQ ♦ 12 y receiver status
s r c t r l : ♦ EQ ♦ 13 y receiver control
STSTAT: ♦ EQ ♦ 14 y transmitter status
s t c t r l : ♦ EQ ♦ 15 y transmitter control
s b s t a t : ♦ EQ ♦ 16 y baud rate status
s b c t r l : ♦ EQ ♦ 17 ybaud rate control

- 277 -

Transmitter algorithm

ADVEA: ♦ DS ♦ 0 1
ADVEE: ♦ DS ♦0 1
ADVEX: ♦ DS ♦0 1
f

TXVEA: ♦ DS ♦0 1
TXVEE: ♦ DS ♦0 1
TXVEX: ♦ DS ♦ 0 1
LI : ♦ DC ♦0 to 100
Bi: ♦ DC ♦0 tOBOO
Ri : ♦ DS ♦0 1
wi: ♦ DS ♦ 0 1
, y
L2: ♦ DC ♦ 0 t0040
B2: ♦ DC to tocoo
R2: ♦ DS to 1
W2: ♦ DS to 1
l d : ♦ DC to t0002
b d : ♦ DC to tOOEO
p d : ♦ DS to 1
a d c h a n : ♦ DC to toooo
a d t r i g : ♦ DC to ticso
a d o f f : ♦ DC to toooo
y
PATRIOT ♦ DC to tooco
p b t r i g : ♦ DC to t0004
s t m a s k : ♦ DC to •I673B
y
so: ♦ DS to 1
SI : ♦ DS to 1
SSI : ♦ DS to 1
SMIN: ♦ DC to toooo
Dso: ♦ DS to 1
DSi : ♦ DS to 1
Dssi : ♦ DS to 1
DSMIN: ♦ DC to toooo
f

IS: ♦ DS to 1
MS: ♦ DS to 1
ic: ♦ DS to 1
Mc: ♦ DS to 1
A: ♦ DS to 1
AMAX: ♦ DC to t07FF
f

a c o d e : ♦ DC to y tOlOO
t c o d e : ♦ DC to y t0900

Îvolatile environment - ISRAD

» volatile environment ISRTX

y*** AD buffer lenSth ***
y** AD buffer start address
y AD buffer read pointer
y AD buffer write pointer
y*** TX buffer lensth ***
y** TX buffer start address
y TX buffer read pointer
yTX buffer write pointer
yNumber of FRAMES to be discar
yDelay buffer start address
y READ/WRITE pointer
y ADC multiplexer address
y ADC control word
;** ADC offset **
yparallel interface A control
yparallel interface B control
yserial interface status
y current sample
yprevious sample
y last non—zero sample
yzero-crossinS sensitivity
y current SO-Sl
yprevious SO-Sl
y last non-zero difference
y extremum sensitivity
y sample counter
y maximum number of samples
yextremum counter
ymaximum number of extrema
y amplitude
y maximum amplitude
y ** amplitude look u p encoder
y** tes look U P encoder **

- 278 -

lAw; . DS 10 1 Tamplitude word counter
NAU: .DC to tOOOl ;*** number amplitude words ***
t
irw: .DS ♦ 0 1 ; ftes word counter
NTU: .DC to toooa ;*** number of tes words ***
f
NSW .DC to t0 0 0 4 ,no. 12 bit words to form filler
ISYNC .DS t o 1 rno. frames since synchronisation
NSYNC .DC t o tOlOO ; max♦ value of ISYNC
FUORD .DS t o 1 îfiller word status
T
IB: .DS t o 1 ;bit counter for data
b i t s : .DS t o 1 ; input data for transmission
r
WARN : .DC t o tOOOD îASCII codes for error messaSe

.DC to tOOOA

.DC t o t0 0 4 5

.DC t o t0 0 7 2

.DC t o t0 0 7 2
♦ DC t o t0 0 6 F
♦ DC t o t 0 0 7 2
♦ DC t o t0 0 2 0
♦ DC t o t0 0 4 E
♦ DC to t0 0 7 5
♦ DC t o t006D
♦ DC t o t0 0 6 2 _
♦ DC t o t0 0 6 5
♦ DC t o t 0 0 7 2
♦ DC t o t0 0 2 0
♦ DC t o toooo

T
FRAME: ♦ DS t o . 1 ^transmitter frame

- 279 -

Initialisation Routine

s t a r t :

AGAINl

IGF
CLRA
OTA *01
PAGE ♦ Of to
CLRA
STA Rl
STA R2
STA SO
STA SI
STA SSI
STA DSO
STA DSI
STA DSSI
STA A
STA lAW
STA ITW
STA IB
STA PD
STA FWGRD
LDA TCGDE
RAX
LDEW
STE MS
INCA
RAX
LDEW
STE MC
LCA toi
STA IS
STA IC
CLRA
STA Wl
LCE too
LDA Wl
ADD Bl
RAX
STEW
LDA Wl
INCA
SUB LI
SKZP
ADD LI
STA Wl
SKZ
JMPC AGAINl

rdisable interrupts
funmask all levels

fzero variables

initialise counters

fzero AD buffer

- 280 -

AGAIN2

AGAIN3

CLRA
STA W2
LCE ♦ 00
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
SKZ
JMPC AGAIN2
CLRA
STA PD
LCE ♦0
LDA PD
ADD BD
RAX
STEW
LDA PD
INCA
SUB LD
SKZP
ADD LD
STA PD
SKZ
JMPC AGAIN3
LDA ADCHAN
OTA ADMULT
LDA ADTRIG
OTA ADCTRL
LDA PATRIG
OTA PACTRL
ION
JMPC LOOP

rzero TX buffer

r Zero discard buffer

; Increment pointer

set UP ADC

set UP parallel channel A

îenable interrupts
fStart processing

- 2.81 -

Error Message Generation

ERROR : lOF
CLRA
RAX

T

ERIO: LDAX
SKNZ

WARN
JMPC ER20

r
OTA sour

ERii : INA STSTAT
ERA
SKZ

STMASK
JMPC ERll

f

NOPT
NOP
JMPC ERIO

ER20: LCA
ADDE

*30
OTA SOUT

ER21 : INA STSTAT
ERA
SKZ

STMASK
JMPC ER21

T

ER30: LCA ♦ OD
OTA SOUT

ER31 : INA STSTAT
ERA
SKZ

STMASK

JMPC ER31
ER40: LCA *0A

OTA SOUT
ER41: INA STSTAT

ERA
SKZ

STMASK
JMPC ER41

ER50 : JMPC ER50

- 282 -

Interrupt Vector Table

♦ LOG
lONR
lONR
lONR
JMPC
lONR
JMPC
lONR
lONR
lONR
lONR
lONR
lONR
lONR
lONR
lONR
lONR

♦OOFO
♦FO
♦ FI
♦ F2
ISRAD
♦ F4
ISRTX
♦ F6
♦F7
♦F8
♦ F9
♦FA
♦ FB
♦ FC
♦FD
♦ FE
♦ FF

TISR Î Analogue-to-Digital
flSRITransmiss ion

- 283 -

r
y Analogue-to- Digital Interrupt Service Routine
r ----
y

y

ISRa d : STA ADVEA fsave volatile environment
STE ADVEE
STX ADVEX

ADii: INA ADIN f input sample
SUD ADOFF r adjust for de offset
RAE

AD12: LDA Wl îstore sample
ADD Bl
RAX
STEW

y
AD13: LDA Wl r increment pointer

INCA
SUB L1
SKZP
ADD L1
STA Wl

AD14: LDA Wl ' îtest for imminent overflow
SUB Rl
LCE *01
SKNZ
JMPC ERROR

AD15: LDX ADVEX y restore volatile environment
LDE ADVEE
LDA ADVEA
lONR *F3

- 284 -

Transmitter Interrupt Service Routine

ISRTX:

TX2:

TX4:

TX6:

Txa :

Txio:

STA TXVEA
STE TXVEE
STX TXVEX
INA PASTAT
CLRA
BSET *2
OTA + 01
ION
LDA IB
SKZ
JMPC TX18
LDA W2
SUB R2
SKNZ
JMPC TXIO
CLRA
STA FWORD
LDA R2
ADD B2
RAX
LDEW
LDA R2
INCA
SUB L2
SKZP
ADD L2
STA R2
CLRA
SLE
SLE
SLE
SLE
STA IB
STE BITS
JMPC TX18
RPA
ADDC + 04
ADD FWORD
JMA
JMPC TX12
JMPC TX14
JMPC TX16

fsave volatile environment

rclear interrupt
Tmask interrupts at this level

? enable unmasked interrupts
ftest for new input
f Jump if more bits remain
rtest for empty tx buffer

finsert filler word

rread next word

rincrement pointer

rseperate fields

- 285 -

TX12:

TX14:

TX16:

TX18:

TX19:

TX20:

LCA +01 fassume next filler word
STA FWORD
LCA 110 rbits 0 - 15 of filler-word
STA IB
LCA -1 r 1111 1111 1111 1111
STA BITS
JMPC TX18
LCA +02
STA FWORD
LCA + 10 rbits 16 - 31 of filler word
STA IB
LCA -1 r 1111 1111 1111 1111
STA BITS
JMPC TX18
CLRA
STA FWORD
LCA + 10 rbits 32 - 47 of filler word
STA IB
LCA -2 r 1111 1111 1111 1110
STA BITS
LDA BITS
OTA PAOUT routput data on channel A
SLE
STA BITS
LDA IB rdecrement input bit count
DECA
STA IB
lOF rdisable interrupts
CLRA runmask interrupts at this level
OTA +01
LDX TXVEX rrestore volatile environment
LDE TXVEE
LDA TXVEA
lONR +F5

- 286 -

Main Analysis Loop

l o o p :

ANll :

AN12:

AN12A

LDA Wl
SUB Rl
SKNZ
JMPC LOOP
LDA Rl
ADD Bl
RAX
LDAW
STA SO
LDA Rl
INCA
SUB LI
SKZP
ADD LI
STA Rl
LDA SO
SUB SI
STA DSO
CLRA
SUB DSO
SKZP
LDA DSO
SUB DSMIN
SKZP
JMPC AN12A
LDA DSO
LDE DSSI
STA DSSI
ERAE
BSKO *F
JMPC AN12A
LDA IC
INCA
STA IC
LCE ♦ 07
SKZP
JMPC ERROR
CLRA
SUB SO
SKZP
LDA SO
SUB SMIN
SKZP
JMPC AN 13

rcheck for empty sample buffer

Îfetch next sample

; increment read pointer

Îupdate externum count

r ABS(DSO).GE.DSMIN
; .FALSE.
; .TRUE.

rtest for change in direction

r increment extreme count

; ABS(so).GE.SMIN

- 237 -

AN13Î

ANi:

AN16:

LDA SO
LDE SSI
STA SSI
ERAE
BSKZ ♦ F
JMPC AN20
LDA IS
INCA
STA IS
LCE ♦ 08
SKZP
JMPC ERROR
CLRA
SUB SO
SKZP
LDA SO
RAE
SUB A
SKN
STE A
LDA SO
STA SI
LDA DSO
STA DSI
JMPC LOOP

change of sign

rincrement sample counter

; update amplitude measure

rupdate working variables

- 288 -

End of Epoch Routine

AN20I

AN23:

AN25:

AN26Î

AN27:

LDA IC
SRZ
INCA
STA IC
LDA IC
LDE MC
SUBE
SKN
STE IC
LDA IC
LCE ♦01
SUBE
SKZP
STE IC
LDA IS
LDE MS
SUBE
SKN
STE IS
LDA IS
LCE ♦ 01
SUBE
SKZP
STE IS
LDA TCODE
ADDC ♦ 2
ADD IC
DECA
RAX
LDAW
ADD TCODE
ADD IS
DECA
RAX
LDEW
CLRA
STA IS
STA IC
LDX ITW
STEX FRAME
LDA ITW
INCA

rtruncate component count

r IC > max, value (MC) ?

;.TRUE, set IC = MC
; IC < 1 ?

;.TRUE, set IC = 1
Îtruncate sample count

Tencode extrema/sample count

5 reset epoch parameters

y increment epoch count

- 289 -

SUB NTU
SKZP
ADD NTU
STA ITW
SKZ rtest for end of frame
JMPC AN13 rFalse - process next sample
JMPC AN30 r T rue - process frame

- 290 -

standard End of Frame Routine

AN30:

AN33:

AN34:

AN3!

LDE AMAX
LDA A
SUBE
SKZP
LDE A
LDA ACODI
ADDC ♦ 1
ADDE
RAX
LDEW
CLRA
STA A
LDA U2
SUB R2
SKZP
ADD L2
ADD NAW
ADD NTW
SUB L2
SKZP
JMPC AN34
LDA PD
ADD BD
RAX
LDAW
STA W2
LDA W2
ADD B2
RAX
STEW
LDA PD
ADD BD
RAX
LDA W2
STAW
LDA PD
INCA
SUB LD
SKZP
ADD LD
STA PD
LDA W2
INCA

rencode amplitude

rreset amp, measure

7tx buffer full ?

7 False
7True - retreive delayed pointer

rwrite amplitude code-word

rStore pointer in discard buffer

7 increment delay pointer

7 increment write pointer

- 291 -

AN36:

AN37 :

AN38:

AN40:

SUB L2
SKZP
ADD L2
STA W2
LDX ITW
LDEX FRAME
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
LDA ITW
INCA
SUB NTW
SKZP
ADD NTW
STA ITW
SKZ
JMPC AN36
LDA ISYNC
INCA
SUB NSYNC
SKZP
ADD NSYNC
STA ISYNC
SKZ
JMPC AN13
LCA -1
BCLR ♦ D
BCLR ♦ C
RAE
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
LCA -1
BCLR ♦ D

îtranscribe frame

rincrement write pointer

; increment frame pointer

7 increment frame count

7 load bits 0 - 1 1 of fillerword

7Store fillerword in t x . buffer

7 increment write pointer

7 load bits 12 - 23 of fillerword

- 292 -

BCLR ♦c.
RAE
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
LCA -1
BCLR ♦ D
BCLR ♦ C
RAE
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
LCA -1
BCLR *D
BCLR ♦ C
BCLR ♦ 0
RAE
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
JMPC AN13

» store fillerword in tx , buffer

Îincrement write pointer

7 load bits 24 - 35 of fillerworc

7Store fillerword in tx. buffer

7 increment write pointer

7 load bit 36 - 47 of fillerword

fStore fillerword in t x . buffer

7 increment write pointer

.END

- 293 —

t

r Receiver alogorithm
r

T

f

RXVEA: .DS ♦0 1
RXVEE: .DS ♦0 1
RXVEX: .DS ♦ 0 1
r

DAVEA: .DS ♦0 1
DAVEE: .DS ♦0 1
DAVEX: .DS ♦ 0 1
f

a d c h a n : .DC ♦ 0 toooo
a d t r i g : .DC ♦0 ticso
r
PBTRIG: .DC ♦ 0 tOOOG
f

s t m a s k : .DC ♦0 t673B
L3: .DC ♦0 tOlOO
B3: .DC ♦ 0 10700
R3: .DS ♦0 1
W3: .DS ♦0 1
l r : .DC ♦0 t0002
b r : .DC ♦0 tOOEO
PR: .DS ♦0 1
f
L4: .DC ♦0 tOlOO
B4: .DC ♦0 tOlOO
R4: .DS ♦ 0 1
W4: .DS to 1
r

lAW: ♦ DS *0 1
lAWi : .DS to 1
NAW: .DC to tOOOl
t

ITW: .DS to 1
iTwi: .DS to 1
NTW: .DC to 10008
T

IBA: .DS to 1
MBA: .DS to 1
IBT : .DS to 1
MBT : .DS to 1
lA: .DS to 1
lAi : .DS to 1
n a : .DS to 1
i t : .DS to 1
ITi : .DS to 1
NT: .DS to 1

rvolatile environment - ISRRX

îvolatile environment - ISRDA

ADC multiplexer channel
ADC control word
parallel interface A control word
serial interface status
*** RX buffer length
** RX buffer start address **
RX buffer read pointer
RX buffer write pointer
Number of FRAMES repeated
Repeat buffer start address
READ/WRITE pointer
*** DA buffer length ***
** DA buffer start address **
DA buffer read pointer
DA buffer write pointer
amplitude word counter
amplitude word counter (ISRRX)
*** number of amplitude words ***
tes word counter
tes word counter (ISRRX)
*** number of TES words ***
bit counter for amplitude word
maximum ♦ amplitude bits
bit counter for tes word
maximum I for test bits
amplitude dictionary index
amplitude dictionary index (ISRRX
size of amplitude dictionary
tes dictionary index
tes dictionary index
size of tes dictionary

- 294 -

a c o d e : ♦ DC to t0200
TCODE: ♦ DC to t0400
BITS: ♦ DS to 1 routput from bit handler
LASTO: ♦ DS to 1 rseouence buffer
LASTi: ♦ DS to 1 îseouence buffer
LAST2: ♦ DS to 1 rseauence buffer
MASKO: ♦ DC to tFFFE ;*** synchronisation mask ***
MASKl : ♦ DC to tFFFF ;*** synchronisation mask ***
MASK2: ♦ DC to tFFFF ;*** synchronisation mask ***
FWORDO: ♦ DC to tFFFE ;*** filler word ***
FWORDl: ♦ DC to tFFFF T*** filler word ***
FW0RD2: ♦ DC to tFFFF 7*** filler word ***
n b f : ♦ DC to t0030 7*** tbits in filler word ***
i b f : ♦ DS to 1 7status of 1 word buffer
RXWD2: ♦ DS to 1 7 input to decoders
r
f l a g : ♦ DS to rl îstatus flag
d i c t : ♦ EQ tE 7 tE set if decoding amplitude
s y n c : ♦ EQ tF 7 tF set if synchronised
i s : ♦ DS to 1 7sample counter
Ns: ♦ DS to 1 7number of samples in epoch
MS: ♦ DC to t0040 7*** maximum tsamples in epoch
A: ♦ DS to 1 7 ampltiude
DM: ♦ DS to 1 îaddress of synthetic sample
WARN: ♦ DC to tOOOD îASCII codes for error message

♦ DC to tOOOA
♦ DC to t0045
♦ DC to t0072
♦ DC to t0072
♦ DC to t006F
♦ DC to t0072
♦ DC to •10020
♦ DC to t004E
♦ DC to t0075
♦ DC to t006D
♦ DC to t0062
♦ DC to t0065
♦ DC to t0072
♦ DC to t0020
♦ DC to toooo

- 295 -

Initialisation

START:

AGAIN2

IGF
CLRA
OTA toi
PAGE to 7 to
CLRA
STA R3
STA R4
STA IS
STA PR
STA lAW
STA ITWI
STA ITW
STA BITS
STA LASTO
STA LASTI
STA FLAG
LDA NBF
STA : IBF
CLRA
STA W3
LCE too
LDA W3
ADD B3
RAX
STEW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
SKZ
JMPC AGAINl
CLRA
STA W4
LCE too
LDA W4
ADD B4
RAX
STEW
LDA W4
INCA
SUB L4

; initialise working variables

7 initialise Rx♦ buffer

7 initialise o / p sample buffer

- 296 -

NEXTO:

NEXT2:

SKZP
ADD L4
STA W4
SKZ
JMPC AGAIN2
LCA *01
STA R4
LDA W3
ADD B3
RAX
LCA ♦ 10
BSET ♦E
STAW
LDA PR
ADD BR
RAX
LDA W3
STAW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
LCE ♦08
LDA W3
ADD B3
RAX
STEW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
LDA ITW
INCA
SUB NTW
SKZP
ADD NTW
STA ITW
SKZ
JMPC NEXT2
LDA PR
INCA
SUB LR
SKZP
ADD LR
STA PR

7 initialise Rx♦ buffer with
7dummy signal
7Store amplitude in Rx buffer

7 Store W3 in delay buffer

7 Store epochs associated
7 with previously stored amp,
7 Increment pointer

îTest for ' end of frame

7 Increment delay pointer

- 297 -

SKZ
JMPC NEXTO
LCA ♦FF
STA A
LDA ACODE
RAX
LDEW
STE NA
INCA
RAX
LDEW
STE MBA
LDA TCODE
RAX
LDEW
STE NT
INCA
RAX
LDEW
STE MBT
CLRA
STA IBA
STA IBT
LDA ADCHAN
OTA ADMULT
LDA ADTRIG
OTA ADCTRL
LDA PBTRIG
OTA PBCTRL
ION
JMPC LOOP

fset size of Amp, diet

îset max tAmp bits
fset size of Tes dict

set max, *Tes bits

- 298 -

Interrupt Vector Table

♦ LOC ♦ OOFO
lONR
IÜNR
lONR
JMPC
lONR
lONR
lONR
JMPC
lONR
lONR
lONR
lONR
lONR
lONR
lONR
lONR

♦ FO
♦ FI
♦F2
ISRDA
♦ F4
♦ F5
♦ F6
ISRRX
♦F8
♦F9
♦FA
♦FB
♦FC
♦FD
♦FE
♦FF

?ISR Î Digital-to-AnaloSue

rISR: Receiver

- 299 -

r Digital-to- Analogue Interrupt Service Routine

i s r d a : STA DAVEA rsave volatile environment
STE DAVEE
STX DAVEX

T

DAii : LDA W4 rtest for empty sample buffer
SUB R4
SKZP
ADD L4
LCE *06
SKNZ

. JMPC ERROR
DA12: LDA R4 îfetch and output sample

ADD B4
RAX
LDAW
OTA DA1OUT

f

DA13: LDA R4 rincrement read pointer
INCA
SUB L4
SKZP
ADD L4
STA R4

f

DA14: INA ADIN rclear ADC interrupt
DA15: LDX DAVEX Tresore volatile environment

LDE DAVEE
LDA DAVEA
lONR IF3

- 300 -

Receiver Interrupt Service Routine

Synchronisation
ISRRX:

RXll.:

RX21 :

RX22Î

RX23:

STA RXVEA
STE RXVEE
STX RXVEX
INA PBSTAT
CLRA
BSET *02
OTA *01
ION
LDA LAST2
LDE LASTI
SLE
STA LAST2
LDA LASTO
LDE LASTI
SLE
STA LASTO
INA PBIN
RAE
LDA LASTI
SLE
STA LASTI
LDA IBF
DECA
SKN
STA IBF
LDA IBF
SKZ
JMPC RX14
LDA LAST2
ERA FW0RD2
AND MASK2
SKZ
JMPC RX25
LDA LASTI
ERA FWORDl
AND MASKl
SKNZ
JMPC RX26
LDA LASTO
ERA FWORDO
AND MASKO
SKNZ
JMPC RX26

rsave volatile environment

rclear interrupt
rmask interrupts at this level

renable interrupts
rupdate delay bits

rinput word from channel B

rupdate state of seauence buffer

rtest for full seauence buffer
r Jump if delay not established

rtest against filler seauence

- 301 -

RX24 :

RX25:

RX14:

LDA MBA
STA IBA
CLRA
STA IBT
STA BITS
STA ITWl
STA lAWl
LDA NBF
STA IBF
LDA FLAG
BSET . SYNC
BSET DICT
STA FLAG
JMPC RX14
LDA FLAG
BSKO SYNC
JMPC RX14
BSKZ DICT
JMPC RX30A
JMPC RX30T
lOF
CLRA
OTA *01
INA PBSTAT
LCE *15
BSKZ *A
JMPC ERROR
LDX RXVEX
LDE RXVEE
LDA RXVEA
IGNR *F7

îset amplitude count

îclear delay

r synchronisation

rdisable interrupts
funmask interrupts at this level
? check that for no further intern

; restore volatile environment

- 302 -

Receiver Interrupt Service Routine

Amplitude decoding
RX30A:

RX31A:

RX32A:

RX33A:

RX34A:

RX35A:

LDA BITS
LDE RXWD2
SLE
STA BITS
LDA MBA
SUB IBA
LCE *04
SKNZ
JMPC ERROR
LDA IBA
INCA
STA IBA
LDA ACODE
ADDC ♦ 1
ADD IBA
RAX
ADD MBA
RAE
LDA BITS
SUBW
SKN
JMPC RX14
REX
AD DU
STA lAl
CLRA
STA BITS
STA IBA
LDA W3
ADD B3
RAX
LDA lAl
BSET *E
STAW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
LDA W3
SUB R3

Îupdate binary value

rtest asainst maximum

test binary value

? write index to rx buffer

îset amplitude tas

Îincrement pointer

y test for overflow

- 303 -

RX36A:

LCE
SKNZ
JMPC
LDA
INCA
SUB
SKZP
ADD
STA
SKZ
JMPC
LDA
BCLR
STA
JMPC

102
ERROR
lAWl
NAW
NAW
lAWl
RX14
FLAG
DICT
FLAG
RX14

ÿ increment word count

— 304 —

Receiver Interrupt Service Routine

Tes Decoding
RX30T:

RX31T:

RX32T:

RX33T:

RX34T:

RX35T:

LDA BITS
LDE RXWD2
SLE
STA BITS
LDA MBT
SUB IBT
LCE *05
SKNZ
JMPC ERROR
LDA IBT
INCA
STA IBT
LDA TCODE
ADDC *1
ADD IBT
RAX
ADD MBT
RAE
LDA BITS
SUBW
SKN
JMPC RX14
REX
ADDW
STA ITl
CLRA
STA BITS
STA IBT
LDA W3
ADD B3
RAX
LDA ITl
STAW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
LDA W3
SUB R3
LCE *03

Îupdate binary value

Îtest against maximum

y test binary value

y store index in rx buffer

y increment pointer

y test for full rx buffer

- 305 -

RX36T

SKNZ
JMPC ERROR
LDA ITWl
INCA
SUB NTW
SKZP
ADD NTW
STA ITWl
SKZ
JMPC RX14
LDA FLAG
BSET DICT
STA FLAG
JMPC RX14

y increment word count

- 306 -

Main Synthesis Lo o p

LOOP :

SNll :

SNI 2 :

SN13:

:Ni4

LDA W4
SUB R4
SKZP
ADD L4
ADDC *1
SUB L4
SKNZ
JMPC LOOP
LDA IS
SKNZ
JMPC SN20

LDA DM
ADD IS
RAX
LDAW
OTA MX
LDA A
OTA MY
INA MXYLS
RAE
INA MXYMS
SLE
SLE
SLE
SLE
RAE
LDA W4
ADD B4
RAX
STEW
LDA W4
INCA
SUB L4
SKZP
ADD L4
STA W4
LDA IS
INCA
SUB NS
SKZP
ADD NS
STA IS
JMPC LOOP

ftest for full sample buffer

rtest for end of epoch

rfetch next synthetic sample

scale sample

f S t o r e s a m p l e

Îincrement sample count

- 307 -

End of Epoch Routine

SN20:

SN24:

LDA ITW
SKNZ
JMPC SN30
LDA R3
ADD B3
RAX
LDAW
LCE *12
BSKZ *E
JMPC ERROR
RAE
LDA R3
INCA
SUB L3
SKZP
ADD L3
STA R3
LDA TCODE
ADDC *2
ADD MBT
ADD MBT
ADDE
RAX
LDEW
STE NS
ADD NT
RAX
LDAW
ADD TCODE
STA DM
CLRA
STA IS
SUB A
STA A
LDA ITW
INCA
SUB NTW
SKZP
ADD NTW
STA ITW
JMPC SN12

y test for end of frame

y read next word

ytest tag

y increment pointer

y fetch next index

y reverse polarity

y increment Tes word count

- 308 -

standard End of Frame Routine

SN30Î

SN31 :

SN32 :

SN34:

LDA PR
ADD BR
RAX
LDEW
LDA W3
SUB R3
SKZP
ADD L3
SUB NAW
SUB NTW
SKZP
STE R3
LDA PR
ADD BR
RAX
LDA R3
STAW
LDA PR
INCA
SUB LR :
SKZP
ADD LR
STA PR
LDA R3
ADD B3
RAX
LDAW
LCE ♦ 12
BSKO ♦E
JMPC ERROR
BCLR ♦E
STA lA
LDA R3
INCA
SUB L3
SKZP
ADD L3
STA R3
LDA ACODE
ADDC ♦ 2
ADD MBA
ADD MBA
ADD lA
RAX

?Load E red, with delay pointer

y t e s t f o r e m p t y r x b u f f e r

y Increment delay pointer

y f e t c h a m p l i t u d e i n d e x

y c h e c k f o r t a s p r e s e n t

y i n c r e m e n t p o i n t e r

y l o o k U P a m p l i t u d e

- 309 -

LDAW
STA A
JMPC SN21
.END

- 310 -

Appendix 2

Variable length Codes

Variable length codes have been suggested as a means of reduc­

ing the delay associated with matching the TES source with a constant

rate channel [37]. However, the codes suggested did not satisfy the

prefix condition [98]. In response to the need, within the digital

voice channel, for a method of constructing and implementing a more

general class of binary variable length codes which satisfy the

prefix condition and are easily decodable, the following method was

developed by P.S. Cooper [52].

Let n]̂ denote the number of codewords of a given finite diction­

ary which are of length k (k is less than or equal to the maximum

word length, K). If two codes with identical sets of n^’s are consid­

ered considered equivalent then a representative from each equiv­

alent class can be selected to enable the same efficient decoding

algorithm to be used for all codes. Note that if a code (ni,n2 ,

... ,nĵ) is uniquely decodable then there is an equivalent prefix

condition code. The representative codes are constructed as follows:

(1) Draw a binary tree of depth K.

(2) Label nodes such that left branches correspond

to 0 and right branches to 1.

(3) set k = 1.

(4) At level k, starting from the left allocate the

first n^ nodes to codewords.

(5) Delete those branches emanating from the codewords

- 311 -

of step 4

(6) Increase k by 1 and repeat steps 4 and 5 until

all the codewords have been allocated.

Figure A2.1 shows the construction of the code (0,1,3,4,4).

There will always be enough nodes for this process to continue as

long as the n;̂ 's satisfy the Kraft inequality.

K
In,.2”*̂ .LE. 1
1 *

Constant length codes are included in this representation by

where there are n^sets of the form (0,0, ... ,n^) where there are n^ (.LE. 2) codes

of length K.

In terms of the binary values of the codewords it will be seen

that they are arranged in numerical order and for codewords of the

same length the binary values are consecutive. It is these two

properties that make the codes easily decodable. Since all the

decoder need do, having received k bits, is to compare the binary

value of the received bits, R(k), with the maximum binary value,

l2(k), for words of length k. If R(k) .GE. I2(k) then more

bits are needed to decode the word. If R(k) .LT. I2(k) then

R(k) - l2(k) + Ii(k) gives the position of the decoded word in

the numerically ordered alphabet, where Ii(k) is the position of

the highest codeword of length k. Reflection on the way in which

the codes were constructed yields the formula:

Il(R) = ni + n2 + ... + nk

- 312 -

k-1 k-2
22(k) = 2 ni + 2 n2 + ... + nic

or recursively

I l (k) = I l (k -1) + % , l l (0) = 0

l2(k) = 2.l2(k-l) + Ilk , lz(0) = 0

Since these two sums are functions of the n^'s, which are

fixed, they need to be calculated once only and stored in suitable

arrays. Table A2.1 shows these sums for the code of figure A2.1.

- 313 —

I k ^k Il(k) IzCk) Codes 1

1 ' 1 0 0 0

1 2 1 1 1 00(0) 1

1 3 3 4 5 010(2),011(3),100(4) 1

1 4 4 8 14 1010(10),1011(11), 1

1100(12),1101(13) 1

I 5 4 12 32 11100(28),11101(29), 1

11110(30),11111(31) 1

Table A2.1 ; Summations for decoding the numerically

ordered prefix code (0,1,3,4,4).

— 314 —

m o o

n o o

1011

1010

100

oil

010

"C(Uu(U
ko

«Co
u<uE3C
uo <T

mc *•o
U oo3k, (U”3Oc aou X•rJ(U U-l(U 01
S-I u>E- c.

(Nc
(Uu3oc
Ci-

- 315 -

Appendix 3

System Diagrams

To solve any problem computer programmers must perform a number

of tasks in order to develop the required software for computation

of that problem. These tasks are generally performed in a prescribed

sequence and are listed below.

a) Problem Definition

b) Analysis and Flowcharting

c) Translation

d) Computation

In high level language programming flow charts are employed for

documentation of a program and, in general, are very satisfactory.

However, microprocessor programming is different from high level

programming in that relatively small programmes are written for

particular sets of hardware, and commonly in assembler language.

Conventional flow charts which utilise boxes and lines have a

number of weaknesses as a working document for assembly language

programming. In order to overcome these weaknesses, alternative

forms of flow charting have been proposed [99]. These techniques,

however, still do not always produce a clear and compact problem

representation which allows one to readily assess the overall func­

tion of a program. This is especially so for real-time processing

where a microprocessor has been programmed to simulate a custom

designed digital system.

- 316 -

In an attempt to overcome these problems and to produce a com­

pact representation of the programme, an alternative method of flow

charting was developed by the author for the representation of pro­

grammes for real-time processing. This representation has been

termed a SYSTEM DIAGRAM because it has the appearance of a circuit

diagram instead of a conventional flow chart.

A set of standard symbols have been developed for the repre­

sentation of data conversion, storage, arithmetic and logical func­

tions which are software controlled or executed. The symbols are

connected by either data buses or control lines or both. All data

buses and stores may be allocated variable names which aids transla­

tion into assembly language. The system diagram may also be seg­

mented with each segment being labelled. This also aided translation

into the assembler language and indicates the segments functional

priority.

Unfortunately, the system diagrams do not convey information

concerning the segments sequence timing and, in general, a short

'cover note' is required to compensate for this deficiency. Table

A3.1 lists the symbols which have been developed and utilised within

this thesis.

- 317 -

CO
CjOc
c
C3(Ue
-E(Q

O
S>.
CO

S
COUao
CO

s0)j_i
CO>,cn

(U 3

cn

ÛÛ

/ V
si

O Q.

i
a

/ V

- 318 -

Appendix 4

Supplementary Notes for System Diagrams

of Section 3.3

The Miproc 16F processor and peripherals were structured such

that the analogue to digital converter was triggered from an exter­

nal clock. The 'end-of-conversion' signal being used to generate an

interrupt to the processor.

The software was designed such that the processor "idled" until

an interrupt occurred. The processor then serviced the INTERRUPT

SERVICE ROUTINE (ISR).

The assembly code of the initial section of the Interrupt Service

Routine (ISR) was identical for all the programmes. Once an interrupt

had been generated, data was input from the Analogue to Digital

Converter (ADC) and OFFSET subtracted, the result being stored in

NEW. The value of OFFSET was set to eliminate the d.c. offset intro­

duced by the systems hardware. The value of RESULT was then output

to the Digital-to-Analogue Converter (DAC).

The following descriptions continue on from where the previous

paragraph ended.

EAMPOO (Figure 3.2)

A value for OLD was output from BUFF and compared with its

previous value for zero-crossing detection. If this had occurred a

- 319 -

a new value for PEAKD was output from XBUFF. OLD was then divided

by PEAKD, the result of which was multiplied by LEVEL and the

resultant stored in RESULT.

The value of NEW was input into BUFF and compared with its

previous value for zero-crossing detection. If a zero-crossing

had occurred, the amplitude parameter being detected, PEAKN, was

input to XBUFF, and PEAKN was initialised.

The inputs OFFSET and LEVEL were multiplexed, the control

signal being the interrupt signal. The order of execution of the

sub-sections within the ISR was:

1000—1

1100 1200ISR

12101110

EAMPIO (Figure 3.3)

This group of programmes were identical to the EAMPOO series

except for the insertion of a threshold. When a value of PE A KO

was output from XBUFF, it was compared with THRESH and if THRESH

.GE. PEAKD, RESULT was set equal to zero.

The inputs OFFSET, LEVEL and THRESH were multiplexed, the

control signal being the interrupt signal. The order of execution

of the sub-sections within the ISR was:

- 320 -

1010 12001100ISR-

12101110

EAMP20 (Figure 3.4)

A value for OLD was output from BUFF and compared with its

previous value for zero-crossing detection. If a zero-crossing

had occurred a new value for PEAKE was output from IBUFF and a

counter incremented. If this was the Nth zero-crossing a value

for PEAKN was output from NBUFF and the counter initialized.

OLD was divided by PEAKI, multiplied by PEAKN and the result­

ant stored in RESULT.

The value of NEW was input to BUFF, and compared with its

previous value for zero-crossing detection. If a zero-crossing

had occurred, the amplitude parameter of the epoch, MAXI, was

input to IBUFF and a counter incremented. If this was the Nth

zero-crossing, the amplitude parameter for the group of epochs,

MAXN, was input to NBUFF and the counter initialized.

The order of execution of the sub-sections within ISR was:

ISR- 1000 1100
“ T1110

.1200
•1210

- 321 -

EAMP30 (Figure 3.5)

A value for OLD was outut from BUFF and compared with its pre­

vious value for zero-crossing detection. If a zero-crossing had

occurred a new value for AMP was output from XBUFF, and the following

conditions tested for and action taken.

if DAMP(n-l) .NE. 0 and AMP .GE. DAMP(n-i)

then DAMP(n) = DAMP(n-l) + STEP

otherwise = DAMP(n-l) - STEP

if DAMP(n-l) .EQ. 0 and AMP .GE. THRESH

then DAMP(n) = STEP

otherwise = 0

where DAMP(n-l) and DAMP(n) were the previous and current processed

amplitude parameters, respectively.

OLD was divided by AMP, multiplied by DAMP and the resultant

stored in RESULT.

The value of NEW was input to BUFF and compared with its pre­

vious value for zero-crossing detection. If a zero-crossing had

been detected, the amplitude parameter for the epoch, MAX, was input

to XBUFF.

The inputs OFFSET, THRESH and STEP were multiplexed, the control

signal being the interrupt signal. The order of execution of the

sub-sections within the ISR was;

- 322 -

1000-1

1010 1100 1110ISR

11031101

1102

1110 1200-
\■*1210

EAMP50 (Figure 3.6)

À value for OLD was output from BUFF and compared with its

previous value for zero-crossing detection. If a zero-crossing

had occurred, a new value for AMP was output from XBUFF, and the

following conditions tested for and action taken.

If DAMP(n-l) .NE. 0, and AMP .LT. DAMP(n-l)

and iDAMP(n-l) + STEPL - AMP I .GE. iDAMP(n-l) + STE PH - AMP I

then DAMP(n) = DAMP(n-l) + STEPL

otherwise = DAMP(n-l) + STEPH

if DAMP(n-l) .NE. 0, and AMP .LE. DAMP(n-l)

and iDAMP(n-l) - STEPL - AMP I .LE. iDAMP(n-l) - STEPH - AMP I

then DAMP(n) = DAMP(n-l) - STEPL

otherwise = DAMP(n-l) - STEPH

if DAMP(n-l) =0, and AMP .LT. THRESH

then DAMP(n) = 0

otherwise = STEPL

where DAMP(n-l) and DAMP(n) were the previous and current processed

amplitude parameters, respectively. OLD was divided by AMP, multi­

plied by DAMP and the resultant stored in RESULT. The value of

- 323 -

NEW was input to BUFF and compared with its previous value for

zero-crossing detection. If a zero-crossing had been detected,

the amplitude parameter for the epoch, MAX, was input to XBUFF.

The inputs OFFSET, THRESH, STEPL and STEPH were multiplexed,

the control signal being the interrupt signal. The order of exe­

cution of the sub-sections within the ISR was:

,1000-I

1010-

■4-11101100ISR'

1020-

1101 1102

t030-i

1103

4-1110---- 4-1200

- 324 -

Appendix 5

Walsh Functions

A5.1 Introduction

It is the purpose of this appendix to introduce Walsh functions

[100] which form a complete orthogonal set of rectangular waves.

Orthogonal means that if any two functions were multiplied together

and integrated over the interval (sum the values) the resultant is

zero unless the two functions were the same. Walsh functions are

generally classified into three groups. These groups differ from

one another in that the ’order’ in which individual functions appear

are different. The three types of order are :

(1) Sequency or Walsh ordering

(2) Paley or Dyadic ordering

(3) Normal or Hadamard ordering

In what follows, we define sequency and Raderaacher functions

and develop the Walsh functions based on Rademacher functions. Gray

code and Hadamard matrices. Section A5.5 presents the Fortran sub­

routine implemented in the investigations reported in chapter 6.

A5.2 Sequency

The term frequency is applied to a set of sinusoidal (periodic)

functions whose zero-crossings are uniformly spaced over an interval.

The generalisation of frequency is achieved by defining ’generalised

- 325 -

frequency’ as one half the average number of zero-crossings per unit

time [89]. Harmuth [101] introduced the term sequency to describe

generalised frequency and applied it to distinguish functions whose

zero-crossings are not uniformly spaced over an interval and which

are not necessarily periodic. Analogous to frequency, which is

expressed in Hertz or cycles per second, sequency is expressed in

terms of Zero-Crossings per Second, generally abbreviated to "Zps"«

A5.3 Rademacher Functions

Rademacher functions are an incomplete set of orthogonal func­

tions which were developed in 1922 [102] . The Rademacher function

of index n, denoted by R(n,t), is a train of rectangular pulses with

2^” ̂zero-crossings over a normalised time base, that is 0 .LE.

t .LE. 1, taking the values +1 and -1. An exception is R(0,t) which

is a step function. The Rademacher functions may be generated using

the following recursive relation:

R(n,t) = R(l,2"~’-t) (A5.1)

with R(0,t) = 1

1, 0 .LT. t .LE. 0.5
and R(l,t) =

-1, 0.5 .LT. t .LE. 1

The first six Rademacher functions are given in figure A5.1

- 326 -

A5.4 Walsh Functions

The incomplete set of Rademacher functions were completed by

Walsh [100] in 1923 to form the complete orthonormal set of rec­

tangular functions, taking only two amplitude values +1 and -1, now

known as Walsh functions.

(i) Sequency or Walsh Ordering

This is the ordering which was originally employed by Walsh

[100] . We denote the set of walsh functions belonging to this set

by:

= Wal^(n,t) , n = 0,1,2, ... ,N-1 (A5.2)

where N = 2™ , m = 1,2,3, ...

The subscript "w" denotes Walsh ordering, n denotes the n-th

member of and t is the independant variable.

To calculate Wal^(n,t)

(a) Write n in binary

(b) Convert n to Gray code

(c) Multiply together all Rademacher functions whose

subscripts correspond to the position of the 1-bits

in the Gray code number. They align as shown below:

Codeword g^, ,g2»Sl*

Rademacher R^, ... ,R2,Ri.

Using the above, the first eight Walsh functions have been

- 327 -

calculated and are shown in figure A5.2(a). Inspection of this

diagram reveal that the sequency of a Walsh function is greater than

or equal to that of the preceding Walsh function and has exactly

one more zero-crossing. Hence the alternate name "Sequency ordering".

Sampling of the Walsh functions of Figure A5.2(a) at eight equi­

distant points results in an (8x8) matrix, figure A5.2(b). Such

matrices are denoted by H^(N), N = 2^, since they may be achieved

by re-ordering the rows of a class of matrices called Hadamard

matrices.

(ii) Paley or Dyadic Ordering

This type of ordering was introduced by Paley [104]. In Paley's

definition of Walsh functions, their sequencies are arranged in Gray

code where the Gray code is the natural way of ordering binary vec­

tors in dyadic space. Hence the alternate name "Dyadic Ordering".

This set of Walsh functions are denoted by:

Sp = Walp(n,t) , n = 0,1,2, ... ,N-1

Where the subscript "p" denotes Paley ordering. The set Sp

is related to the Walsh ordered set, S^, by the relation;

Walp(n,t) = Wal^(g[n],t) (A5.3)

Where g[n] represents the Gray-to-Binary conversion of n. The

first eight Paley ordered functions are given in figure A5.3(a).

Sampling the functions of figure A5.3(a), at eight equi-distant

points, we achieve the (8x8) matrix of figure A5.3(b). Once more

- 328 -

this matrix may be derived by re-arranging the rows of the (8x8)

Hadamard matrix. The matrices associated with the Paley ordered

Walsh functions are denoted by Hp(N), N = 2^.

(iii) Natural or Hadamard Ordering

This set of Walsh functions are denoted by:

Sh = Wal^(n,t) , n = 0,1,2, ... ,N-1

Where the subscript "h" denotes Hadamard ordering. The func­

tions of Syi are related to the Walsh functions by the relation:

Walh(n,t) = Whlw(g[|n|],t) (A5.4)

Where In| is achieved by the bit reversal of n

and g[|n|] is the Gray-to-Binary conversion of |n|.

Figure A5.4(a) gives the first eight Hadamard ordered Walsh functions.

Sampling these functions results in the (8x8) Hadamard matrix of

figure A5.4(b). In general an (Nxn) matrix H^(N), N = 2^, would

be obtained. Hadamard matrices may also be generated recursively

from:

Hh(l) = 1

and Hh(2m) =

Hh(m) H^(m)

H^(m) -Hh(m)

m = 1,2, ... (A5.5)

Hh(l) * Hh(m) (A5.6)

Where the symbol • denotes the Kronecker product.

- 329 -

The Hadamard matrix is both symmetrical and orthogonal ie.

Hh(N).Hb(N) = N.I(N) where I(N) is an (NxN) identity matrix.

Hadamard matrices in the form of equation A5.5 are considered to be

in "natural" form [82], hence the name natural ordering.

A5.5 Transformation Subroutine

There are several algorithms of varying complexity and memory

requirements for computing the discrete Walsh or Hadamard Transform

[86,104-106]. The subroutine utilised for the computation of the

Fast Walsh Transform is given in Listing A5.1 and that employed for

the Fast Hadamard Transform is given in Listing A5.2.

- 330 -

<S 4-» s •m w w EX ^ ̂ ̂

i s *
■ I I I w

z z
+ 1 n T l i

O CJ U U tj

■ _] .J
.J I I

s + *.* w w
.H Z i-i z

Z O O Z Z O (M
I I rn II 1 I I

«N z
+ + I + +

CM CN

miimix cM#iiwi2#ii '3
+ n
Q + S p M +

g^ 5 8 8

u u o u u
Q o o O O O

- 331 -

If)6

O
cr ce

CNJ
ce Oce Sce

LD
ce

WaL 1
(O.t)

(l,t)

(Z t)

(3,t)

m

(5,t)

(6,t)

Hw(8) -

+ + +
+ + +

+ + + +

 +
— — +

- + -

- + -

 +
- + + -
- + - +
+ — 4" —

Figure A5.2 : Sequency Ordered Walsh Functions

(a) Continuous, N = 8 .

(b) Discrete, M = 8.

(7t)

- 332 -

Walp ,
(O.t)

(M)

(2,t)

(3,t)

(4,t)

Hp(8) =

■1- + + + + + + +
+ + + + — — — ~
+ + — — + + — —
+ + — — — — + +
+ —
+ ■“ + “ “• + “ +
+ — — + + +
+ “* — + “• + + —

(5.t)

(6,t)

Figure A5-3 : Paley Ordered Walsh Functions

(a) Continuous, N = 8.

(b) Discrete, N = 8.

(7,t)

Wal„
(0,t)

(l,t)

(2,t)

(3,t)

a (8) =

+ + + + + + + +
+ “ + — + — + —
+ + — — + + — —
+ — — + + — — +
+ + + + — “ — —
+ — + — — + — +
+ + — — — — + +
+ — — + — + + —

(A.t)

(5.1)

(St)

Figure A5.4 : Hadamard Ordered Walsh Functions

(a) Continuous, N = 8.

(b) Discrete, N = 8.

(7.1)

- 333 -

Appendix 6

Physical Significance of Discarding Walsh

Transform Coefficients

A6.1 Hadamard Ordered Coefficients

Any process which involves transforming to the Walsh domain

using a Hadamard Ordered Walsh Transformation may be represented as

follows:

where

Hh(N)
—1

Hh (N)
P(N)

-1
X = H^ (N).P(N).H^(N).x (A6.1)

is a column vector containing the original data

is the forward Hadamard Transform matrix,

is the inverse Hadamard Transform matrix,

is the process operator, which for undistorted

transformation is an (N>N) unity matrix, and

therefore usually omitted.

is a column vector containing the new data.

The elements of P(N) can thus be dictated to define operations within

the transform domain. In the following sections we shall examine

two structures of P(N) and their physical significance on the result­

ing data.

(i) Discarding the last N/2 coefficients of an N point

transform, where N = 2̂ ,̂ n = 1,2,3, ...

— 334 -

Let m = N/2

Km)
then P(N)

Where P(N) has been partitioned into (m>to) matrices and
—1

I(m) is an identity matrix. Since (N), P(N) and H^CN) are of the

same order they may be combined into a single matrix. The inverse

Hadamard Ordered Walsh Transform is defined as [83];

-1
Hh (N) = 1 Hh(n)

N

and from the recursive relationship (appendix 5, equation A5.5) it

is known that;

therefore

-1
Hh (N).P(N).Hh(N) =

1 Hh(N) Hh(N) 1

1
1
I Hh(N)

1
- Hh(N) 1

1 Hh(m) Hh(m) 1 I(m) £ I I Hh(m)

1 1 1

Hh(m) 1

1 Hh(m) - Hh(m)

1 1 1
1 II
1 0 Oil Hh(m) ” Hh(m) 1

1 Hh(m).Hh(m)

I
Hh(m).Hh(m) I

I
1
1 Hh(m).Hh(m)

1
1

Hh(m).Hh(m) I

- 335 -

However Hh(m) .Hh(m) = m.I(m)

—1
thus Hh (N).P(N).Hh(N) = £

2

I(m) I(m)

I(m) I(m)

eg for N = 4

-1
Hh (N).P(N).Hh(N) = l_

I 1 0 1 0 I
£ 1 0 1 0 1 I
2 I 1 0 1 0 I

I 0 1 0 1 I

The physical significances of this matrix are:

(a) The column vector of N new data samples is comprised

of the the first N/2 new samples and their repeat.

(b) The N/2 new data samples may be calculated thus

Xn = X*(n+N/2)
Xn + x (iH-n /2)

2
for n = 1,2; ... ,N/2

and (c) From (b) above, it is obvious that N may be any even value

greater than 2 and not necessarily a power of 2.

(ii) Discarding alternate coefficients of an N point transform.

In this case P(N) will have alternate I ’s and O's along the

leading diagonal and all other elements will be zero.

- 336 -

eg. for N = 4

P(4)
I 1 0 0 0

= 1 0 1 0 0
I 0 0 1 0
I 0 0 0 1

—1
Due to the structure of P(N), the matrices (N), P(N) and H^CN)

cannot be combined, and simply represented, using identity matrices.
—1

Therefore (N) and H^CN) are represented below by their elements,

Hij, for the case of N = 4.

_1 I l l l l l l l O O O l l l l l l I
Hh (4).P(4).Hh(4) = £ I 1 -1 1 -1 I I 0 0 0 0 I I 1 -1 1 -1 I

4 I 1 1 -1 -1 II 0 0 1 0 I I 1 1 -1 -1 I
I 1 -1 -1 1 I I 0 0 0 0 II 1 -1 -1 1 I

I 1 1 0 0 I
£ I 1 1 0 0 I
2 I 0 0 1 1 I

I 0 0 1 1 I

The physical significances of the resulting matrix are:

(a) The column vector, of N new data samples, is comprised of

N/2 new samples, each of which is immediately followed

by itself repeated.

(b) The N/2 new data samples may be calculated thus

* * Xn + Xn+i
x^ = ^n+1 ” for n = 1,3, ... ,N-1

2

(c) From (b) above, it is obvious that N can be any even value

greater than 2 and not necessarily a power of 2.

- 337 -

A6.2 Walsh Ordered Coefficients

Any process involving transformations into the Walsh domain

and employing a Walsh Ordered Walsh Transformation, may be repre­

sented as follows:

* -1X = (N).P(N).H^(N) (A6.2)

where H^(N) : is the forward Walsh Transform
—1

(N) : is the inverse Walsh Transform

and the remainder are as stated in the previous section (A6.1)

(i) Discarding the last N/2 coefficients of an N point

transform, where N = 2^, n = 1,2,3, ...

By inserting the appropriate elements into the matrices of

equation A6.2 it can be shown that this process is equivalent to the

discarding of alternate coefficients of a Hadamard Ordered Walsh

Transform (section A6.1(ii)).

(ii) Discarding alternate coefficients of an N point transform

—1
It can be shown that H^ (N) .P(N) .H^(N), for N = 4,reduces to

I 1 0 0 1 I
£ I 0 1 1 0 I
2 I 0 1 1 0 I

I 1 0 0 1 I

The physical significances of this matrix are:

- 338 -

(a) The column vector of N new data samples is comprised of

N/2 new data samples in the first N/2 rows, the remaining

N/2 rows are a mirror image of the first N/2

(b) The N/2 new data samples may be calculated thus

* * + * m - l
X = ^N+l-n ” ----------- f n = 1,2, ... ,N/2

2

(c) From (b) it is noted that N may be any even value .GE. 2

and not necessarily a power of 2.

(d) If N = 2, we achieve the same result as for discarding

alternate Hadamard ordered coefficients (section A6.1(ii)).

A6.3 Paley Ordered Coefficients

Any process, which involves transformation into the Walsh do­

main employing a Paley Ordered Walsh Transformation may be repre­

sented as follows:

* -1
X = H_ (N).P(N).H„(N) (A6.3)— K P

where Hp(N) : is the forward Paley Transform
—1

Hp (N) : is the inverse Paley Transform

and the remainder are as stated in the previous section (A6.1)

(i) Discarding the last N/2 coefficients of an N point

transform, where N = 2^, n = 1,2,3, ...

It can be proven that this process is equivalent to the

discarding of alternate Hadamard ordered coefficients.

- 339 -

(ii) Discarding alternate coefficients of an N point transform

By inserting the (N>^) elements into the matrices of equa­

tion A6.3 it can be demonstrated that this process is equivalent to

the discarding of the last N/2 coefficients of an N point Hadamard

Ordered Walsh Transform.

A6.4 Dominant Coefficient Technique

In sections A6.1, A6.2 and A6.3 the resultant column vector of

a Walsh Transformation has been predicted in terms of the input

vector, after elimination of either alternate coefficients or the

last N/2 coefficients before the inverse transform was performed. A

technique employed by a number of researchers for achieving data

reductions is that of Dominant Coefficient Retention [85,86,88]. An

attempt to predict the resultant column vector for this technique

has not been conducted since it is dependent on the sequency compon­

ents embedded in the input data. Although the components affected

cannot be predicted, it can be stated that, the output column vector

would be the same irrespective of which Walsh transform was employed

ie. Walsh, Paley or Hadamard. This is because the three transforms

only differ in their sequency ordering and this would not have any

effect on the resulting column vector.

— 340 —

Appendix 7

Speech Intelligiblity and Preference Assesment

A7.1 Introduction

Speech quality may be viewed as the totality of a communcica-

tion channels characteristics or the combination of the different

attributes of speech which must be preserved to give the average

listener a high quality voice signal. Speech quality can be said

to be describeable in terms of four psychoacoustic attributes :

intelligibility, preference, loudness and speaker recognition.

In the investigations reported in this thesis intelligibility

and preference were considered the main attributes of speech to be

considered for the evaluation of speech systems and loudness was

considered a physical factor and speaker recognition was considered

a psychological factor.

Except for intelligibility and preference, quantitative defin­

itions of the physical and psychological factors have been imposs­

ible to obtain, with the result that an accurate definition of speech

quality depends upon interpretation. It was for this reason that

the IEEE subcommittee on subjective speech quality measurement

[107] concluded "that a single method of subjective measurement of

speech quality could not be recommended".

- 341 —

(i) Intelligibility

Intelligibility is a measure of the ability of a communica­

tion system to convey spoken information to an average listener.

Although intelligibility measurements are well established the

intelligibility scores achieved are not absolute quantities but

are functions of:

- the listener

- speakers

- procedures

- the test material employed

Generally, intelligibility measurements evaluate systems in the

gross sense, the number of words correct for a given test [108].

However, there have been measures developed directed towards* the

analysis of the system in terms of the factors contributing to

intelligibility. The Diagnostic Rhyme Test (DRT) [109] is directed

towards diagnostic testing of phonemic errors in the listeners

response.

(ii) Preference

Preference can be thought of as an expression of the degree

that one speech signal is preferred to another one, irrespective of

the particular reasons of the listeners for their decisions. Pref­

erence answers the question : "how well does an average listener

like a particular speech test signal as a source of information ?".

- 342 -

This question may be answered in two ways. Firstly by comparing

the speech test signal consecutively with a variable speech refer­

ence signal (Isopreference test [107]) or secondly by rating his

average attitude towards the signal alone (Direct Comparison Test,

DOT).

The direct comparison of two speech signals is the most basic

method for making preference decisions. However, it is the most

direct approach to answering the question "which one of the two

signals A and B is quantitatively better ?". This method does not

yield a single absolute value.

In the following sections we shall briefly review the perform­

ance evaluating techniques employed during these investigations.

A7.2 Diagnostic Rhyme Test (DRT)

The Diagnostic Rhyme Test (DRT), developed by Voier [109]

and simplified by Wong and Markel [110], is a special purpose

intelligibility test that determines intelligibility and diagnoses

what sounds the voice system does not transmit properly.

The DRT is a two choice test of consonant discriminability,

which yields a gross measure of speech intelligibility and addi­

tional scores relating to the performance of the speaker, listener

or system under test.

The reduced version of the DRT [110] utilises a collection

of 96 words (46 rhyming pairs selected such that the initial conson­

- 343 -

ants of each pair differ in terms of a single phonemic attribute).

One member of the rhyming pair acts as a stimulus and the listener's

task is to indicate which member of the word pair was spoken. A

correct choice indicates that the listener has, in effect, discrim­

inated the state of one of six perceptual attributes of English

consonant phonemes. In the event of being unable to identify, the
listeners are requested to make a guess.

During a test each word pair is presented twice at random.

On the second presentation the order of the rhyming pair is rever­

sed, so that both words of the pair occur at a particular position,

ie. as the first or second word once during the test.

Depending on the word pair involved, each stimuli serves to

test the discriminability of one of the following six perceptual

phonemic attributes;

- Voicing

- Nasality

- Sustention

- Sibilation

- Graveness

- Compactness

Table A7.1(a) indicates the features of speech for which each

attribute is tested for discriminability. The word pairs employed

are given in Table A7.1(b). In the Table, the positive state (eg.

voiced) of each feature is represented in the left member of each

pair; the negative state (eg. unvoiced) is represented in the right

- 344 —

member of each pair.

The results of the listeners responses are then presented as

a gross percentage score for the discriminability of each of these

attributes. Separate scores for the discriminability of each state

of each attrbute may be obtained by appropriate analysis of the

listeners reponses.

All percentage scores are calculated as follows to take into

account the effects of chance:

R - W
D = — 100%

T

where D

R

W

and T

is percent correct discriminations

is the number of correct responses

is the number of incorrect responses

is the total number of responses.

A specimen of the scoring sheet employed in these tests is given in

Table A7.2

The single word stimuli were recorded in an acoustically

quiet room using a Sony microphone (ECM 170) and Sony cassette

recorder (TC 158 cs).

The listening test sessions were conducted in a Tandberg

language laboratory (156-B) which consisted of 20 double-walled

listening booths. Listening was performed using Amplivox (Astro-

lite) headphones.

- 345 -

A7.3 Direct Comparison Test (DCT)

The Direct Comparison Test (DCT) [57] of two signals is the

most basic method of preference judgement. This method, however,

does not yield a single absolute value of preference but merely

indicates whether one of the two signals presented is preferable to

the other.

In many cases this is the most convenient method of evaluat­

ing speech quality and provides a reasonable indication of the

order of preference of a given set of speech signals.

The listeners are presented with two signals processed under

different conditions and are required to indicate under which

condition they would prefer to make a long conversation. In the

event of the listeners not being able to make a choice, they are

requested to indicate this as well so that none of the comparisons

are left without a decision.

Each pair of signals are presented twice during a test and

at the second presentation the recording order is reversed to

eliminate any local effects. The two signals to be compared are

presented consecutively and the pairs of signals are presented

randomly, separated by three second intervals.

The tests were performed in an acoustically quiet room. The

stimuli being persented to the listener via a JVC cassette recorder

(CD1635 Mk II), Sony Amplifier (TA-70) and Sony Headphones (DR-9).

— 346 —

I
Z H S O O H

ZCfl O H
cn O J Z O Z H W S O HE i i s g g g g

g 2 6 S P § g £ g g
H

. j w o 3ri^5î5SüëaoeaHcoEkodZ

z ë i z oH W ^bi a u _] u
S§grfS_________M[bCO>H HH(hHU3cn> 3§iiisis

Z Z Q J t- I- a <

z a n
< z a a <
w M u •< oa u N > o

t—I m <T in vO

g M Z o
U) i - l < Z Z u Z Zwaa-<Mo*<wMaOwiflawN

«0 •9
C *9 0»

2 •n 0) 4>
1 . c e CL

2 2 1 o . c 4)
5 s w > o u o u O C Æ

g 0 «U G > > 9 3 oH e JS « c o c CO 41
2 3 > 9 9 Xi

% 9 c U
e 4) C V O
2 > <0 > > c 4>e 2 _c u 9 X k, >
o > H 2 o o 9 rH X

> > > w X CL 9 00u c c c 4) c 9
"2
to 2 (0

2 x : C C •9 W
»

4) 2 (0 (0 O o 4) k, 41
& rs*0 o O C)

« u c CO o e
4) > 1 2 CO o X 4) O C

3 3 > o OW w •9 3 u> o> 3 o 4)
c . c > X CO 4)

CQ (Q a o. k# 4)c *9
(Ü Wi V G > 3 4)e X > s s 8 8 O c to CO4) 4J 3 9 4*

2 0 c c C C CO 4)o e c > o o o 0 k, 4J 3o c (9 j : j s <0 .c . c jC X G 4) o0 X a a X CL o . H Xi >

- 347 -

1 T i i i n

i i i i ô

3 î ï i I i

î I ï S ï h I s ^ j I i s

I I k. a u g z w z3 î =: 2 I 5 r

; : î 11 î I
c X A o g» A - 5 “o s o

m
50

a ® -a z Z w j i ^ z z w u % w z z j
s I I 2 ̂ i I 2 n I s j s ï : I 3 i I I i

I i 3 5 n n la M i i : i i ? 111 i î î
U-lo

I i i d 2 z m z a z? 5 =1 î ; î
M % a u g» u I s £k 5 3 i ^ 2

' » j y Z a > - z a y j z ÿ o/ * u w » - g i - g z » - u c a z w a z w a g < g %2 3 4 2 î 2 3 3 ï : 5 ï l 3 ' * 2 3 2 ï i £ 5 i 5

aOJa.co
"S
(1)o3*a
(U

î i i s d i t j j î< / > u u > c u z ^ î A t k

i h

2:5 î t

s l i i t

I g i

i l
Z3COH

i n i n h n 2 n i I i II 2 2 E 2111 2

n a i n i H i i n i i i h s s i i i h i i l i n

- 348 -

Subjective Listening Tests

You will hear a sequence of pairs of sentences and you should state
which one (if any) of the pair you find more acceptable. So as to familiaries
you with the procedure a practice pair is provided. Indicate your preference
by placing a tick in the appropriate column adjacent to the pair you are
listening to, e.g.

Pair
No.

Codeword Sentence
1

Sentence
2

5 Tango Indicates preference of
Sentence 1

If there is NO PREFERENCE please tick BOTH columns. The codeword gives an
indication of the content of the sentence pair. This is to assist you in
keeping track and marking the appropriate row.

Pair Codeword Sentence Sentence
No. 1 2

Practice
Pair

Tango

1 Tango

2 Tango

3 Oscar

4 Tango

5 Oscar

6 Oscar

7 Tango

8 Tango

9 Oscar

10 Tango

11 Oscar

12 Oscar

13 Tango

14 Tango

Table A7.3 : Specimen of the DCT scoring sheet

- 349 -

Appendix 8

Speech Material

The speech material employed for the informal subjective app­

raisals of the speech synthesised by the various coders in this

thesis are listed below. The utterances were supplied by Dr. J. N.

Holmes formerly of the Joint Speech Research Unit, GCHQ, Cheltenham.

1: Male : A bird in the hand is worth two in the bush.

2 : Male : An apple a day keeps the doctor away

3: Male : Hello operator, operator.

Female ; Yes, what can I do for you ?

Male : I'd like to make a telephone call to Ballem

in England.

Female : Did you say Wallem in England ?

Male : No, I said Ballem in England.

Female : What part of England is that ?

Male ; It's close to Newcastle.

Female : Have you got the area code ?

Male : No I'm affraid not. I want Ballem 64125.

Female : Is it a personnai call ?

Male : Yes, I'd like to speak to Mr Charles Bottleneck

or to his wife.

- 350 -

ACKNOWLEDGEMENTS AND

REFERENCES

ACKNOWLEDGEMENTS

The author wishes to thank the following for their invaluable

assistance while reading for the degree of Doctor of Philosophy.

Professor T. E. Rozzi, Head of the School of Electrical Engineer­

ing at the University of Bath, for providing the facilities to carry

out this research.

The Royal Signals and Radar Establishment, Malvern, England for

providing financial support for 2 years of this research and the

University of Bath for providing 6 months financial support.

Dr. E. Whipp for the supervision of this work and the speech

research group, formerly of the University of Bath, in particular

Brigadier R. A. King, Mr. P. S. Cooper and Mr R. D. Hughes for their

invaluable assistance.

To my wife, to whom this thesis is dedicated, for her encourage­

ment and support over the years.

Stephen Longshaw.

- 351 -

References

[1] J. L. Flanagan ; Speech Analysis Synthesis and Perception.

2nd. Ed., Springer-Verlag, New York, 1972.

[2] J. N. Holmes : Speech Synthesis. Mills and Boon, London,

1972.

[3] P. Ladefoged : Elements of Acoustic Phonetics. Oliver and

Boyd, London, 1962.

[4] J. D. Markel and A. H. Gray : Linear Prediction of Speech.

Springer-verlag, New York, 1976.

[5] I. B. Crandall ; Sounds of Speech. Bell Syst. Tech. J.,

No. 4, pp 586-623, Oct. 1925.

[6] T. H. Crowley, G. G. Harris, S. E. Miller, J. R. Pierce and

J. P. Runyan : Modern Communications. Columbia University

Press, 1962.

[7] C. E. Shannon : A Mathematical Theory of Communications.

Bell Syst. Tech. J., No. 3, pp 379-423, JuLY 1948.

[8] H. Dudley : Remaking Speech. J. Acoust. Soc. Am., 11,

pp 169-177, 1939.

[9] M. R. Schroeder : Vocoders - Analysis and Synthesis of Speech.

Proc. IEEE, 5^, pp 720-734, May 1966.

[10] B. Gold and C. M. Rader ; The Channel Vocoder. IEEE Trans.

Audio Electroacoust., AU-15 , pp 148-161, Dec. 1967.

[11] J. N. Holmes : The JSRU Channel Vocoder. Proc. lEE, 127, Pt.

F, pp 53-60, Feb. 1980.

[12] J. N. Holmes, Private communication. Joint Speech Research

Unit, Cheltenham.

[13] K. W. Cattermole : Principles of Pulse Code Modulation. Iliffe

- 352 -

Books, London, 1973.

[14] J. A. Betts : Signal Processing, Modulation and Noise. ELBS,

Bristol, 1975.

[15] N. S. Jayant : Adaptive Quantization with a One-Word Memory.

Bell Syst. Tech. J., 52, No. 7, pp 1119-1144, Sept. 1973.

[16] B. Smith : Instantaneous Companding of Quantized Signals.
Bell Syst. Tech. J., 36, No. 3, pp 653-709, May 1957.

[17] R. A. McDonald ; Signal-to-Noise and Idle Channel Performance

of Differential Pulse Code Modulation Systems - Particular

Application to Voice Signals. Bell Syst. Tech. J., No. 7,

pp 1123-1151, Sept. 1966.

[18] M. D. Paez and T. H. Glisson : Minimum Mean Square Error

Quantization in Speech, PCM and DPCM Systems.

IEEE Trans. Commun., COMM-20, No. 2, pp 225-230, April 1972.

[19] J. B. O ’Neal and R. W. Stroh : Differential PCM for Speech and

Data Signals. IEEE Trans. Commun., COMM-20, No. 5, pp 900-912,

Oct. 1972.

[20] P. Cummiskey, N. S. Jayant and J. L. Flanagan ; Adaptive Quant­

ization in Differential PCM Coding of Speech. Bell Syst.

Tech. J., 52., No. 7, pp 1105-1118, Sept. 1973.

[21] B. S. Atal and M. R. Schroeder : Adaptive Predictive Coding of

Speech Signals. Bell Syst. Tech. J., No. 5, pp 1973-1986,

Oct. 1970.

[22] B. S. Atal ; Predictive Coding of Speech at Low Bit Rates.

IEEE Trans. Commun., COMM-30, No. 4, pp 600-614, April 1982.

[23] F . de Jager : Deltaraodulation, A Method of PCM Transmission

Using a 1-Unit Code. Philips Research Report, 7, pp 442-466,

- 353 -

Dec. 1952.

[24] J. E. Abate : Linear and Adaptive Delta Modulation. Proc.

IEEE, 55, No. 3, pp 298-308, March 1967.

[25] R. Steele : Delta Modulation Systems. Pen Tech Press, London,

1975.

[26] C. K. Un and D. T. Magill : The Residual-Excited Linear Predic­

tion Vocoder with Transmission Rate Below 9.6 kb/s. IEEE

Trans. Commun., COMM-23, No. 12, pp 1466-1474, Dec 1975.

[27] R. E. Crochiere : On the Design of Sub-Band Coders for Low-

Bit Rate Speech Communication. Bell Syst. Tech. J., 5^, No.

5, pp 747-770, May-June 1977.

[28] R. E. Crochiere and M. R. Sam bur : A Variable-Band Coding

Scheme for Speech Encoding at 4.8 kb/s. Bell Syst. Tech. J.,

56, No. 5, pp 771-779, May-June 1977.

[29] R. Zelinski and P. Noll : Adaptive Transform Coding of Speech

Signals. IEEE Trans. Acoust. Speech, Signal Proc., ASSP-25,

No. 4, pp 299-309, Oct. 1979.

[30] R. A. King and W. Gosling : Time Encoded Speech. Electronics

Letters, 14, No. 15, 20 July 1978.

[31] W. Gosling and R. A. King ; Time Encoded Speech - An Approach

to Digital Voice Transmission. Telephony, April 14, 1980.

[32] J. C. R. Licklider and I. Pollack : Effects of Differentiation,

Integration and Infinite Peak Clipping upon the Intelligibility

of Speech. J. Acoust. Soc. Am., Am-20, No. 1, pp 42-51, Jan

1948.

[33] J. C. R. Licklider, D. Bindra and I. Pollack : Intelligibility

of Rectangular Speech Waves. Am. J. of Psychology, 51, No. 1,

- 354 -

pp 1-20, Jan. 1949.

[34] L. F. Turner, E. Frangoulis and A. Alcaim : Some considerations

relating to the performance of variable-information-rate-source

to constant-transmission-rate schemes of data compression. lEE

J. Comput. & Digital Tech., No. 3, pp 134-141, June 1979.

[35] D. C. Mason and D. M. Balston : Relationship between system

delay and transmision rate in time-encoded speech. Electron.

Lett., 1^, No. 4, pp 128-130, Feb. 1980.

[36] L. F. Turner, E. Frangoulis and A. Alcaim : Further results

on relationship between system delay and transmision rate in

time-encoded speech - type systems. Electron. Lett., 16, No.

25, pp 947-948, Dec. 1980.

[37] R. A. King and J. Holbeche : Impact of Entropie Coding on

the time delay associated with Time Encoded Speech (TES)

systems. Electron. Lett., 17, No. 12, pp 394-396, June 1981.

[38] J. N. Holmes : A Survey of Methods of Digitally Encoding Speech

Signals. 1ERE Int. Conf. Digital Proc. of Signals in Commun­

ications Loughborough, April 1981.

[39] M. M. Z. Al-Doubooni : Speech Encoding For Low Data Rate

Transmission. Ph.D Thesis, University of Bath, England. 1981.

[40] Miproc 16-bit High Speed Microprocessor Handbook. Plessey

Microsystems, Towcester, Northants, England. 1978

[41] I. F. Blake (Ed.) : Algebraic Coding Theory. Benchmark papers

in Electrical Eng. and Computer Science Dowden, Hutchinson and

Ross, Inc. 1973.

[42] E. R. Berlekamp : Algebraic Coding Theory. Me Graw-hill, New

York, USA. 1968.

- 355 -

[43] S. Lin and D. J. Costello : Error Control Coding. Prentice

Hall Inc., New Jersey, USA 1983.

[44] E. N. Gilbert : Synchronization of Binary Messages. IEEE

Trans. Inform. Theory, IT-6, No. 4, pp 470-477, Sept 1960.

[45] P. G . Neumann : Efficient Error Limiting Variable Length Codes.

IEEE Trans. Inform. Theory, IT-8, No. 4, pp 292-304, July 1962.

[46] P. G. Neumann : On a Class of Efficient Error Limiting Variable

Length Codes. IEEE Trans. Inform. Theory, IT-8, No. 5, pp

260-260, Sept 1962.

[47] W. H. Kautz ; Fibonacci Codes For Synchronization Control.

IEEE Trans. Inform. Theory, IT-11, No. 2, pp 284-292, April

1965.

[48] R. H. Barker : Group Synchronization of Binary Digital Systems.

Communication Theory, W. Jackson, Ed., Academic Press, 1953.

[49] J. J. Stiff1er : Theory of Synchronous Communications. Prent­

ice Hall, New Jersey, USA 1971.

[50] E. N. Gilbert and E. F. Moore : Variable Length Binary Encodings.

Bell Syst. Tech. J., 38, No. 4, pp 933-967, July 1959.

[51] D. A. Huffman : A Method for the Construction of minimum

Redundancy Codes. Proc. IRE, pp 1098-1101, 1952.

[52] P. S. Cooper and S. Longshaw : Proposed Formats for the Serial

Transmission of TES data. Internal Report, University of

Bath, England. Sept. 1981.

[53] M. V. Mathews : Extremal Coding for Speech Transmission. IRE

Trans., IT-5, pp 129-136, 1959.

[54] J. C. R. Licklider ; Effects of Amplitude Distortion upon the

Intelligibility of Speech. J. Acoust. Soc. Am., Am-18, No. 2,

- 356 -

pp 429-434, Oct. 1946.

[55] J. C. R. Licklider : The Intelligibility of Amplitude-Dichoto­

mised, Time Quantized Speech Waves. J. Acoust. Soc. Am.,

Am-22, No. 6,pp 820-823, Nov. 1950.

[56] W. A. Ainsworth : Relative Intelligibility of Different Trans­

forms of Clipped Speech. J. Acoust. Soc. Am., Am-41, No. 5,
pp 1272-1276, Sept. 1969.

[57] V. N. Sobolev and V. N. Telepnev ; Simple Methods of Clipped

Speech Regeneration. Telecommunications, 23, No. 3, pp 37-44,

1969.

[58] V. J. Phillips and L. D. Thomas : A Feed-Forward Speech Level

Controller for Speech Channel Signals. Voice Microsystems

Ltd, England. Report No. 14-12-81, Dec. 1981.

[59] L. R. Rabiner and B. Gold ; Theory and Application of Digital

Signal Processing. Prentice-Hall, 1975.

[60] A. V. Oppenheim and R. W. Schafer : Digital Signal Processing.

Prentice-Hall, 1975.

[61] J. W. Tukey : Exploratory Data Analysis. Addison-Wesley, 1971.

[62] B. Justusson : Noise Reduction by Median Filtering. Proc. 4th

Int. Joint Conf. on Pattern Recognition. Japan. pp 502-504,

Nov. 1978.

[63] L. R. Rabiner, M. R. Sambur and C. E. Schmidt : Applications

of a Non Linear Smoothing Algorithm to Speech Processing.

IEEE Trans. Acoust. Speech Sig. Proc., ASSP-23, No. 6, pp 552-

557, Dec. 1975.

[64] N. S. Jayant ; Average and Median-Based Smoothing Techniques

For Improving Digital Speech Quality In The Presence of Trans-

- 357 -

mission Errors. IEEE Trans Comm., COM-24, No. 9, Sept. 1976,

pp 1043—1045.

[65] T. S. Huang, G. J. Yang and G. Y. Tang : A Fast Two Dimensional

Median Filtering Algorithm. IEEE Trans. Acoust. Speech Sig.

Proc., ASSP-27, No. 1, pp 13-17, Dec. 1979.

[66] B. R. Frieden : A New Restoring Algorithm For The Preferential

Enhancement Of Edge Gradients. J. Opt. Soc. Am., No. 3,

pp 280-283, March 1976.

[67] N. C. Gallegher and G . L. Wise ; A Theoretical Analysis Of

The Properties Of Median Filters. IEEE Trans. Acoust. Speech

Sig. Proc., ASSP-29, No. 6, pp 1136-1141, Dec. 1981.

[68] J. W. Tukey : Non Linear (Non Superposable) Methods For Smooth­

ing Data. Congress Record, EASCON, p 673, 1974.

[69] J. C. R. Licklider : The intelligibility of Amplitude-Dichoto­

mized, Time-quantized Speech Waves. J. Acoust. Soc. Am., 22,

pp 820-823, 1950.

[70] J. L. Flanagan : A Difference Limen For Vowel Formant

Frequencies. J. Acoust. Soc. Am., Am-27, pp 613-617, 1955.

[71] J. L. Flanagan : Difference Limen For The Intensity Of A

Vowel Sound. J. Acoust. Soc. Am., Am-27, pp 1223-1225, 1955.

[72] R. A. King, Private communications. Royal Military College of

Science (Cranfield).

[73] C. M. Kortman : Redundancy Reduction - A Practical Method of

Data Compression. Proc. IEEE, 55, No. 3, pp 253-263, March

1967.

[74] C. A. Andrews, J. M. Davies and G . R. Schwarz : Adaptive

Data Compression. Proc. IEEE, 55, No. 3, pp 267-277, March

- 358 -

1967.

[75] L. Ehrman : Analysis of Some Redundancy Removal Bandwidth

Compression Techniques. Proc. IEEE, 55, No. 3, pp 278-287,

March 1967.

[76] L. D. Davisson : The Theoretical Analysis Of Data Compression

Systems. Proc. IEEE., 56, No. 2, pp 176-186, Feb. 1968.
[77] L. D. Davisson and R. M. Gray (Edited by) : Data Compression.

Benckmark Papers in Electrical Engineering and Computer Sci­

ence., 1^, Dowden, Hutchinson and Ross, Inc.

[78] G. Benelli, V. Cappellini and F. Lotti : Data Compression

Techniques and Applications. The Radio and Electrical Engineer,

No. 1/2, pp 29-53, Jan./Feb. 1980.

[79] A. Singh : Hybrid Time Encoded Speech. Ph.D Thesis, Bath

University, England. 1982.

[80] G . A. Miller and J. C. R. Licklider ; The Intelligibility of

Interrupted Speech. J. Acoust. Soc. Am., 22, 2, ppl67-173,

1950.

[81] H. P. Kramer and M. V. Mathews : A Linear Coding For Trans­

mitting a Set of Correlated Signals. IRE Trans, on Information

Theory, IT-2, pp 41-46, Sept. 1956.

[82] W. R . Crowther and C. M. Rader : Efficient Coding of Vococder

Channel Signals Using Linear Transformations. Proc. IEEE

(letters), 54, pp 1594-1595, Nov. 1966.

[83] W. K. Pratt, J. Kane and H. C. Andrews : Hadamard Transform

Image Coding. Proc. IEEE, 57, No. 1, pp 58-68, Jan. 1969.

[84] S. J. Campanella and G . S. Robinson : A Comparison of Walsh

and Fourier Transformations For Applications To Speech. Proc.

- 359 -

1971 Symp. Walsh Functions, Washington D.C, pp 199-205.

[85] S. J. Campanella and G. S. Robinson ; A Comparison of Orthog­

onal Transformations For Digital Speech Processing. IEEE Trans

Comm., COM-19, No. 6, pp 1045-1050, Dec. 1971.

[86] F. Y. Y. Shum, A. R. Elliott and W. 0. Brown : Speech Process­

ing with Walsh-Hadamard Transforms. IEEE Trans. Audio and

Electroacoustics, AU-21, No. 3, pp 174-178, June 1973.

[87] N. Ahmed and K. R. Rao ; Data Compression Using Orthogonal

Transforms. Proc. 1974 Symp. Walsh Functions, Washington D.C,

pp 199-205.

[88] H. Gethoffer : Speech Processing With Walsh Functions. Proc.

1971 Symp. Walsh Functions, Washington D.C, pp 163-168.

[89] N. Ahmed, H. Schreiber and P. Lopresti : On Notation and

Definition of Terms Related To a Class of Complete Orthogonal

Functions. IEEE Trans. Electromagnetic Compatability, EMC-15 ,

No. 2, pp 75-80, May 1973.

[90] J. L. Shanks : Computation of The Fast Walsh-Fourier Transform.

IEEE Trans. Computers, C-18, No. 5, pp 457-459, May 1969.

[91] W. M. Wa1msley : Walsh Functions, Transforms and Their Applic­

ations. Electronic Eng., pp 63-68, June 1974.

[92] N. Ahmed, A. L. Abdussattar and K. R. Rao : BIFORE or Hadamard

Transform. IEEE Trans. Audio and Electroacoustics, AU-19, No.

3, pp 225-235, Sept. 1971.

[93] R. A. King and J. Holbeche, private communications. University

of Bath.

[94] R. M. Krauss and P. D. Bricker : Effects of Transmission Delay

and Access Delay on the Efficiency of Verbal Communications.

— 360 —

J. Acoust. Soc. Am., Am-41, 2, pp286-292, Feb. 1967.

[95] E. T. Klemmer : Subjective Evaluation of Transmission Delay in

Telephone Conversations. B. S. T. J., 46, 6, ppll41-1147,

July-August 1967.

[96] J. L. Flanagan, M. R. Schroeder, B. S. Atal, R. E. Crochiere,

N. S. Jayant and J. M. Tribolet : Speech Coding. IEEE Trans.
Comm, COMM-27, 4, pp710-737, April 1979.

[97] A. Seneviratne, private communication. University of Bath, 1982.

[98] R. G. Gallager : Information Theory and Reliable Communications.

John Wiley, 1968.

[99] J. Mills : Good Programming in Assembly Language. lEE Proc.,

127, Pt. E, No. 6, pp 241-248, Nov. 1980.

[100] J. L. Walsh : A Closed Set of Orthogonal Functions. Am. J.

Mathematics, 45, pp 5-24, 1923.

[101] H. Harmuth : Transmission of Information by Orthogonal Func­

tions. 2nd. Ed., Springer-Verlag, Berlin. 1972.

[102] H. Rademacher : Einige Satze Von Allegemeinen Orthogonalfunk-

tionen. Math. Anna1en., 87, pp 122-138, 1922.

[103] R. E. Pa ley : A Remarkable Set of Orthogonal Functions. Proc.

London Math. Soc., 34, No. 2, pp 241-279, 1932.

[104] J. W. Manz : A Sequency Ordered Fast Walsh Transform. IEEE

Trans. Audio and Electroacoustics, AU-20, No. 3, pp 204-205,

Aug. 1972.

[105] H. Y. L. Mar and C. L. Sheng : Fast Hadamard Transform Using

The H Diagram. IEEE Trans. Computers, C-22, No. 10, pp 957-

960, Oct. 1973.

[106] K. G . Beachamp : Walsh Functions and Their Applications.

— 361 —

Academic Press, London, 1975.

[107] IEEE Recommended Practice For Speech Quality Measurements.

IEEE Trans Audio and Electroacoustics, AU-17 , No. 3, pp 227-

246, Sept. 1969.

[108] M. E. Hawley (Ed.) : Speech Intelligibility and Speaker Recog­

nition. Benchmark Papars in Acoustics. Dowden, Hutchinson and
Ross, Inc. 1977.

[109] W. D. Voiers : The Present State of Digital Vocoding Tech­

niques: A Diagnostic Evaluation. IEEE Trans. Audio and Electro­

acoustics, AU-16 , No.2, pp 275-277, June 1968.

[110] D. Y. Wong and J. D. Markel : An Intelligibility Evaluation of

Several Linear Prediction Vocoder Modifications. IEEE Trans.

Acoust. Speech Sig. Proc., ASSP-26, No. 5, pp 424-435, Oct.

1978. :

[111] W. D. Voiers : Diagnostic Evaluation of Speech Intelligibility

Benchmark Papars in Acoustics. Dowden, Hutchinson and Ross, Inc.

1977.

— 362 —

