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ABSTRACT

Time Encoded Speech (TES) transmits information concerning the 

duration between zero-crossings, shape and the amplitude of the sig­

nal between successive zero-crossings.

This thesis examines a number of aspects of TES with the view 

of achieving data reductions to enable the transmission of speech, 

with acceptable quality and intelligibility, at low bit rates and a 

practical system delay.

This thesis presents:

(i) A study of techniques for signalling amplitude information

in a TES coder. It was indicated that a minimum of the order 

of 1 bit per epoch is required. Diagnostic Rhyme Tests (DRT) 

yielded intelligibility scores of the order of 88% for algor­

ithms employing 1 and 2 bits of amplitude information per 

epoch.

(ii) Investigations into Median and Moving Average filtering for pre­

processing the epoch duration sequences. It has been shown 

that such applications, which involve simple numerical smooth­

ing, are of little value for they degrade the quality of the 

synthesised speech.

(iii) Studies of Extremal Coding and Orthogonal Transformations for 

achieving data reductions in the signalling of epoch duration 

and, in some instances, the peak magnitude sequences. Each 

technique yielded a useful data reduction. The technique using

- i -



Hadamard Transformations yielded the greatest data reduction, 

a ratio of 2:1 for the representation of the epoch duration 

sequences. The Hadamard Transformation also proved to be of 

low complexity in its implementation.

(iv) A real-time simplex digital voice channel, developed during the 

course of this thesis, and a study of the implementation of TES 

and TES related coders. It is reported that speech of accept­

able quality and intelligibility is achieved for a transmission 

rate of 10 or 15kb/s with a transmission delay of 300ms.
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Chapter 1

Introduction and Review of 

Speech Communication Systems



1.1 Introduction

Speech is a communication technique unique to man. It is our 

main method of conveying thoughts, ideas, concepts and facts to other 

humans. Of the many thousand species of life sharing this world 

only man has developed the vocal means of communication beyond the 

rudimentary stage.

In personal, face-to-face conversation, we have no need to 

process speech with sophisticated equipment. However, the concept of 

speaking over long distances has intrigued man for generations.

In our early history, communication between two people who were 

some distance apart was achieved by sending messengers with verbal 

information, eliminating the need for the communicators themselves to 

travel. The messenger had to remember the verbal information until 

it could be delivered. With the advent of writing, the necessary 

information could be inscribed on paper, wood, or stone and "mailed". 

In this case, the storage medium was probably more reliable. However, 

as in the first example, the communication method (ie. by messenger) 

was such that long time delays were still inherent in the transmission 

of data.

The direct, "real-time" conversational method of exchanging 

information over distances was still a highly desirable mode of 

communications for man, as it would allow an immediate feedback of 

a response enabling information to be clarified, and hence understood.

Numerous techniques ranging from smoke signals to semaphore
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were devised for communicating over long distances. Yet despite the 

desire and motivation to accomplish this, it was not until man learned 

to generate, control and convey electric current that "real-time" 

communications became possible with the advent of telephony and its 

associated communication link, or "channel".

Initially, audio amplifier, two wires, and appropriate relays 

to complete the connections for transmitting the electrical analogue 

of the speech was adequate. However, as the distances between speak­

ers increased, more sophisticated equipment was necessary and the 

transmission medium became a radiated carrier wave, modulated by 

the speech waveform. With this system the information might now be 

subjected to corruption by noise bursts over the link. However, the 

time delay in transmission was sufficiently short for the errors to 

be corrected by the simple technique of re-transmission.

Economic developments and social demands led to the growth of 

a host of different channel media, each promising increased capacity, 

with better quality of communications over long distances. Today, 

society has accepted the role of communication channels as common 

place for long distance communications, although the problems of time 

delay were evident during communications between NASA's Mission Con­

trol and the Apollo astronauts on the moon.

In todays society communication systems, in particular voice 

communications, are at a premium. The emergency services, armed 

forces, security organisations and many other businesses demand 

reliable portable two-way communications. More recently, with the 

legalisation of Citizen Band (CB) radio, portable two-way communica­
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tions have been made available to a host of professions and the 

general public whose requirements could not be adequately catered 

for by a telephone link.

Demands on available channels are very high and continue to 

increase, and society mistakenly assumes that communication channels 

are unlimited, but they are not. The limitations are either space, 
or time, or the economics of supplying thousands of channels. Some 

communication links, such as a satellite link, are by their very 

nature expensive.

Communication Engineers strive to ensure that the optimum use. 

is made of the available communication channels, and look for means 

of making such communications more effective. One way to do this is 

to ensure that only useful information is transmitted, and that redun­

dant information is eliminated. Because the dominant communications 

traffic today is speech, engineers and scientists are continually 

researching techniques of speech and data compression and/or redund­

ancy reduction by speech coding to achieve a reduction in data stor­

age and/or signal bandwidth requirements, thereby allowing more 

conversations to be stored or carried over the same channel.

Speech signals are composed of sounds. These sounds and the 

transitions between them serve as a symbolic representation of infor­

mation. The rules of language govern the arrangement of these sounds 

(symbols). Linguistics is the study of these rules and phonetics is 

the study and classification of the sounds of speech. Although a 

study of linguistics and phonetics is very important especially in 

the areas of speech recognition such a study would take us too far
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afield. However, in processing speech signals to extract or enhance 

information, it is helpful to have as much knowledge as possible 

about the structure of the signal. Thus it is instructive to review 

the nature of speech production and the main classes of speech sound 

before we progress to survey the more "popular" techniques employed 

for speech coding.

1.2 Speech Production[l-3]

Making a sound is not necessarily making speech, no one can 

talk through a flute. It.is necessary to articulate, to join together 

the basic note or notes before they are transformed into speech. The 

so-called "mobile articulators" are the lower lips plus its jaw, the 

various parts of the tongue, and the vocal cords. The mobile articu­

lators have to . move towards something - the "fixed articulators". 

These are the upper lips, upper teeth, the ridge of gum supporting 

the teeth, the hard palate at the front and the soft palate at the 

back of the mouth and the sides of the larynx. A cross-sectional 

view of the vocal mechanism showing some of the major anatomical 

structures involved in speech production are shown in figure 1.1.

Try to say 'pop' without the lips touching, or 'that' without 

pressing the tongue's tip to the upper teeth, articulation is inevit­

able. The articulators form the vocal tract which is an acoustical 

tube of non-uniforn cross-sectional area. It is terminated at one 

end by the vocal cords and at the other end by the lips. An ancill­

ary 'tube', the nasal cavity, can be connected or disconnected by 

the movement of the soft palate. The basic source of acoustic power
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is the lungs. During exhalation they force out a stream of air via 

the trachea through the vocal mechanism to form one of three sounds, 

each of which are described in the following sections.

1.2.1 Voiced Sounds

In a relaxed condition, the vocal cords move apart leaving a 

large opening, while during speech they draw together to form a 

split-like orifice called the glottis; In voiced sounds, the vocal 

cords are initially tensed and together. The lungs force air up the 

trachea, thus increasing the pressure behind the vocal cords (this is 

known as the sub-glottal pressure) until it is sufficient to force 

the vocal cords apart resulting in lateral acceleration of the air 

through the narrow glottis. On entering the wider pharynx, the air 

slows down. The velocity differential brings about a reduction of 

pressure in the glottis. The reduced pressure enables the vocal 

cords to return to their initial position, and the air flow dimin­

ishes. The sub-glottal pressure then begins to increase again and 

the whole cycle is repeated.

The vocal cord mass, tension and sub-glottal pressure essent­

ially determine the period of vibration. This repetative action 

produces quasi-periodic pulses of air which causes excitation of the 

vocal tract and generates the voiced sound of speech. The vocal 

tract is similar to a resonant cavity and therefore intensifies the 

energy at certain bands of frequencies. These resonances, whose 

frequencies are altered by movement of the articulators are called 

the "Formant frequencies" or simply " Formants". Voiced sounds are
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usually characterised by three or four formants in the frequency 

range up to approximately 4.0kHz. An example of the periodic nature 

of a voiced sound is given in figure 1.2.

1.2.2 Fricative Sounds

Fricative sounds are generated by forming a constriction at 

some point in the vocal tract and forcing air through the constric­

tion at a high enough velocity to produce turbulence. This creates 

a broad spectrum noise source to excite the vocal tract. The sound 

produced is different from the voiced sound as its method of produc­

tion is inherently random and does not exhibit any repetative struc­

ture.

The constriction in the vocal tract may be formed between the 

teeth and lips as in ' f ' or between the tongue and hard palate as in 

'sh'. The position of the constriction has a profound effect on the 

characteristic sound radiated from the mouth.

If the noise source alone is used to generate the fricative, 

the fricative is unvoiced and exhibits a ’breathy’ and ’hissy’ qual­

ity. If the vocal cord source operates in conjunction with the 

noise source, the fricative is voiced. An example of unvoiced frica- 

tion is given in figure 1.3.

1.2.3 Plosive Sounds

The third sound source are the plosives or stop consonants.
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These sounds are produced by stopping the air flow from the lungs by 

completely closing off the vocal tract, building up pressure behind 

the closure and quickly releasing it thereby causing a transient 

excitation of the vocal tract which results in the sudden production 

of sound. During the build up of pressure, if the cords are vibrat­

ing, then the plosive is preceded by low level sound. If the cords 

are not vibrating during the pressure build up the plosive is preceded 

by silence. These two type of plosives are termed voiced and unvoiced, 

respectively. Table 1.1 presents a classification of the various 

speech sounds.

1.3 Speech Bandwidth Compression

This section defines channel capacity and indicate its relev­

ance when discussing speech bandwidth compression. The categories 

under which speech coding techniques are classified will be described 

before reviewing some of thé most important of the currently known 

techniques.

Speech sounds occupy the frequency range from approximately 

50Hz to lOkHz. A bandwidth of lOkHz is therefore required for trans­

mission of the exact electrical analogue of a speech wave. In order 

to utilise the full capacity of todays communications channels where 

bandwidth capabilities of WHz, W is much much greater than lOkHz, are 

common. Multiplexing [6] of conversational speech is employed. 

However, the channel capacity soon becomes exhausted when employing 

such simple techniques. To further increase the number of conversa­

tions transmitted over the channel, the speech band capacity occupied
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by each conversation must be reduced. This has been, and still is 

the goal of many researchers in the broad ’field' of speech communica­

tions.

Channel capacity is measured in binary units of information 

(bits) per second , b/s, and specifies a maximum rate at which the 

bits can be transmitted over a channel with errors reduced to neglig- 
able proportions. Shannon[7] has shown that the theoretical maximum 

capacity, C, of a communications channel of bandwidth, W, for a signal- 

to-noise power ratio, S/N, to be:

C = W.Log2 (l + S/N) b/s (1.1)

For a given signal-to-noise ratio the theoretical maximum 

channel capacity and bandwidth are directly related. Techniques for 

the reduction of required channel capacity are often termed ’Bandwidth 

Compression’ or ’Bandwidth Reduction’. The achieved bandwidth reduc­

tion is, in general, specified as a ratio of the previous channel 

capacity and the currect channel capacity.

A question often posed when discussing the achieved bandwidth 

compression is, "How significant is this result?". The answer to 

this depends upon the envisaged area of application. For example, 

consider a speech system which yields good quality speech with a 

transmission rate of 16kb/s. In a commercial environment a signif­

icant bandwidth compression is reducing the transmission rate from 

16 to 8kb/s, a ration of 2:1, and yield speech of the same quality. 

However, for military applications fair to good quality speech at a 

transmission rate of 12kb/s, a ratio of 1.33:1, is highly significant
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because the 4kb/s ’save’ may be utilised for conveying secure data.

The initial techniques proposed for reducing the required 

channel capacity employed analogue processing and the reductions were 

achieved by exploiting known characteristics of conversational speech. 

However, for digital processing greater reductions were achieved us­

ing Analysis-Synthesis techniques, a form of source coding. Source 

coders in this application make no attempt to preserve the original 

waveform, instead the input speech is analysed using a priori knowl­

edge of how the signal is generated at the source. The speech param­

eters are transmitted and, at the receiver, employed to synthesise 

the speech signal. Source coders of this nature for speech are 

generally referred to as a Vocoder, a term derived from the words 

voice œOER.

Reductions approaching those of source coders can be attained 

using waveform coding. : As the name implies, the coder essentially 

strives to copy the actual shape of the waveform. In principle they 

are designed to be signal/source-independent and therefore can code 

a variety of signals equally well eg. speech, music, electrocardio­

grams. Waveform coders tend to be robust for a wide range of speaker 

characteristics and for noisy environments.

There are many ways of combining some of the detailed signal 

description possibilities of waveform coders with some of the redund­

ancy exploitation of source coders. The resultant systems, known as 

Intermediate coders, generally yield comparable speech quality at 

data rates intermediate to that of vocoders and waveform coders.
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The following sections briefly review some of the most import­

ant of the commonly adopted methods of encoding speech signals. 

Sections 1.3.1 and 1.3.2 review source and waveform coders. Section

1.3.3 describes an intermediate coder known as Time Encoded Speech; 

a relatively new digital speech encoding technique.

1.3.1 Source Coders, Vocoder[l,8-12]

Systems which attempt to preserve the short-term power spectrum 

of speech while disregarding most of the phase information, are 

called Vocoders. Vocoders strive to retain the perceptually signifi­

cant properties of the waveform with the intention of synthesising a 

signal .at the receiver which sounds like the original.

The traditional model of speech production, figure 1.4, is one 

where the source of the sound and the resonant system which modifies 

the sound are separable and do not interact.

For vocoder purposes, speech sounds are classified as either 

voiced or unvoiced. The voiced sounds are represented by a periodic 

pulse generator and the unvoiced sounds by a random noise generator. 

These sources are normally considered mutually exclusive with a 

signal to indicate switching between the voiced and unvoiced sources. 

The intensity of sound excitation of each source is represented by 

an amplitude or gain signal. In addition, the periodicity or ’pitch* 

of the voiced pulse must be signalled.

The important difference, in principle, between vocoders lie 

In their representation of the vocal tract transfer function. This
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description can take a variety of forms. In the Channel vocoder, 

values of the short-term amplitude spectrum of the speech signal are 

evaluated at specific frequencies. The Linear Predictive Coding 

(LPC) vocoder utilises linear prediction coefficients which describe 

the spectral envelope, whilst the Formant vocoder uses frequency and 

amplitude values of major spectral resonances. Autocorrelation voco­

ders specify samples of the short-term autocorrelation function 

whilst coefficients of a set of orthogonal functions that approximate 

the speech waveform comprise an Orthogonal Function vocoder. There 

are numerous other variants. With all these methods of waveform 

description the data is coded into 'frames' associated with the 

spectra measured at intervals of 10 to 30ms.

A basic channel vocoder is shown in figure 1.5. A series of 

bandpass filters are used to divide the speech signal into frequency 

channels. The number of filters employed within the analyser or 

synthesiser vary depending upon the application. The first channel 

vocoder demonstrated by Dudley[8] had only 10 equal bandwidth spec­

trum channels covering the speech band upto 3kHz, while the JSRU 

channel vocoder[ll] had 19 non-uniformly spaced channels which had 

a rough correspondence with the critical bands of auditory perception 

in the range 0.25 to 4.0kHz. The signal components in each of the 

channels are full wave recified and low pass filtered to yield a 

continuous estimate of the speech power spectrum amplitude in each 

channel. Independent to the spectral analysis, the fundamental 

frequency is measured and a voiced/unvoiced condition determined by 

the voicing detector.
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At the receiver (or synthesiser) the. speech is synthesised 

using estimates of the power spectrum together with the pitch and

voicing information. During voiced segments pulses at the pitch rate 

are output from a pulse generator to excite a bank of filters. The 

excitation is adjusted using the power spectrum amplitude in an 

attempt to equalise the output energy to that measured for the corres­

ponding channel in the analyser. For unvoiced sounds, a gaussian

noise source excites the filter bank. The output of each filter is 

then combined to produce artificial speech similar to the original. 

An overall bandwidth compression of the order of 10:1 in the trans­

mitted signal is possible.

As digital technology evolved and small processors became more 

economical, powerful and faster so their applications in digital 

signal processing increased. Most modern vocoders employ a digital 

transmission path. The Channel and LPC vocoders can produce useable 

albeit poor quality speech at transmission rates of;2.4kb/s. It is 

generally recognised that good speech quality can be achieved at data 

rates as low as 1.2kb/s, by Formant vocoders. However, the main

difficulty with Formant vocoders lie in the automatic formant analy­

sis during consonant or vowel/consonant boundaries where discrep­

ancies in signalling can arise [12] .

Vocoders tend to be fragile (in terms of parameters such as 

voiced/unvoiced decisions and pitch values), the performance is often 

talker- and environment-dependent and the output speech quality, 

generally, has a synthetic (less than natural) quality. These charac­

teristics and the signal model utilised constitute a ceiling on the
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performance that vocoders can achieve.

1.3.2 Waveform Coders

Waveform coders represent an analogue waveform in digital form 

for transmission. This digital representation offers ruggedness, 
efficient signal representation, ease of encryption, the ability to

combine transmission and switching functions and the advantage of a 

uniform format for different types of signals.

(i) Pulse Code Modulation,PCM[13,14]

Historically, PCM was the first method used to digitally repre­

sent speech waveforms and is still widely used. The sampling theorem 

states that a signal whose highest frequency of importance is f^ can 

be completely specified by 2f^ samples taken at equal intervals of 

l/2fb seconds. PCM invokes the sampling theorem by uniformly samp­

ling the (bandlimited) waveform at a minimum rate of at least twice 

the highest frequency in the waveform. The amplitude of the sample 

is quantised into one of 2® levels. These discrete amplitude levels 

are represented by unique binary words of length B bits.

To decode the PCM signal, the binary words are mapped back into 

amplitude levels creating an amplitude pulse sequence. This sequence 

is low pass filtered with a filter whose cut-off frequency is equal 

to the highest frequency in the input waveform.

PCM is illustrated in figure 1.6. The difference between the
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original and quantised signal is regarded as noise and termed 'quant­

isation noise'. It has been shown [14] that the mean square quant­

isation noise, Q^, is a function of step size, S, where :

2
Qn = S /12 (1.2)

If the 2B amplitude levels are uniformly spaced, low level 

signals have a poor signal-to-quantisation noise ratio compared with 

large amplitude signals. In order to combat this problem a number of 

techniques have been developed, namely Non-Uniform Quantisation, 

Adaptive Quantisation and Instantaneous Companding.

Non-uniform quantisers are characterised by fine quantisation 

steps for the frequently occurring low amplitudes in speech; while 

much coarser quantisation is used for the less frequent large amp­

litude excursions in the speech waveform.

Adaptive quantisation utilises a quantiser whose character­

istics (uniform or non-uniform) shrink or expand in time like an

accordion. In an adaptive quantiser with a one word memory [15] the 

adaption of step size s(n+l) is characterised by:

s(n+l) = s(n).M(1 Quantiser Output(n)I) (1.3)

Where M is a function only of the latest quantiser output.

The use of a non-uniform quantiser is equivalent to the present­

ation of a compressed signal to a uniform quantiser and a subsequent 

expansion of the output. Smith [16] investigated instantaneous comp­

anders and demonstrated that a mu-law ( -law) compression charac­

teristics using 128 quantisation levels (7 bits per sample) could
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provide "toll quality speech" of similar performance to that of a 

2048 level (11 bits per sample) quantiser. Figure 1.7 shows the 

input-output relation for mu-law characteristics.

Civil telephony systems employ 8 bits per sample quantisation 

with a sampling rate of 8 kHz, resulting in a transmission rate of 64 

kb/s.

(ii) Differential PCM,(DPCM)[1,17-20]

Differential Pulse . Code Modulation (DPCM) estimates the next 

sample based on the previously transmitted samples. The estimate is 

subtracted from the actual sample value to give a prediction error. 

The prediction error is then quantised, coded and transmitted. At 

the receiver, the original signal is synthesised! from the sequence 

of quantised prediction errors. A block diagram of a DPCM system is 

shown in figure 1.8.

The predictor weights past sample values so as to minimise the 

average energy of the prediction error or difference signal. The 

’weights' are calculated using long term statistics of a represent­

ative sample of speech. Once selected, the 'weights' remain fixed 

for any given DPCM system.

The application of adaptive quantisation in DPCM systems has 

been investigated [20] and the quality of speech output from a 4 bit 

adaptive differential PCM (ADPCM) coder was subjectively judged to 

be better than that of 6 bit log-PCM.
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(iii) Adaptive Predictive Coding,(APC)[1,21,22]

Adaptive Predictive Coding (APC) differs from ADPCM in that, 

besides the quantiser being adaptive, the predictor in APC is also 

adaptive and is updated periodically. Atal and Schroeder [21] emp­

loyed an adaptive linear predictor which was updated every five 

milliseconds to minimise the mean square error between the predicted 

and the true values of the signal. The predictor parameters were 

transmitted periodically along with the difference signal and quant­

iser step size.

The block diagram of an APC system is identical to that of 

figure 1.8 when, the predictor in figure 1.8 is replaced with that of 

figure 1.9. This configuration was first postulated by Atal and 

Schroeder based on the observation that speech signals contain both 

long term and short term redundancies due to excitation or pitch 

signal and the vocal tract, respectively.

Subjective comparisons with speech from a 6 bit log-PCM encoder 

[21] indicate that the quality produced by APC is very similar. More 

recently Atal [22] has shown that predictive coders have the potential 

of producing superior performance to that of source coders, even at 

low bit rates.

(iv) Delta Modulation,(DM)[1,23-25]

Delta Modulation (DM) is a predictive coding system similar to 

DPCM. However, in DM the signal is sampled at many times its Nyquist

— 16 —



rate and each sample is encoded employing one bit (2 levels). A DM 

system generates a local copy of the input waveform and successsively 

modifies this copy, as specified by a digit code, in an attempt to 

track the input. A block diagram of a DM system is given in figure 

1.10. The step size, SS, is fixed for non-adaptive (linear) delta 

modulation (LDM).

Figures 1.11(a),(b) and (c) are waveforms produced at various 

points within the DM system of figure 1.10. Figure 1.11(a) compares 

the local copy of the input waveform (which is the output of the 

integrator, s(t)) with the input waveform itself. Figure 1.11(b) is 

the output of the sampler, e(n), while figure 1.11(c) gives the error 

signal derived by differencing the input signal, x(t), and the local 

copy, s(t).

As shown in figure 1.11(c) the quantisation noise takes two 

distinct forms. The first, 'granular noise', occurs when the DM 

coder is tracking a constant or slowly varying signal. The second, 

'slope overload noise', occurs when the slope of the input signal is 

greater than the maximum slope of the DM system. The optimum step 

size is one which achieves an appropriate balance between slope over­

load which is dominant when the step size, SS, is small and granular 

noise when SS is large.

To reduce these noise sources a number of techniques for alter­

ing the step size, generally refered to as Adaptive Deltamodulation 

(ADM), have been investigated [24]. The adaption can be either cont­

inuous as in Continuously Variable Slope Delta modulation (CVSD) 

which varies SS over a continuous range, or discrete as in Variable
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Slope Delta modulation (VSD) which adapts, depending the error signal, 

by changing SS in steps of 2^.

The data rates necessary for DM to produce high quality speech 

are relatively high. For low data rates, adaptive delta modulators 

can be designed to have a better signal to noise ratio than that of 

7 bit log-PCM. However, ADM typically requires 16-20kb/s for satis­

factory speech production.

1.3.3 Intermediate Systems

In the last decade many of the speech encoding systems devel­

oped were of the Intermediate type[ 26-29]. Of these some of the 

better known are still being extensively researched. Intermediate 

coders combine some of the detailed signal description possibilities 

of waveform coders with some of the signal redundancy exploitations 

of vocoders in an attempt to achieve a system of low complexity 

which has a high tolerance to noise and low data transmission rate. 

A relatively new technique for digitally encoding speech which may 

be classified as an intermediate coder is described below.

Time Encoded Speech,(TES)[30,31]

In 1948 Licklider and Pollack published the results of their 

investigations into the effects of "infinite peak clipping" on the 

intelligibility of a speech waveform [32,33]. It was reported that 

a speech waveform, clipped such that no amplitude information remain­

ed, yielded 75% random word intelligibility. If differentiated prior
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to clipping the intelligibility was increased to 97%. The only 

information transmitted was the position of the zero-crossings of the 

speech waveform. At the receiver, this information was decoded and 

used to generate "square speech", that is rectangular waves of const­

ant amplitude, alternating in polarity. However, this technique has 

been of little practical use for two main reasons. The waveform's 

zero-crossings must be located accurately to maintain intelligibility 

and an acoustic noise background caused severe degradation of the 

signal.

In 1978, King and <5osling described a new method of encoding 

speech waveforms called Time Encoded Speech (TES). This technique 

was akin to rectangular or "square" speech in that the speech signal 

was segmented between successive real zeros of the function. However, 

for each segment of the waveform, the code consisted of a single 

digital word derived from two parameters of the segment: its quant­

ised time duration and its shape.

Measurement of the interval between real zeros of the waveform 

was straight forward. This parameter is often referred to as the 

'epoch duration' or 'epoch length' and its units are either the num­

ber of samples between real zeros or the physical time between real 

zeros (ie. the product of the number of samples between real zeros 

and the sampling interval). The epoch durations were logarithmically 

quantised so that, in absolute terms, the shorter epoch durations 

were transmitted more accurately than the longer, thus maintaining 

an approximately constant fractional accuracy.

TES differed from the non-linearly quantised rectangular speech
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in that, in addition to the quantised epoch durations, epoch shape 

descriptors were also transmitted. This provided additional waveform 

information and extra psycho-acoustic cues to enhance the naturalness 

of the synthesised speech.

In principle, the epoch shape could be compared with a cata­

logue of shapes and a code selected which represents the shape in 

the catalogue nearest to the actual segment shape. However, since 

the short-term phase relationships, which greatly affect waveshape, 

are hardly perceived at all by the ear, epoch shapes which look 

different when viewed on an oscilloscope may not sound different 

when heard. As a result of this, much simplification of shape ident­

ification is permissible. The product of the number of durations 

multiplied by the number of distinguishable epoch shapes constituted 

a large 'alphabet* of distinguishable symbols. Thus such a simple 

coding strategy would have been of limited value. However, further 

research revealed that the large number of naturally occurring symbols 

could be mapped to a smaller number. A two dimensional matrix, 

corresponding to quantisation of time on one axis and a list of shape 

descriptors on the other, permitted mapping onto a reduced alphabet 

of symbols distributed uniformly over the matrix. The reduced alpha­

bet approximated the natural symbols which are mapped onto the matrix.

Synthesis was a relatively simple matter. Stored epoch shapes 

were reproduced in sequence at the correct duration, in accordance 

with the shape and duration specifications of the received codeword. 

This yielded waveforms of fixed amplitude.

Mean amplitude is a relatively slowly varying characteristic
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of speech waveforms. To further improve the naturalness of the 

synthesised speech, after every eighth transmitted codeword an addi­

tional codeword was inserted which communicated the mean speech 

amplitude of the next eight codewords and the synthesis mean ampli­

tude was reset to this new value.

It was reported that for a reduced alphabet of 23 codewords 

simulation of encoding and synthesis (utilising a PDF 8/e minicom­

puter) yielded speech of "good intelligibility and speaker identifi­

able" at an estimated bit rate of 5.4kb/s.

Time Encoded Speech involves the coding of variable-rate source 

signals into constant-rate signals for transmission. Buffer storage 

at transmitter and/or receiver is required to permit this "variable- 

rate to constant-rate" transformation. As a result, delays are 

introduced into the communication process.

The mechanisms involved, the influences of buffer size and the 

delays associated with such systems were described by Turner et al 

[34], who concluded that "fairly long delays (of the order of one 

second) may be involved in the distortionless transmission of speech 

encoded using information about the waveform segments linkng success­

ive real zeros from speech signals". Mason and Balston [35] extended 

this analysis, proposing that a modest increase (by a factor of 1.5 

to 1.9) in transmission rate over the average source generation rate 

would permit the distortionless transmission of time encoded speech 

with a tolerable system delay (200ms). Turner et al [36] derived 

explicit expressions for the limiting delay in time encoded speech 

type systems operating at data transmission rates higher than the
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average rate at which the information is produced by the variable- 

rate source. However, King and Holbeche [37] offered experimental 

evidence which indicated that transmission delays in time encoded 

speech may be reduced an order of magnitude by utilising suboptimum 

bounded entropie codes in place of constant length codes.

Despite the initial promise of Time Encoded Speech the results 

of simulation exercises were dissappointing and many significant 

questions were left unanswered, for which there was no prior art to 

turn to for guide-lines.

Time Encoded Speech offers a method of medium complexity for 

the transmission of digitally encoded speech. Table 1.2 shows the 

relative advantages and disadvantages of a number of speech coding 

systems, a number of which were omitted in this review, and high­

lights the need for low to medium complexity intermediate coders.

1.4 Thesis Organisation

This thesis details an investigation into data compression 

techniques for the reduction of data transmission rate or buffer- 

delay associated with Time Encoded Speech. Chapter 1 has highlighted 

the need for bandwidth compression, given a brief 'tutorial' on 

speech production and finally reviewed some of the better known 

speech coding techniques to provide a benchmark against which TES 

may be evaluated.

Chapter 2 describes the simulation algorithms and modification 

of the coded speech data structures implemented for these investiga­
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tions. Details of a microcomputer system developed in parallel to 

and utilised within the investigations reported here for the real­

time evaluation of Time Encoded Speech are also presented.

Chapter 3 describes the real-time investigations into the amp­

litude information requirements of TES. Chapters 4, 5 and 6 describe 

simulation investigations into possible data reduction techniques 

applied to the sequences of epoch parameters, where: Chapter 4 details 

the study of Median and Moving Average Filters for the preprocessing 

of the epoch duration sequences for the enhancement of the effective­

ness of data compression techniques; Chapter 5 presents the investiga­

tions into Extremal Coding of the sequences of epoch durations and 

peak magnitude parameters; Chapter 6 presents the study of Orthogonal 

Transformations of the epoch durations sequence and inspected poss­

ible bandwidth reduction techniques.

Chapter 7 presents the real-time implementation of the Al- 

Doubooni and King and Gosling TES coders, and the TES related coders 

which have incorporated those techniques of significance to emerge 

from chapters 3 to 6. Chapter 8 presents the conclusions and recomm­

endations for areas of further research.
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SOFT p a l a t e  
Velum)

N A S A L
C A V I T Y

HARD
PALATE

VOCAL TRACT

TONGUE

LIPS

VOCAL FOLDS

Figure 1.1 : Cross-sectional view of the vocal mechanism showing some 

of the major anatomical structures involved in speech 

production ( After Markel and Gray [4] ).

— 25 —



w-\
I-"** A— -njV*Vv

I  |J6S«C I

|J«-Cî /-\-
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Figure 1.3 : "Sa" as in sat. Male speaker. 

(After Crandall [5]).
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Figure 1.4 : Source-System Representation of Speech Production
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Figure 1.5 : Block Diagram of a Channel Vocoder.
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Figure 1,9 : Predictor required for Adaptive Predictive Coding(APC)
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Chapter 2 

TES: Simulation and Real-Time



2.1 Introduction

The work of King and Gosling on Time Encoded Speech (TES) 

(section 1.4) stimulated research by Al-Doubooni [39] into speech 

encoding applied to low data rate transmission. The system developed 

by Al-Doubooni differed from that of conventional TES in the repre­

sentation of the shape desciptors for successive waveform segments. 

Mapping of the quantised time and shape descriptors onto a reduced 

alphabet was excluded and amplitude information was signalled on an 

epoch to epoch basis rather than after every eight epochs.

Prior to sampling (fg= 20kHz) the input speech was bandlimited 

to the standard telephone bandwidth (300 - 3400 Hz). The encoder 

then sampled and analysed the input speech to detect:

- waveform zero-crossings.

- maximum sample magnitude between zero-crossings.

- number of extrema between zero-crossings.

- number of samples between zero-crossings.

To reduce the effect of background noise and the data required 

for encoding periods of silence, symmetrical thresholding of the 

speech waveform was applied. The threshold level was set at -36dB 

below the peak magnitude of a complete utterance. Epochs with a 

peak magnitude less than the threshold level were assigned a zero 

valued peak magnitude, figure 2.1.1. A succession of such epochs 

were combined to form a single epoch of zero magnitude and duration 

equal to the sum of the durations of the combined epochs. To preserve 

signal polarity, the number of combined epochs was restricted to odd
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(A)

(B)

THRESHOLD
LEVEL

Figure 2.1.1 : Symmetrical thresholding of a speech waveform.

(A) Waveform before thresholding.

(B) Waveform after thresholding.

values. Computational limitations restricted the maximum duration of 

an epoch to 2047 samples (approximately 0.1 seconds). The epoch 

parameters 'transmitted* were:

(a) Epoch Duration

(b) Number of Extrema

(c) Epoch Peak Magnitude

Due to the technique implemented to encode periods of silence 

and low level noise the encoding resulted in two seperate distrib­

utions for the epoch durations. One distribution was associated 

with the speech and ranged from one time quantum (a time quantum 

being 50 ys) to 40 time quanta. The second distribution was assoc­

iated with the silence intervals and ranged from one time quantum to
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2047 time quanta. Since each epoch parameter was independently coded 

and thus had a seperate codeword alphabet the speech epoch duration 

codeword alphabet could be a subset of the silence epoch duration 

codeword alphabet. However, the total codeword alphabet required 

for the representation of all possible epoch parameters was vast with 

2047 codewords being required to represent the epoch durations alone.

The synthesis of the speech waveform employing these epoch 

parameters was straight forward. Utilising a look-up table of stored 

epoch shapes, the epoch duration and number of extrema were employed 

to reference the required epoch shape. The individual samples of 

the referenced shape were scaled relative to the peak magnitude and 

then output. The synthesis algorithm assumed alternating polarity 

of the epoch peak magnitude. Epochs of three or more extrema were 

synthesised as a symmetric three extreme segment with a minima at 

A/2, A being the peak magnitude.

To investigate possible data reduction techniques for the 

transmission of TES codewords it was decided to utilise the algor­

ithms developed by Al-Doubooni for the initial simulation exercises 

before progressing to implementing any techniques of significance in 

realtime. However, due to the vast codeword alphabets described 

above some adjustments to the parameters output from the encoder 

were required before these algorithms could be utilised. In order 

to be able to implement algorithms in real-time, a flexible simplex 

digital voice channel was developed. In section 2.2 the adjustments 

to the coded speech files produced by Al-Doubooni’s algorithms are 

outlined and section 2.3 describes the simplex digital voice channel.
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2.2 Simulation Investigations

Al-Doubooni's algorithms were not developed for the simulation 

of a feasible speech coder but as a vehicle for studying factors

governing data rates and speech quality. The algorithms were implem­

ented in non real-time on a Digital Equipment PDF 8/e minicomputer. 

The input speech and coded speech together with the synthesised 

speech were all stored on the PDF 8/e minicomputer disk storage

medium.

The necessary buffering between the variable-rate source and 

the constant-rate channel was not simulated and therefore, distor­

tions due to buffer underflow and overflow do not occur within the 

synthesised speech. The effectiveness of, and distortions introduced 

by, a data reduction technique could therefore be studied without

having to distinguish between the distortions due to buffering and 

those due to the algorithm.

In a real-time system, where the input speech is bandlimited 

to the standard telephone bandwidth, epoch durations greater than 2ms 

(40 samples) are, in general, small in magnitude and infrequent.

Spurious epochs of durations greater than 3.2ms (64 samples) are trun­

cated to 3.2ms. Periods of silence and low level noise are repre­

sented by the transmission of a special codeword which represents a 

fixed epoch duration of 2ms and zero magnitude. The number of spec­

ial codewords transmitted depends upon the duration of the silence 

interval or segment of low level noise. The maximum epoch duration 

encoded in a real-time system in therefore 3.2ms.
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However, within Al-Doubooni*s TES encoding algorithm the thres­

holding technique implemented for the coding of silence and low level 

noise produced epoch durations in excess of 0.1 seconds. Therefore, 

before the coded speech file produced by Al-Doubooni's TES encoding 

algorithm could be utilised its format had to be altered to resemble 

that produced by a 'physical' system. This was achieved by omitting 
all epochs whose duration exceeded 2ms and whose peak magnitude was 

zero. It was hypothesised that the silence codeword would not play 

a role in any data compression technique because it invokes a separ­

ate synthesis routine and any corruption of this codeword by a data 

compression algorithm could result in significant deterioration in 

the quality of the synthesised speech. Thus to remove such codewords 

from the coded speech file would not affect the results of simulation 

exercises.

Once data compression and expansion transformations had oper­

ated on a coded speech file, which had had the "silence" intervals 

removed, the synthesised speech produced using Al-Doubooni's algor­

ithm would have been devoid of the majority of the normal conversa­

tional inter-word pauses. Therefore the capability to replace the 

"silence" intervals previously omitted was deemed necessary and was 

implemented.

Two Fortran programmes were developed. One to remove the 

silence intervals, SILRM.FT, and another to re-insert such intervals, 

SILRP.FT. SILRM.FT required the coded speech file, CSFl.DT, as its 

input and created a coded speech file, OUTl.DT. OUTI.DT had all 

those epochs with durations greater than 2ms and of zero peak magni­
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tude omitted.

Once OUTl.DT had been transformed, and inverse transformed, 

via a data compression technique, provided the transformations had 

not eliminated or created extra epochs, the silence intervals were 

replaced by SILRP.FT. This program required two input files: the 

original coded speech file, CSFl.DT, and OUTl.DT or its equivalent, 

and created an output file, 0UT2.DT.

The epoch parameters of CSFl.DT were sequentially inspected. 

If an epoch did not have a duration greater than 2ms and zero peak 

magnitude, a set of epoch.parameters were transferred from OUTl.DT to 

0UT2.DT, otherwise the epoch parameters were transferred from CSFl.DT 

to 0UT2.DT. Thus 0UT2.DT is OUTl.DT with the silence intervals of 

CSFl.DT. Figure 2.2.1 depicts this entire operation.

A further program PAREXT.FT was developed for the sequential 

extraction, from the coded speech file, of one of the three epoch 

parameters. This aided the user in the production of sequential 

plots of the epoch parameters which were extensively used during the 

simulation investigations.

2.3 Real-Time Digital Voice Channel

The system described here is not a rigid solution to the prob­

lem of serial transmission of Time Encoded Speech. The overriding 

design criterion was flexibility and as a working basis the following 

properties of a comprehensive system were included:
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(a) Serial transmission of binary data.

(b) Arbitrary channel bit rate.

(c) The only external synchronisation is the 

bit timing information.

(d) Non-propagation of channel errors.

(e) "Filler-words" as an essential element

of the system.

(f) Optional inclusion of "silence-words".

(g) Optional inclusion of "repeat-words".

(h) Amplitude information included on a 

fixed pattern.

In line with terminology used in the majority of the literature 

on coding theory, "symbols" has been reserved to denote the indivi­

dual members or "letters" of the underlying set used in transmission. 

For example, in a binary system, the symbols are 0 and 1. Therefore, 

the expression "tes-word" will appear in preference to "tes-symbol" 

and similarly for "amplitude-word","repeat-word" etc.

A simplex system was developed based on two Plessey MIPROC 16F 

processors. One functioned as the transmitter and the other as the 

receiver. A uni-directional serial interface, with an arbitrary 

preset constant transmission rate and the option of inserting inver­

sion errors into the bit stream, was introduced between processors.

Section 2.3.1 describes a MIPROC processor and the software 

development tools used. Section 2.3.2 discusses the choice of code 

structure and dictionaries. Section 2.3.3 presents the read-only 

data structure employed whilst section 2.3.4 discusses the external
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hardware and executive software. Details of the analogue interface 

between the input speech and transmitter, and that of the receiver 

and the output speech are described in section 2.3.5. Section 2.3.6 

describes the digital interfaces between the two processors and 

section 2.3.7 describes the modular implementation of the analysis 

and synthesis associated with TES. The support software generated in 

conduction with the system is described in section 2.3.8. Finally, 

the extrema and zero-crossing detection routines utilised in the 

example algorithm listed in appendix 1, are presented in section 

2.3.9.

2.3.1 Miproc System

An overview of the complete system is presented in figure 

2.2.2. The Plessey Miproc 16F [40] is a single board 16 bit pro­

cessor fabricated using low power schottky TTL gates. The main 

features of this processor are:

- two general purpose registers.

- an index register.

- a memory address register.

- 170 possible instructions.

- execution time of 250ns for 

single cycle instruction.

- 64k memory addressing capability.

An extra board is required to utilise the indexed addressing 

mode of some of the instructions and the interrupt facility. The
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Miproc architecture has completely separate data memory and program 

memory addressing spaces.

Two identical Miproc systems were used in the configuration of 

figure 2.2.2. Each system was equipped with:

- 2k of program memory.

- 6k of data memory.

- a 12 bit analogue-to-digital converter.

- a 12 bit digital-to-analogue converter.

-  a dual 16 bit parallel interface.

- a 16 bit by 16 bit hardware multiplier.

- a resident monitor.

Although the hardware multiplier forms a 32 bit product in 250 

ns, loading of the multiplier and multiplicand from arbitrary memory 

locations and the transfer of the product to arbitrary memory loca­

tions required a total of eight instructions (2ps). Only the 

most significant bit of one channel of the parallel interface was 

employed to form the serial data link.

The Miproc resident monitor provided examine and deposit, break 

point, de-assemble, single step, load, dump and verify facilities.

A Digital Equipment PDF 11/34 was employed to emulate the monitor

console under MLINK providing the facilities for loading from and 

dumping to disk files created under RT-11. A cross-assembler for 

the convertion of programs developed in mnemonics to machine code was 

also available on the PDF 11/34 thus completing a powerful software 

development capability.
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2.3.2 Code Structures and Dictionaries

(i) Code Structures

Of particular concern in a real-time implementation of TES is 

the irregular rate at which data is extracted from the waveform. 

This necessitates that some form of buffering be interposed between 

the irregular rate source and the constant rate channel. Since the 

buffer must be of finite capacity in a real-time system the possibil­

ities of buffer underflow and buffer overflow must be considered and 

contingencies for such eventualities organised. If the channel rate 

is faster than the symbol generation rate, the buffer in the trans­

mitter will empty. At such a time the channel must be kept occupied 

by the transmission of a "filler-word". The "filler-word" is formed 

from a special pattern of digits which are unambiguously recognised 

by the receiver.

To enable the inclusion of specialised codewords it was assumed 

that the serial data stream would comprise of a succession of ele­

ments. Each element being either a filler-word or data frame. Each 

data frame may be either a specialised codeword, such as the silence- 

or repeat-word, or an amplitude-word followed by a group of N tes- 

words. Figure 2.2.3 illustrates possible data frames*

To further retain flexibility in the system, separate diction­

aries were implemented so that the amplitude-dictionary was the 

totality of amplitude-words and the tes-dictionary the totality of 

tes-words. Certain special cases may arise when conditions are 

placed on these dictionaries eg. When the amplitude-dictionary is
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empty and the system is "amplitudeless" as in the same sense as that 

of infinite clipping. Alternatively, it may be that the amplitude- 

-dictionary is a proper subset of the tes-dictionary.

Since no conditions were placed on the construction of the two 

dictionaries, they were considered disjointed and not necessarily 

having the same structure eg. constant length codewords in the ampli­

tude-dictionary and variable length codewords in the tes-dictionary. 

Such a structure had provisions for combining the dictionaries or 

omitting the amplitude-dictionary in special applications.

It was decided that the silence-word would be decoded as if it 

were a single descriptor for a group of N epochs of fixed duration 

and zero amplitude. It therefore replaced the standard data frame 

of "amplitude-word followed by a group of N tes-words". If a member 

of the amplitude-dictionary was reserved as the silence-word, the 

receiver recognised its presence and inserted a group of zero ampli­

tude epochs. Similar remarks apply to the inclusion of a repeat- 

word.

Since the filler-word was extracted from the bit stream on 

every occurrence and was always preceded by either another filler- 

word or a data frame, it also provided the minimum synchronisation 

requirement of the channel. The filler-word was constrained to 

occur only at the beginning (end) of a data frame and was not a 

member of either the amplitude- or tes-dictionary. Therefore, the 

construction of the two dictionaries and filler-word were not inde­

pendent. For efficient synchronisation in the presence of channel 

errors it was necessary to augment the naturally occurring filler-
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words (due to transmitter buffer underflow) with deliberately inser­

ted filler-words at a set rate. Figure 2.3(a) depicts the codeword 

classifications, while figure 2.3(b) provides an example of possible 

dictionaries where the amplitude-dictionary is based upon a 5 bit 

constant length code and the tes-dictionary is based upon a 4 bit 

constant length code.

(ii) Code Dictionaries

The code structure selected was, in general, one in which the 

same codeword could have two different meanings, depending on its 

position within the data frame. Therefore, correctly identifying 

position within the data frame was essential. Indeed it was felt 

thatp the importance of maintaining the correct frame boundaries 

outweighed that of conventional error protection for guaranteeing 

the data within the frame. Because of this, the vast bulk of linear 

algebraic coding techniques [41-43] were not considered.

Constant length codes had the attractive property that once 

synchronisation was achieved, simply counting the number of bits 

provided for continuing synchronisation. Methods of synchronising 

constant length codes have been suggested by many authors. Usually 

these methods require special coding of the message, as in comma-free 

codes [44-47] or the periodic insertion of a comma between blocks of 

messages [48,49]. For application to small dictionaries, comma-free 

coding has an inherently large redundancy. The word "comma" is inter­

preted as a sequence of symbols which cannot occur in any valid sequ­

ence of data-words. The latter approach was anticipated in section
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2.3.2(1) when it was stated that the filler-word could provide the 

minimum synchronisation. The overall redundancy in this approach 

(including the bits needed for synchronisation) increases with the 

frequency of transmission of the comma and is therefore, to a certain 

extent, under the control of the transmitter.

The self-synchronising properties of some variable length codes 

were not universally applicable in the system under development due 

to the structure imposed upon the sequence of codewords. For such 

codes, decoding from an arbitrary starting- point in a given sequence 

eventually results in the correct word endings being identified [50]. 

However, without further additions or modifications, such a code 

cannot identify the frame boundaries and hence a possible change of 

dictionary. Furthermore, a transmission error may result not only 

in the decoding of the wrong codewords but even the wrong number of 

codewords, which would also affect frame boundary identification.

Given a finite dictionary with a maximum length for its codes, 

there exists a finite number of variable length codes. A procedure 

for constructing dictionaries which minimise the average number of 

code symbols required to encode a "message" was proposed by Huffman 

[51]. Similarly, codes can be constructed for minimising the proba­

bility of buffer overflow where the said buffer is necessarily inter­

posed between the codeword source and the channel. Constant length 

codes cannot be applied to achieve such optimisations. Minimisation 

of the expected delay for matching the constant rate channel to the 

variable rate source not only requires a knowledge of the isolated 

word probabilities but also of their sequential statistics. There­
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fore, the optimisation procedures which generalise Huffman's algor­

ithm cannot be applied here because they only utilise the long-term 

codeword probabilities. However, this does not affect the ability 

of variable length codes to reduce, if not minimise, such functions.

The implementation of the digital interfaces developed (section 

2.3.6) were to be equally suited (ie. employed the same assembler 
routine) to constant and variable length codes given some minor 

constaints on allowable dictionaries.

2.3.3 Read-Only Data Structures

The processing time required for a real-time TES implementation 

was obviously at a premium. It was therefore the function of the 

read-only data structures, commonly termed 'look-up tables', to reduce 

to a minimum any repetitive calculations and data manipulations. By 

performing all the necessary calculations beforehand and storing the 

results, the only processing overheads were those of addressing the 

relevant portion of the look-up table. These overheads were related 

to the amount of structure built into the look-up tables. The final 

composition of real-time calculation and look-up operations was a 

compromise between two options;

(1) the extravagant use of processing time 

for repeated calculations, 

or (2) the complexity of addressing diverse 

look-up functions.

It was clear that at some stage the limitations of data memory
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size would play a role. However, initially the view that data memory 

was cheap and readily available was adopted.

Two principal gains were made by identifying those parts of the 

processing which would benefit from the application of look-up tables 

and then defining a precise format for such tables. Firstly, the 

preparation of the tables was made semi-automatic and secondly, the 
low-level coding was simplified arid standardised. Since the prepar­

ation of the tables was without reference to any actual memory loca­

tion, they were relocatable and therefore regarded as physical Read- 

Only Memory (ROM) to be loaded anywhere within the data memory address 

space.

Ah example to illustrate the above points is given in figure 

2.4. The purpose of this table is to convert amplitude information 

as established within the transmitter into a corresponding transmitter 

buffer entry. The look-up table contains entries, correctly ordered, 

for each possible amplitude value and the first entry is used to 

verify that the amplitude legal value is legal.

The format of the decoding ROM for amplitude codewords is 

shown in figure 2.5. The two arrays contained constants required in 

the decoding algorithm (SUMl(k) = ^^(k), SUM2(k) = of appendix

2). The application of the variable length decoding algorithm with 

the ROM of figure 2.5 was considered superior to the simple "code 

book" approach as the latter would occupy an enormous amount of 

memory for the codewords envisaged (up to 12 bits).

Figure 2.6 gives the format of the ROM for the encoding of tes-
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words. The ROM is essentially a two dimensional matrix stored by 

columns. The first two locations of the table were used to verify 

the legality of the row and column numbers. The column offsets were 

pre-calculated and related to the start of the ROM.

The format of the ROM employed to decode the tes-words and to 

store the look-up shape for waveform synthesis is given in figure 
2.7. To distinguish one look-up shape from another and minimise 

computation, it was necessary to record the length, in samples, of 

each shape.

2.3.4 External Hardware and Executive Software

Each program had one analogue and one digital interface separ­

ated from the main analysis and synthesis sections by first-in first- 

out (FIFO) buffers. Associated with each interface was an interrupt 

service routine (ISR). The analogue interface was assigned higher 

priority than that of the digital interface. In order to minimise 

sampling "jitter" the analogue interrupt service routine was perm­

itted, as far as was possible, to interrupt the digital interrupt 

service routine. Both sampling and transmission were controlled by 

external clocks.

With the boards available, the most sensible means of trans­

ferring data between the Miproc processors was via one channel of 

the parallel interface card (the serial interface cards were restric­

ted in their formats and dedicated to servicing the monitor termin­

als). By driving the interface cards interrupt generation circuitry
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at a known rate and transferring, under software control, one bit on 

a single line of the external bus it was possible to continuously 

change the bit rate of the serial link. If timing overheads assoc­

iated with the interrupt service routine proved too great, it was 

then possible for up to 16 of the external bus lines to be utilised 

and, provided the bit-rate calculations were suitably ammended and 

the order and singularity of the data bits respected, it would remain 

valid to talk of a serial transmission channel.

- To avoid programming complexities it transpired that it was

sensible to devote the most significant line(s) of the external bus

for data transfers. Once the appropriate word had been output to the

control register of the transmitter's interface card, an interrupt 

was generated in Miproc 1 when "DATA STROBE IN" went low. The soft­

ware responded, if the interrupt was unmasked, by executing the 

transmitter interrupt service routine. Similar remarks apply to 

Miproc 2. Thus by connecting the "DATA STROBE OUT" port of the 

transmitter (which goes low whenever data is put on the external bus) 

to the "DATA STROBE IN" port of the receiver, the required synchronis­

ation of bit timings between processors was achieved. Thus the trans­

mission rate clock was input to the "DATA STROBE IN" of channel A of 

the transmitter parallel interface and channel B of the parallel

interfaces acted as the serial link between transmitter and receiver. 

An outline of the external hardware necessary for the interface is 

given in figure 2.8.

The executive software performed the following functions:

- set up hardware interfaces.
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- initialisation of program variables and buffers.

- control of analysis and synthesis routines.

- processed fatal error conditions.

The transmitter’s executive software ensured that the analysis 

continued as long as the input buffer (which contained signal samples) 

contained data. Conversely, the receiver's executive software ensured 

that the synthesis continued as long as the output buffer was not 

full. In the receiver, during system initialisation, dummy codes 

were inserted into the receiver buffer. These codes represented a 

tone which was synthesised and repeated until synchronisation was 

achieved, at which point they were overwritten by received data.

Any error conditions occurring during the execution of either 

program was considered fatal causing a diagnostic message to be 

output to the monitor terminal followed by a halt in program execu­

tion. Figure 2.9 gives the flowchart of the executive software for 

both transmitter (Tx.) and receiver (Rx.).

2.3.5 Analogue Interfaces

The analogue interfaces (figure 2.10) were straightforward. 

Prior to sampling, the input speech was bandlimited to the standard 

telephone bandwidth (300 to 3400 Hz) and the synthesised output 

speech samples were low-pass filtered with a cut-off frquency at 

3400 Hz.

In the transmitter, analogue-to-digital conversions (ADC) of 

the input speech were triggered by the falling edge of an external
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clock. The converter's "end of convert" signal caused an interrupt 

which was serviced by the analogue interface software. The ISR 

allowed a constant value to be subtracted from the converted signal 

immediately prior to storage. This ensured that the analysed signal 

had zero mean. After writing to the sample buffer, a test for immin­

ent buffer overflow was conducted which indicated whether the pro­

cessor was capable of processing the samples fast enough. If the 

buffer were to overflow then a fatal error condition was generated.

In the receiver, the analogue ISR performed a test to ensure 

that the FIFO containing the synthesised samples was not empty. An 

empty buffer would have occurred if the output samples could not be 

computed fast enough and resulted in a fatal error condition. How­

ever, if a sample was available in the buffer, it was read and output 

to the digital-to-analogue converter (DAG) and then the interrupt 

latch was cleared.

Both routines were clocked at the same frequency, usually 10, 

15 or 20kHz depending on the complexity of the main program.

2.3.6 Digital Interfaces

The digital interface software was more involved than that of 

the analogue interfaces. This was a consequence of the fact that

the filler-word may well be up to three Miproc 16 bit words long

(depending upon the data frame employed).

In order to accommodate variable length, as well as constant 

length codes, the buffer structure characterised in figure 2.11(a)

- 49 -



was employed. The 16 bit words stored in the buffer were split into 

two fields. The most significant 4 bits (count field) indicated the 

number of valid bits in the least significant 12 bits (data field). 

There was therefore a limit of 12 bits to the size of the data word 

and a conventional restriction that the most significant bit of the 

data occupied bit 11 of the buffer. By utilising such a buffer 

between the TES analysis and the serial channel, all possible data 

types were treated alike by the bit orientated transmission routine.

A flowchart of the transmitter digital interface is given in 

figure 2.12. Transmission of a single bit occurred in response to 

an externally generated clock signal (section 2.3.4). The ISR assoc­

iated with the transmission buffer retained a count of how many bits 

of the current word were left to transmit. If there were no words 

in the buffer, a filler-word was inserted into the bit stream. The 

test for an empty buffer involved comparing the read and write pointer 

values. It was conceivable that the ISR might interrupt that portion 

of the transmitter program which updated the write pointer. To 

prevent this causing any problems, the pointer update was performed 

after a complete data frame had been transcribed to the buffer. The 

filler-words introduced for the purpose of additional synchronisation 

passed straight through the transmitter buffer.

Figure 2.11(b) shows the actual transfer of the data stored in 

the buffer of figure 2.11(a) for the situations where one, two and 

four external bus lines are used to form the "serial" link (see 

section 2.3.4). The short dash ( - ) indicates data-word boundaries.

The receiver ISR had to do more than merely take bits off the
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channel and buffer them individually, it was also required to achieve 

de-framing of the bit stream into its elements. It therefore had to 

acknowledge the presence of filler-words and be able to distinguish 

the various species of data-word.

Since filler-words were removed before they entered the receiver 

buffer the ISR introduced a delay equal, in bits, to the length of 

the filler-word. For ease of programming this length was constrained 

to a multiple of 16. The bit stream was continuously scanned for the 

filler-word (synchronisation-word) and re-synchronised on its every 

occurrence. This prevented erroneous synchronisation from persisting 

indefinitely.

At any instant the receiver might be out of synchronisation 

either because it- had been turned on at an arbitrary time or because 

an error had caused loss of synchronisation. One bit of the system 

status flag was reserved to indicate the presence or absence of 

synchronisation. Once synchronised, the receiver must identify from 

which dictionary decoding is to take place. This was accomplished

by utilising another bit of the status flag. If this bit was set

the next word was drawn from the amplitude-dictionary and if clear 

from the tes-dictionary.

The receiver digital interface flowcharts are given in figures 

2.13(a),(b) and (c). The receiver's ISR was equally well suited to 

decoding constant length and variable length codes. A bit count was 

continually compared with the value of the maximum number of bits 

per word (a value stored within the decoding ROMs). A fatal error

occurred if the bit count exceeded this limit, otherwise the decoding
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continued. The 'ceiling' values were pre-calculated (see appendix 

2) and stored within Decoding Array 2 of the decoding ROM (figures 

2.5 and 2.7).

To retain flexibility of data frame structure, counters were 

incorporated to assess the number of amplitude and tes-words decoded. 

This made it possible to transmit more than one amplitude-word, a 

feature which might be desirable in a special case.

2.3.7 Analysis and Synthesis Modules

The processing involved in analysis and synthesis was sub­

divided into three 'subroutines';

(1) that associated with individual samples

(2) that associated with epochs

(3) that associated with complete data frames (ie. N epochs)

Within the transmitter (analyser) the sample routine had to 

read a sample from the ADC buffer, update the descriptive parameters 

of the current epoch and check whether an "end of epoch" had been

reached. This was indicated by a change in sign of the input signal.

The epoch routine had to validate, encode and reset the descriptive 

parameters of the previous epoch, update envelope information and 

check whether the data frame was complete. The frame routine valid­

ated, encoded and reset the envelope parameter(s) and transcribed 

the complete data frame to the transmission buffer. In periods of 

high data generation rate, the transmission buffer may not have room 

for the complete data frame. It was therefore the responsibility of
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the frame routine to test for imminent buffer overflow and act accord­

ingly. The overflow prevention stratergy had to respect the frame 

structure of the data within the transmission buffer. To this end, 

it proved useful to maintain a record of the transmission buffer 

write pointer which indicated the beginnings of the last M frames. 

These values were stored in a ’discard' buffer, a location of which 

was overwritten every time a new frame was processed. The length of 

this FIFO buffer, M, determined the amount of data, in frames, to be 

discarded. In the event of imminent transmission buffer overflow, 

the write pointer of the transmission buffer was overwritten with the 

current output from the 'discard' buffer. This effectively back 

spaced the write pointer and discarded M complete data frames. The 

current data frame was then written to the transmission buffer. In 

addition to, the basic frame processing, the transmitter retained a 

count of the number of frames transmitted and at regular intervals, 

in terms of complete data frames, inserted a filler-word into the 

data stream. This provided a synchronisation facility to augment 

the built in dependence on 'buffer underflow' filler-words.

Similar remarks to the above can be made for the receiver 

software. The sample routine computed the next sample by multiplying 

the correct look-up value by the envelope factor and stored the 

result in a FIFO buffer ready for output by the analogue ISR. The 

sample routine accessed the epoch processing routine if the end of 

the synthesised epoch was reached. The epoch routine decoded the 

variables which ensured that the correct look-up shape was addressed, 

reversed the polarity of the scaling factor and at, the end of the 

data frame, accessed the frame processing routine. The frame pro­
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cessing routine handled imminent receiver buffer underflow and decoded 

the amplitude-word(s). Once again, it proved useful to maintain a 

record of the receiver buffer write pointer which indicated the 

beginnings of the last M frames. These were stored in a 'repeat' 

buffer, a location of which was overwritten every time a new frame 

was received. The length of this buffer determined the amount of 

data, in frames, that was to be repeated. In the event of imminent 

receiver buffer underflow, the receiver buffer read pointer was over­

written by the current output from the repeat buffer. This effect­

ively backspaced the read pointer causing the previous M data frames 

to be repeated.

To reduce the perceptually disturbing effects which result 

when a series of epochs are repeatedly synthesised, each time the 

read pointer was backspaced, the amplitude-word(s) at that location, 

if greater than zero, were decremented. Therefore, following a 

series of repeats, the amplitude-word(s) may have been reduced to 

zero resulting in 'silence' being synthesised.

Figures 2.14(a),(b) and (c) give the transmitter and receiver 

sample, epoch and frame processing routines.

2.3.8 Software Support

Once the read-only data structures had been defined (section 

2.3.3) a suite of Fortran programmes were developed by P. S. Cooper 

[52] to run on the PDF 11/34. These generated ROM files according 

to parameters set interactively.
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The amplitude encoding and decoding ROM's were produced using 

a program which required inputs to specify the number of possible 

amplitude levels, the degree of compression (in the case of logar­

ithmic characteristics or zero for a linear characteristic), the 

number of codewords and their lengths (n^s of appendix 2). The 

program constructed the actual codewords and computed the relevant 

buffer entry (count field and data field) for each possible input 

level. Figure 2.15 demonstrates program/user interaction required

to create a 7 bit logarithmic ( P = 255) quantiser. The user respon­

ses are underlined.

The corresponding program for generating the TES encoding and

decoding ROM's required data to specify the minimum and maximum

epoch lengths (dimension 1) in samples, the minimum and maximum

number of extrema (dimension 2), the number of codewords and their 

lengths (n̂ ŝ of appendix 2). For each codeword the user specified 

minimum and maximum values of dimensions 1 and 2 and the synthesis 

shape. Figure 2.16 demonstrates the inputs required to create a six 

bit (63 codeword) linear epoch encoder with:

(a) minimum value of dimension 1 : 1

(b) maximum value of dimension 1 : 64

(c) minimum value of dimension 2 : 1

(d) maximum value of dimension 2 : 6

The synthesis shapes were stored individually in disk files 

and were created and edited by further Fortran programmes. Figure 

2.17 gives an example of one possible TES-coding matrix for an alpha­

bet of 39 codewords which could be implemented using the program
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described above.

2.3.9 Extrema and Zero-Crossing Detection

The listing of appendix 1 gives the code developed to transmit, 

in real-time, a TES data frame which comprises of one n-bit amplitude- 

word (maximum of 2# - 1 codes) per N m-bit tes-words (maximum of 

2m - 1 codes), where n + N.m is less than 49. Silence- and repeat- 

words were not incorporated into this particular coding but the 

provision for extra synchronisation- (filler-) words was included. 

The object of this section is to describe the techniques employed in 

this implementation for the detection of extrema and zero-crossings.

(i) Extrema Detection

An extreme was defined as occurring when the gradient between 

successive samples changed sign. Mathews [53] demonstrated that 

extrema which were small, in comparison with the local topography, 

may be omitted without causing a perceptible difference to the synth­

esised speech.

The technique employed for extreme detection and the zero- 

crossing detection were similar. The previous input sample, SI, was 

subtracted from the current input sample, SO, to yield the gradient 

between samples, DSC. If the absolute value of DSC was greater than 

or equal to the extreme sensitivity measure, DSMIN, the previous 

gradient, DSl (whose absolute value was greater than or equal to 

DSMIN) and DSC were compared for a sign change. If DSC was less
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than DSMIN no comparison was performed. Once a sign change was 

detected the extrema count was incremented. Figure 2.18 portrays 

the extreme detection and small extrema elimination routine.

(ii) Zero-Crossing Detection

A "zero-crossing" was initially defined as two successive 

samples having different polarity. For the purpose of this defini­

tion zero was conventionally regarded as having a positive sign, 

being consistent with the 2*s complement binary representation of 

the system ADC’s and DAC's.

However, in noisy environments, uncertainty of zero-crossing 

positions resulted in the generation of epochs which were short in 

duration and low levelled in amplitude compared with the local topo­

graphy. In turn, this caused an increase in the occupancy of the 

transmission buffer and hence increased the possibility of trans­

mission buffer overflow. At the receiver, short epochs manifested 

as a "hissing" in the background of the synthesised speech.

To reduce this effect, a sample sensitivity measure, SMIN, was 

introduced. If the absolute value of the current sample, SO, was 

greater than or equal to SMIN, then the sign of SSI, ie. the pre­

vious sample whose absolute value was greater than or equal to SMIN, 

and the current sample were compared to determine if a sign change 

occurred. However, if the current sample value was less than SMIN 

no comparison was made. If a sign change was detected the ’end of 

epoch' routine was entered. Figure 2.19 depicts the operation of
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the zero-crossing detector and demonstrates how it reduces the number 

of short epochs due to noisy environments.

2.4 Summary

This chapter reviewed the simulation algorithm developed by 

Al-Doubooni for studying Time Encoded Speech (TES). A description 

of alterations to the coded speech files output by this TES coder 

were indicated. These alterations were necessary before the studies 

presented in chapters 4, 5 and 6 could be conducted.

Also presented was a description of a versatile real-time 

digital voice channel developed for the implementation of TES coders. 

The choice of code structures and code dictionaries, analogue and 

digital interfaces, external hardware, executive software and the 

analysis and synthesis modules were detailed. The final section 

presented one solution for the detection of the extrema and zero- 

crossings of the speech signal. The application of this simplex 

digital voice link are presented in chapter 7.
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Coded Speech File 1 
(CSF1)

Coded Speech File 2, 
(CSF2)

2047 0 0 1 7 0 9 -
2047 0 0 1 13- 0 0
1986 0 0 1 6 0 9

7 0 9 -1 24 0 0
13 0 0 1 9 0 13 -
6 0 9 1 7 0 14

24 0 0 1 3 0 0
9 0 13 -1 6 0 12
7 0 14 1 7 0 15 -
3 0 0 1 7 0 12
6 0 12 1 8 0 15 -
7 0 15 -1 11 0 9 -

54 0 0 1 7 0 9
7 0 12 1 24 0 19 -
8 0 15 -1

49 0 0 1
11 0 9 -1 .
7 0 9 1

24 0 19 -1

CSF2 CSF3 CSF3A

CSF1 CSF3 CSF3A

2047 0 0 1 7 0 9 -1 - 2047 0 0
2047 0 0 1 7 0 0 1 2047 0 0
1986 0 0 1 13 0 9 1 1986 0 0

7 0 9 -1 9 0 0 1 7 0 9 -
13 0 0 1 9 0 13 -1 7 0 0
6 0 9 1 7 0 14 1 13 0 9

24 0 0 1 6 0 0 1 9 0 0
9 0 13 -1 6 0 12 1 9 0 13 -
7 0 14 1 7 0 15 -1 7 0 14
3 0 0 1 7 0 12 1 6 0 0
6 0 12 1 8 0 15 -1 6 0 12
7 0 15 -1 7 0 9 -1 7 0 15 -

54 0 0 1 7 0 9 1 54 0 0
7 0 12 1 24 0 19 -1 7 0 12
8 0 15 -1 8 0 15 -

49 0 0 1 49 0 0
11 0 9 -1 7 0 9 -
7 0 9 1 7 0 9

24 0 19 -1 24 0 19 -

Figure 2.2.1 Shows the operation of silence removal (SILRM) 
from the coded speech files and the re-insertion 
of the silence (SILRP) into the coded speech files
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Figure 2.2.2 : System overview.
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Figure 2.2.3 : Illustration of the possible data frames.
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Figure 2.11(a) : Transmission Buffer Structure

Single Line

515 1 0 1
-- 1
1 --0 1 c 1 0 0 1 0 0 0 1 0 1 1

Dual Lines

515 1 1 0 0 0 1 0 1 1 1 0 1 0 1 0 1 0 0
B14 0 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1

Four Lines

515 1 0 0 0 1 0 0 0 0
B14 0 1 0 0 1 1 1 1 1
513 1 0 1 1 1 1 1 1 0
512 1 1 0 0 0 1 1 1 1

Figure 2.11(b) : Transfer of data stored in figure 2.11(a) 

employing 1, 2 and 4 external bus lines.
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Encoding Information Filename» 
Decoding Information Filename 

Number of input levels 
Degree of Compression 

Number of codewords

AENCOD
ADECOD
2047

127

Number of codewords of length 1 0
Number of codewords of length 2 0
Number of codewords of length 3 Ô
Number of codewords of length 4 Ô
Number of codewords of length 5 Ô
Number of codewords of length 6 0
Number of codewords of length 7 127

— Stop —

Figure 2,15 X Program/User interaction reouired for 
the construction of amplitude encoding 
and decoding files.
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Encoding Information Filename 
Decoding Information Filename

EENCOD
EDECOD

Dimension 1 minimum 1
maximum if

Dimension 2 minimum 1
maximum 6

Number of codewords 127

Number of codewords of length 1 « 0
Number of codewords of length 2 : Ô
Number of codewords of length 3 ; 2
Number of codewords of length 4 : 2
Number of codewords of length 5 ; 5
Number of codewords of length 6 *• 63

Codewo rd Number 1
Dimension 1 minimum : 1

maximum
Dimension 2 minimum ; 1

maximum 6
Epoch Definition file : EP2

Full Scale : 1

Correct 7 Y

Codeword Number 63
Dimension 1 minimum : 62

maximum : 64
Dimension 2 minimum : 4

maximum Z
Epoch Definition file : EP63

Full Scale : _1
Correct ? Y

Transcribing matrix to file 
Copying Look-up shape

>top -

Figure 2,16 *. Program/User interaction required for 
the construction of Tes encoding and 
decoding files.
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Chapter 3 

Amplitude Coding



3.1 Introduction

Licklider [54] investigated the effects of different types of 

amplitude distortion on the intelligibility and quality of speech. 

The investigations examined the techniques of peak clipping (symm­

etric, asymmetric and infinite) and centre clipping of the speech 

signal. The conclusions reached indicated that amplitude distortions 

degrade the "quality" of speech more severely than they do the "intel­

ligibility". In further experiments Licklider and Pollack [32] 

investigated the effects of differentiation, integration and infinite 

peak clipping upon the intelligibility of speech. Depending on the 

listeners skill and familiarity with the test words, for infinite 

clipping of speech waveforms random word intelligibility scores of 

at least 70% were achieved. However, the resultant speech was of 

poor quality. When the infinite clipping was preceded by different­

iation the intelligibility scores were as high as 90% for an "unpract­

iced" listener and upto 97% after the listener had become familiar 

with the vocabulary and with the effects of distortions.

From this and other work [33,55 - 57] it would appear that the 

instantaneous amplitude of speech carries little information. How­

ever, with high degrees of amplitude compression noise between words 

becomes overbearing and obtrusive such that the speech loses its 

naturalness. It is observed that the mean amplitude of speech wave­

forms is a relatively slowly varying characteristic. When developing 

TES King and Gosling (Chapter 1, section 1.4) elected to exploit this 

feature and transmit a mean amplitude signal at intervals. Generally, 

amplitude signalling produces only a very modest increase in the
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data rate but in return yields a significant increase in speech 

naturalness. Al-Doubooni [39] investigated the problem of signalling 

epoch peak magnitude for TES and, on an epoch to epoch basis, con­

cluded that "one or two bits for differential amplitude signalling 

was to be the most suitable for a low data rate system". Al- 

Doubooni's routines were not fully described: apart from stating the 
adaptive relationship investigated, step sizes employed for the 1 

bit and 2 bit differential amplitude signalling were not specified. 

Furthermore, in the system studied by Al-Doubooni the peak amplitude 

of each epoch was transmitted utilising the full range of the quant­

iser (9 bits) and although high quality speech was achieved by this 

means in simulation, such an extravagant utilisation of data is 

worthy of further investigation especially as no evaluation of 

quality versus"amplitude information per epoch was made.

Although it was believed that the amplitude signalling employed 

by King and Gosling was adequate, the question of coding efficiency 

versus quality remained unresolved. The question remaining in this 

area of TES implementation was: "Could the coding efficiency be

increased without causing further speech quality degradation or 

might this possibly even improve the speech quality?"

The objectives of the investigations to be reported were:

(a) To examine possible data reduction techniques as suitable 

candidates for amplitude signalling within a TES system.

(b) To establish the effects of amplitude signalling in the 

TES domain on the quality and intelligibilty of speech.
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(c) To establish a minimum amplitude information requirement 

for good quality intelligible speech.

An advantage of Time Encoded Speech (TES) when compared with 

other coders is its relatively simple implementation. The investig­

ations into amplitude coding techniques to be reported here were 

conducted with the view of future implementation within a TES system 

hence, throughout the algorithms development, certain restrictions 

were imposed upon a number of features such as coder complexity and 

system delay. Any significant increases in these parameters would 

reduce the overall viability of TES.

The investigations to be described were conducted in real-time 

using a Plessey Miproc 16F processor (see section 2.3.1). The format 

of this chapter is as follows : Section 3.2 outlines the techniques 

investigated. Section 3.3 presents an informal subjective appraisal 

of the speech output and section 3.4 gives the results of the perfor­

mance assessments. The conclusions of these investigations are con­

tained in section 3.5.

3.2 Amplitude Processing

The input speech was bandlimited (0.3 to 3.4kHz) using an 

eighth order Barr and Stroud variable filter and Pulse Code Modulated 

(PCM), sampling at 20kHz. Since all processing was conducted between 

interrupts generated by the Analogue-to-Digital Converter (ADC), the 

maximum processing time per sample was 50 ys (200 single instruc­

tion cycles of the Miproc 16F processor).

— 76 —



During these investigations it was necessary to prevent the 

distortion of epoch features (other than the amplitude parameter) in 

order to study the effect of amplitude signalling on the quality and 

intelligibility of speech. To eliminate the distortions introduced 

by buffer overflow and reduced mapping (quantisation of epoch dura­

tion and 'shape') the individual Pulse Code Modulation (PCM) samples, 

x(n), were input to a First In First Out (FIFO) buffer. At the 

output of the FIFO the samples were processed (scaled), depending 

upon the particular amplitude parameter being processed, to yield a 

new set of samples, x'(n).

By utilising a FIFO buffer the processing retained the original 

relative shape of the epoch and the values of the samples relative to 

the peak amplitude of the epoch. This differs from conventional TES 

where the output speech is synthesised from stylized waveshapes. As 

stated briefly above, this process also avoids the quantisation 

errors which occur when the encoder performs reduced mapping of the 

epoch duration and waveshape (numbers of extrema). Since the TES 

codewords are not generated, there is no need for buffering which is 

usually associated with the constant-to-variable rate source. This 

means that distortions due to buffer overflow are avoided.

An important point to note here is that the peak amplitude 

changes were performed coherently at every zero-crossing or after a 

group of zero-crossings such that there were no sharp discontinuities 

being created in the signal.

The algorithms were implemented such that, after parameter and 

variable initialisation, the processor idled until an interrupt was
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generated by the Analogue-to-Digital Converter (ADC). This caused 

the processor to execute an interrupt service routine which contained 

all output, input and sample analysis code. .

The extent of processing required per sample varied depending 

on whether the amplitude parameter was updated or an 'end of epoch' 

condition occurred. Thus, if the result generated by the interrupt 
service routine (ISR) was output at the end of the current routine, 

the time period between samples output would have been non-uniform 

resulting in speech waveform distortions. To prevent such occurr­

ences, the results were delayed until the next ISR and output at the 

beginning of that routine.

The value of the d.c. offset introduced by the system hardware 

was determined before processing commenced and the constant OFFSET 

was initialised to this value. On entering an ISR the current ADC 

output was read from which the constant OFFSET was subtracted which 

eliminated the systems d.c. offset. The result of this operation 

was stored in a register while the result of the previous ISR was 

output. From the time of entry into the ISR to the time of output 

of the previous results 1.5Ms (6 single instruction cycles) elapsed. 

This time period was constant for all entries into the ISR and there­

fore the period between samples output was a constant 50 Ms. Figure

3.1 depicts how uniform sample output was achieved (DAOUT(l)) when 

the result was delayed and output at the beginning of the next ISR 

rather than that achieved when 'end of ISR' processing was employed 

(DA0UT(2)).

Programmes were developed for the processing of one of three
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amplitude parameters :

1) Epoch peak amplitude

2) Epoch mean amplitude

3) Epoch r.m.s value

In the processes where all three measures were directly compar­

able no perceptible differences could be heard. This is partially 

in agreement with the findings of Phillips and Thomas [58] who con­

ducted informal listening tests and concluded that adjusting the 

signal peak amplitude to a preset level produced the best results 

and the most acceptable quality. The author found this to be the 

situation only if the mean or r.m.s value of the epoch was amplified 

to the same level as that previously employed for scaling the peak 

amplitude. The peak amplitude is, by definition, greater than the 

mean value of an epoch. Therefore, if the mean value is scaled to a 

level previously employed for peak amplitude scaling, severe peak 

clipping of the mean value scaled waveform will be experienced. As 

demonstrated by Licklider and Pollack [32], this will produce speech 

which is intelligible but of poor quality. Similar remarks apply if 

the r.m.s value was scaled to a level previously utilised for peak 

amplitude scaling.

Although a fast algorithm was developed for the calculation of 

the epoch r.m.s value, it suffered severe timing limitations. These 

limitations arose from the need for 32 bit register manipulation in 

the summation of the squared input samples, divisions for calculating 

the mean of the squares and the square root subroutine.

Therefore the peak amplitude measure was preferable to the mean
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and r.m.s measures from a computational stand point and, in the 

interest of simplicity, was employed exclusively in the subsequent 

investigations.

In view of the fact that a minimum bit-rate system was the 

overall goal of the work it was decided to commence the investiga­

tions by studying the effects of the exclusion of all amplitude 

information in the synthesis process. As the investigations pro­

gressed so the quantity of amplitude information utilised was increa­

sed and the resulting effects upon speech quality and intelligibility 

were studied.

It has been assumed that the peak amplitude of the incoming 

signal is represented by the maximum sample value. However, a sample 

may not coincide with the peak and'there will be an error introduced. 

To reduce this error the bandlimited speech was over sampled at 20kHz 

which is 2.5 times greater than the required Nyquist sampling rate. 

Therefore the inaccuracies introduced by the assumption are signif­

icantly reduced. The original work reported by King and Gosling [30] 

was also conducted using a 20kHz sampling rate. Therefore the res­

ults of these investigations will be applicable to the coders devel­

oped to date.

3.2.1 Algorithm Representation

Conventional flow charting has a number of weaknesses as a 

working document for representing assembly language programming. To 

adequately present the algorithms developed during the investigations
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to be reported, the author developed an alternative method of repre­

sentation which has been termed a SYSTEM DIAGRAM. See Apendix 3.

Although superior to conventional flow charting in the repre­

sentation of real-time assembly language algorithms, system diagrams 

cannot convey sequence timing information. To overcome this omission 

supplementary notes are required. Appendix 4 contains the supple­

mentary notes required for the system diagrams presented in section 

3.2.2.

3.2.2 Algorithms Investigated

The initial algorithm, EAMPOO, detected the epoch amplitude 

parameter, A%, on an epoch to epoch basis and normalised it to a 

preset level, L. The processing of the PCM samples, x(n), may be 

represented by equation (3.1).

L.x(n)
x'(n) =   (3.1)

Al

The system diagram for this process is given in figure 3.2. 

Since all epochs were scaled to the same peak amplitude level, the 

background noise signal, as well as the speech signal, was "amplified" 

to the same level which enhanced the background noise. To obviate 

this, the manipulation of amplitude information for noise reduction 

was incorporated into the next algorithm, EAMPIO. To reduce the 

background noise and yield speech of more acceptable quality to that 

of EAMPOO, a peak amplitude threshold was introduced. If the peak 

amplitude of an epoch was less than the threshold level then all of
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the samples forming the epoch were assigned a value of zero. The 

processing of the PCM samples, x(n), and the application of the 

threshold level may be represented by equation (3.2) which is given 

below:

L.x(n)
x’(n) = ------  if A% .GE. THRESHOLD

(3.2)
= 0 otherwise

THRESHOLD was a variable stored within the 'receiver’ and could 

be adjusted during program execution. This processing was identical 

to that of equaton (3.1) if A% was greater than or equal to THRES­

HOLD. Figure 3.3 presents the system diagram for EAMPIO.

The method of implementing equation (3.2) into a system would 

determine the transmitted amplitude information per epoch , I. If 

the tes-codewords (the epoch duration and shape descriptors) are 

transmitted, irrespective of whether the speech is active or in­

active, no amplitude information is required - equation (3.1). 

However, if a unique one bit codeword is transmitted when the speech 

becomes "inactive" (A% is less than THRESHOLD) and, on receiving 

the unique codeword the receiver synthesises all epochs with zero 

amplitude until the next unique codeword is received, the transmitted 

amplitude information per epoch. I, will equal 1/N where, N is the 

number of epochs synthesised with zero amplitude samples. In the 

extreme case (where alternate epoch peak amplitudes, A%, are less 

than THRESHOLD) N will equal one and a maximum of one bit of ampli­

tude information per epoch is required. Other implementations of 

equation (3.2) are possible and, in general, they will utilise diff­
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erent quantities of transmitted amplitude information. However, the 

technique described above has set an upper limit of one bit of ampli­

tude information per epoch and any implementation of equation (3.2) 

which requires more than one bit of amplitude information may be 

disregarded.

Since the previous process utilised one bit per epoch of ampli­

tude information, this figure was regarded as a general ’yard stick'

for further investigations.

The next algorithm to be developed, EAMP20, was directed to­

wards the tracking of a generalised amplitude envelope of the signal 

rather than that of the individual epochs. To do this the amplitude 

parameter was detected over a group of N epochs, Ajj, as well as on 

an epoch to epoch basis, A%. Where N was set before program execu­

tion. Each epoch within the group was scaled such that the individ­

ual epoch amplitude parameters, the A%'s, were set equal to that 

of the group, Afj. Equation (3.3) defines the processing conducted.

An
x'(n) = — .x(n) (3.3)

Al
The analogue-to-digital converter had a precision of eleven 

bits for magnitude. Since An was detected over a group of N epochs

the transmitted amplitude information per epoch. I, was:

I = 11/N bits/epoch (3.3(a))

From equation (3.3(a)) it was clear that as N increased, I 

decreased and when the processing was conducted over eleven epochs 

the amplitude information was once again one bit per epoch. However,
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if N = 1 then the envelope factor degenerated into an individual 

epoch amplitude while at the other extreme, an infinite group size 

degenerates the system to that of EAMPOO. • The system diagram for 

this algorithm is given in figure 3.4.

Exclusion of the slow envelope variations may result in an

increase in the number of bits required to represent the amplitude

parameter on an epoch to epoch basis. However, a more efficient

representation of amplitude might be achieved by applying a conven­

tional speech coding technique such as Deltamodulation or Differ­

ential Pulse Code Modulation (see chapter 1) for the coding of the 

amplitude parameter and some variants of this were investigated.

The initial algorithm to be developed, EAMP30, which fell into 

this category employed Delta Modulation (see section 1.3) of the 

amplitude parameter. On an epoch to epoch basis the amplitude param­

eter, , was detected and compared with its previous processed 

value, A'x-l.

If IA'i_i 1 .NE. 0

and A'x_i .LE. A% then A*% = A'j-x + STEP

or A'l-i .GT. Ai then A'l = A*i-i - STEP

If A ’l-i = 0

and IAx I .LT. THRESHOLD then A'x = 0

or IAx I .GE. THRESHOLD then IA’x I = STEP

STEP and THRESHOLD were variables stored within the receiver. 

THRESHOLD was implemented to prevent the magnitude of Ax from 

being 'decremented’ to a negative value. All PCM samples within the
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epoch, x(n), were then processed as defined by equation (3.4).

A'%.x(n)
x' (n) =    (3.4)

A i

The values of STEP and THRESHOLD were adjustable during program 

execution. This enabled optimisation of the parameters for achie­

ving, subjectively, the best possible quality and intelligibility. 

Figure 3.5 is the system diagram for this algorithm.

In an attempt to improve upon the quality and intelligibility 

of the speech produced by EAMP30, several Adaptive Deltamodulation 

algorithms were developed. The algorithms generally employed a 

recursive formula based upon the past history of the amplitude param­

eter. However, due to the computer word size, rounding errors and 

truncation errors constraints had to be imposed which severely lim­

ited the algorithms. The quality of speech produced by these algor­

ithms was also subjectively appraised to be inferior to that of 

EAMP20 and EAMP30. The adaptive algorithms were therefore abandoned.

Progressing with the conventional speech coding techniques, an 

algorithm which utilised 2 bit Differential Pulse Code Modulation 

(DPCM) for signalling the epoch amplitude parameter was developed, 

EAMP50. On an epoch to epoch basis Aj was detected and compared 

with its previous processed value, A'%_i.

If Ia 'i-i I .LE. IAi I

then A'l = A'i_i + STEPH }
} min[ Xi,X2 ]

then A ’l = A ’%_i + STEPL }

where X]̂ = Aj - (A’%_i + STEPL)
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and X2 = Ai - (A’l-i + STEPH)

If

then

then

If

and

Ia ’i-i I .GT. IAll 

A'l = A'i_i - STEPH } 

A'l = A'i_i - STEPL } 

where Xi = Ai - (A'i_i

and X2 = Ai - (A'l-i

I At - i 1 = 0

min[ Xi,X2 ]

STEPL)

STEPH)

lA’ .GE. THRESHOLD

or lA'il .LT. THRESHOLD then A'l = 0

STEPL, STEPH and THRESHOLD were variables stored within the 

receiver which were adjustable during the program execution. This 

again enabled optimisation for achieving, subjectvely, the best 

possible quality and intelligibility. Each PCM sample, x(n), within 

the epochs was processed as defined by equation (3.4). Figure 3.6 

is the system diagram for the algorithm EAMP50.

In section 3.3, which presents an informal subjective appraisal 

of the speech produced by the algorithms previously described, all 

algorithms are referred to by their codename i.e. EAMPOO etc. At 

this point it is informative to present a short summary of the algor­

ithms developed, briefly stating their overall processing function.

EAMPOO : Scaling of the PCM samples such that all epoch peak

amplitudes of the input signal are of the same magni­

tude.

EAMPIO : EAMPOO with peak amplitude threshold. If the peak
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amplitude of an epoch was less than the threshold 

value the samples forming that epoch were set to zero.

EAMP20 : The scaling is performed over N epochs. In the data

frame, the maximum value of the N peak amplitudes of 

the N epochs was detected and all N epochs were scaled 

to the same level as the maximum of the peak ampli­

tudes. No thresholding employed.

EAMP30 : First of the algorithms to exploit a conventional

speech coding technique. Deltamodulation of the 

epoch peak amplitude, on an epoch to epoch basis, was 

employed.

EAMP50 ; This algorithm employed 2 bit Differential Pulse Code

Modulation for signalling the epoch peak amplitude on

an epoch to epoch basis.

3.3 Informal Subjective Appraisal

EAMPOO scaled the PCM samples within an epoch such that the 

relative magnitudes were unchanged, but all epochs had the same peak 

amplitude value. Low level signals which occurred during periods of 

inactive speech were therefore enhanced. The overall effect was to 

produce speech of very poor quality which had a harsh metallic char­

acteristic normally associated with synthetic speech. The enhance­

ment of inter-word noise gave the impression of low intelligibility. 

Listeners who were not familiar with the utterances had to concen­

trate before being able to understand what phrase was uttered.

The introduction of an amplitude threshold, EAMPIO, for the
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indication of active/inactive periods of speech produced a marked 

improvement in quality. A threshold level of approximately 36dB 

below the maximum peak magnitude of the speech waveform was found to 

produce the better quality. The threshold level, although estab­

lished independently, coincided with that utilised by Al-Doubooni 

[39] in his TES coder.

Phillips and Thomas [57] investigated a level controller which, 

in some respects, was similar to the algorithm EAMPIO. The cont­

roller was developed for implementation at the sending end of a 

noisy channel. However, the controller utilised two thresholds (see 

figure 3.7(a)) but the system reported was effectively a single 

threshold system (see figure 3.7(b)) because one of the thresholds 

had been set equal to the smallest quantum of the systems ADC.

The level controller differed to EAMPIO in its treatment of 

epochs with a peak amplitude less than the threshold level, T% in 

figure 3.7(b). In EAMPIO, all signal samples of such an epoch were 

assigned zero amplitude. However, the level controller amplified 

the epochs samples by the appropriate gain given by the Input-Output 

characteristic of figure 3.7(b). In the two threshold system, if a 

peak amplitude was less than the second threshold, T2 in figure 

3.7(a), the epoch was not processed.

Although Phillips and Thomas reported that the algorithms prod­

uced speech which had "a significant improvement of intelligibility” 

and informal listening tests indicated that "the use of a double 

threshold might improve the quality still further" these conclusions 

were reached by comparing processed and unprocessed speech which had
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been "transmitted" over a noisy channel. The speech produced by 

EAMPIO had not been subjected to any simulation of transmission. 

It is therefore not appropriate to compare the results of the work 

by Phillips and Thomas with those reported here.

However, with the algorithm EAMPIO the speech was still harsh 
with spasmodic clicking due to solitary epochs, within the silence 

period, having peak amplitudes greater than the threshold level. It 

was also discovered that some words were truncated causing the speech 

to sound disjointed. The truncation, whether at the beginning or at 

the end of an utterance, is a characteristic of employing a static 

threshold level for the suppression of background noise. Such thres­

holds introduce a sharp discontinuity between the two modes of opera­

tion of the algorithm, viz. speech/silence. There was no hysterisis 

in the decision process which could introduce a gradual transition 

from one mode of operation to the other. The truncation was a direct 

result of an unintelligent algorithm, it was incapable of discriminat­

ing between regions of speech signal and background noise. There­

fore, when an utterance began (or ended) with a weak fricative, a 

weak plosive, had a nasal ending or was the trailing off of a vowel 

sound at the end of an utterance, then a degree of truncation of the 

utterance was experienced. The frequency of occurrence of this 

effect was therefore a function of the speech material. Although the 

truncation caused a loss of naturalness in the quality of the speech 

output, tests have not yet been conducted to determine whether it 

had any effect upon the intelligibility of the speech output.

The algorithm EAMP20 which involved processing groups of N
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epochs was developed such that the quantity of amplitude information 

per epoch, I, was made variable as indicated by equation (3.3(a)). 

The value of N (the number of epochs over which the processing was 

conducted) was incremented over the range 1 to 11. This range of 

values were studied to examine the effect of decreasing the amplitude 

information per epoch from, the unprocessed state when N = 1 (in which 
case 11 bits of amplitude information per epoch are utilised) to the 

situation where N = 11 (in which case 1 bit of amplitude information 

per epoch are utilised). When N was varied from 1 to 2, this being 

equivalent to changing the amplitude information per epoch from 11 

to 5.5 bits, a perceptible change in speech quality occurred. However 

subjectively, no deterioration in intelligibility was experienced.

As N varied from 2 to 4, the most obvious difference was the 

increased level of background noise for N = 4. However, it must be 

stressed that the background noise was not obtrusive. The change in 

level was noted because little change in speech quality had occurred. 

It was therefore difficult to distinguish between these algorithms.

The algorithm with N = 8 is of particular interest because King 

and Gosling [30] signalled the mean amplitude level of the speech 

waveform after every eighth TES codeword. In the algorithm studied 

here, with N = 8, the amplitude information per epoch was equivalent 

to 1.37 bits. The speech output was subjectively louder than the 

original and had a slight, although noticable, "tutting" during some 

utterances. This was attributed to the algorithm emphasising speech 

or aspirated sounds and was particularly noticable at the beginning 

of an utterance.
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Because more epochs were captured in each 'frame', if a frame 

overlaped a fast transition from one speech sound to another or if 

there was a rapid build up in signal level, the smaller epochs within 

the frame become amplified. It was this which caused the over emph­

asis of the speech sound, especially when preceded by "silence". A 

segment of speech processed by EAMP20, with N = 8, is given in figure 
3.8. The original bandlimited speech segment is given in figure 

3.8(a) and the output of EAMP20 is given in Figure 3.8(b)

With N = 11, equivalent to one bit of amplitude information per 

epoch, similar effects to those described for N = 8 were heard. It 

was difficult, but not impossible, to discriminate between the algor­

ithms when N equalled 8 and 11. As expected, for N = 11, the speech 

quality had suffered compared with the original yet it was considered 

to be superior to that produced by EAMPOO and EAMPIO.

The speech ouput from EAMP20 (with N = 11) had a strained 

quality with a slight granular harsh sound. The speech was clearly 

intelligible and the inter-word distortions of EAMPOO and EAMPIO 

were noticeably absent thus the processed speech was made easier to 

listen to and more acceptable.

The first implemention which employed conventional speech cod­

ing techniques was EAMP30. This algorithm utilised Delta Modul­

ation of the amplitude parameter on an epoch to epoch basis. The 

step size and threshold levels were adjustable during program execu­

tion and the optimum values were found to be approximately 34dB and 

36dB below the maximum peak magnitude, respectively. These 'optimum' 

values were established during informal subjective appraisals of the
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coders. Listeners were requested to adjust the step size and thres­

hold level until the speech output was (in their opinion) the best 

quality achievable. Once the listeners were satisfied with the 

quality, the programme was halted and interrogated for the step size 

and threshold level.

The speech output by EAMP30 sounded strained and granular and 

for some utterances had an aspirated quality. The speech was intell­

igible and superior in quality to that produced by either EAMPOO or 

EAMPIO. The inter-word noise was more noticeable for this technique 

than with EAMP20 but this characteristic was not detrimental to the 

overall speech quality. However, over long utterances some difficulty 

was experienced in differentiating between speech output by EAMP30 

and EAMP20.

In an attempt further to improve the quality and intelligi­

bility of the speech produced by EAMP30, several programmes were 

developed which utilised an adaptive step size. The adaption was, 

in general, based on either the previous value of the epoch amplitude 

parameter or a history of previous values. It was discovered that 

this approach gave no obvious improvement. The quality was generally 

inferior to that given by linear Delta Modulation, being coarse and 

’dicky' or muffled and fuzzy depending on the adaption algorithm. 

The algorithms were also heavily constrained to prevent processor 

overflow. Subjectively, the intelligibility of the adaption algor­

ithms were, in general, considered to be inferior to that of EAMP20 

or EAMP30. Since the adaption algorithms were highly complex rela­

tive to EAMP20 or EAMP30 and unable to yield speech of similar or
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better quality it was considered futile to persue them further.

The final algorithm implemented, EAMP50, again employed a 

conventional speech coding technique. EAMP50 coded the amplitude 

parameter on an epoch to epoch basis utilising 2 bit DPCM. With the 

threshold level set at 36dB below the maximum peak magnitude, the 

optimum speech output was achieved with the step sizes set at 42dB 
below the maximum peak magnitude and 20dB below the maximum peak 

magnitude.

The speech output was subjectively of better quality and less 

disturbing to listen to than that of either EAMP20 or EAMP30. Altho­

ugh the speech was of good quality and intelligible, some inter-word 

clicking was evident and during some utterances the speech had an 

aspirated quality.

3.4 Performance Assessments

During the informal subjective appraisals of the speech prod­

uced by the various algorithms it was realised that listeners exper­

ienced some difficulty distinguishing between EAMP20, EAMP30 and 

EAMP50. No single coding technique was thought to be of higher 

intelligibility than the others and a great deal of disagreement 

over preference occurred.

It was therefore proposed to conduct Diagnostic Rhyme Tests 

(DRT) to assess the intelligibility and Direct Comparison Tests (DCT) 

in an attempt to establish which, if any, was the more preferable. 

In appendix 7 an outline of the DRT and DCT is given.
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In both tests the speech output from the microcomputer was 

bandpass limited (0,3 to 3.4kHz) using an eighth order Barr and 

Stroud variable filter EF3 and recorded using a JVC cassette recorder 

(CD 1635 Mk II) onto BASF C60 LH SM cassettes.

3.4.1 Diagnostic Rhyme Test (DRT).

These tests were undertaken in order to determine the differ­

ences, in terms of intelligibility, of the synthesised speech prod­

uced by:

(i) Grouped Epochs (N = 11), EAMP20

(ii) Delta Modulation, EAMP30

(iii) 2 bit DPCM, EAMP50 

in comparison with

(iv) 11 bit/sample PCM control

The Diagnostic Rhyme Tests (DRT's) were conducted with a group 

of 10 listeners. The tests of the three coding techniques and the 

PCM control were conducted in one session lasting approximately 40 

minutes.

Table 3.1 presents the Chance Adjusted Percent Correct (CAPC) 

scores produced by the DRT’s for each listener in each test. Inclu­

ded in the table are the average CAPC scores for each test presented. 

Table 3.2 presents the average CAPC scores for each perceptual phon­

emic attribute in each test. The results given in Table 3.2 are also 

presented graphically in figures 3.9 and 3.10.

Before examining the results achieved by each of the coding
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techniques it is instructive to examine the scores of the control 

test. From Table 3.1 it is observed that the CAPC scores for the 

control test varied over a small range of. values (-3.3 to +2.1%) 

about an average value of 95.1%. Table 3.2 highlights that the 

phonemic attribute which was most difficult to distinguish was Grave­

ness, which had an average CAPC score of only 80%. Voicing also 
proved to be a problem in the control test, achieving a score of 

95%. The remaining phonemic attributes attained scores greater than 

97%. .

Inspection of Table 3.1 revealed that the individual subjects 

did not achieve CAPC scores for EAMP20, EAMP30 or EAMP50 which were 

greater than that of the control test. However, one listener (No.2) 

scored the same for EAMP50 as for the control test. It can also be 

seen that there is a small difference of 0.4% in the average CAPC 

scores for EAMP20 and EAMP50. Such a small difference is negligible 

because the average values presented were calculated from the 10 

individual subject scores for each test. The individual scores had 

been rounded to one decimal place and so had the average scores. It 

would therefore be incorrect to claim that EAMP20 is more intelligible 

than EAMP50 based upon the scores achieved. However, it is quite 

obvious that these algorithms yielded a greater intelligibility than 

EAMP30. All listeners, except for No. 9, achieved CAPC scores for 

EAMP20 and EAMP50 which were greater than that of EAMP30.

Table 3.1 shows that, on average, EAMP20 and EAMP50 have sim­

ilar intelligibility yet individual listeners preferences varied 

considerably. In order to gain some insight in to the differences
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of the various algorithms the scores for each perceptual phonemic 

attribute of each test must be considered. These are presented in 

Table 3.2 and figures 3.9 and 3.10. Examination of the scores for 

each phonemic attribute reveal that :

(i) Nasality : This attribute was impervious to distortions

caused by the coding techniques and no system 

yielded a score less than 98.8%.

(ii) Voicing : This attribute EAMP50 scored effectively the

same as the control test. However, EAMP30 gave 

a significant loss of this attribute scoring 

only 81.7%.

(iii) Compactness : Again EAMP30 was the process which yielded a

poor representation of this attribute, scoring 

only 87.5%. EAMP20 and EAMP50 achieved scores 

greater than 95%.

(iv) Graveness : This attribute only achieved a score of 80.6%

for the control test. EAMP50 attained a similar 

score and EAMP30 was again the technique to 

score the least (69.4%).

(v) Sibilation : Although the control test achieved 97.5% for

this attribute all three techniques produced poor 

representations of this attribute. The highest 

score achieved was 72.5% by EAMP20 while EAMP50 

produced the least at 56.3%.

(vi) Sustention : The discrimination of this attribute in EAMP30

was very poor (68.7%) in comparison with EAMP20 

and EAMP50 which achieved greater than 92%.

— 96 —



From the results presented so far it can be seen that to the 

majority of the listeners EAMP30 was thought to have inferior intell­

igibility to that of either EAMP20 or EAMP50. However, the choice 

of "which, if either, of EAMP20 and EAMP50 was of higher intelligibi­

lity?" varied considerably amongst the listening panel and yet they 

achieved similar average CAPC scores. From inspection of Table 3.1 

we observe that five listeners found EAMP20 more intelligible than 

EAMP50, four listeners found EAMP50 more intelligible than EAMP20 

and one listener found EAMP20 and EAMP50 of equal intelligibility.

The CAPC scores for each attribute indicated that EAMP20's 

scores were at least 2% less than those of EAMP50, except for nasal­

ity which achieved an equal score and sibilation for which EAMP20 

scored 15% better than EAMP50. Relative to the scores achieved from 

the control test, with the exception of sibilation, EAMP50 achieved 

almost 100% for all attributes. It was the sibilation which caused 

the mean CAPC scores to be very similar.

As stated previously, the results of Table 3.1 indicated that 

EAMP20 was capable of producing speech of greater intelligibility to 

that of EAMP50, albeit with only 0.4% difference. On the other hand, 

inspection of Table 3.2 reveals that it was the single phonemic 

attribute of sibilation which caused a reduction in EAMP50's average 

CAPC score. It was therefore decided to conduct preference tests in 

order to determine over which of the systems, if either, listeners 

would prefer to receive speech transmissions. For this purpose 

Direct Comparison Tests were conducted.
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3.4.2 Direct Comparison Tests (DCT)

The DCT’s were conducted employing the group of 10 listeners 

who took part in the DRT's discussed in the previous section. The 

tests were conducted in individual sessions lasting approximately 10 

minutes.

The results of these tests are summarised in the preference 

matrix of Table 3.3. The results indicate that EAMP20 and EAMP50 

are generally more preferable to EAMP30, the preference between 

EAMP50 and EAMP30 being very clearly indicated in these tests with 

all listeners indicating this distinction. However, the distinction 

between EAMP20 and EAMP30 was not so precise. During the first 

presentation one listener found no preference and another preferred 

EAMP30 to EAMP50. On the second presentation, again one listener 

found no preference but the remainder preferred EAMP20 to EAMP30.

Inspection of the preference scores between EAMP20 and EAMP50 

demonstrate a very slight bias to EAMP50. However, from such a 

small sample no clear preference between EAMP20 and EAMP50 has 

emerged.

3.5 Conclusions

The results of the investigations reported indicated that 

amplitude information of the order of one bit per epoch produced 

acceptable quality in the processed speech. The Diagnostic Rhyme 

Tests (DRT) yielded very similar scores of the order of 88% intell­
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igibility for algorithms which inserted one amplitude value for 

all epochs in a group (EAMP20 was set to one 11 bit amplitude 

codeword for 11 epochs) and for algorithms which signalled the 

difference in amplitude for successive epochs employing Differ­

ential Pulse Code Modulation (EAMP50 - 2 bit DPCM). The DRT scores 

in both cases were appreciably less than for the unprocessed con­
trol PCM samples.

The Direct Comparison Tests (DCT) indicated that EAMP20 and 

EAMP50 were generally more preferable to EAMP30, with a very clear 

preference being exhibited for EAMP50 compared with EAMP30. The 

preference scores for EAMP20 and EAMP50 produced a very slight bias 

to EAMP50, but due to the small sample employed no firm conclu­

sions may be drawn from this result.

It must therefore be concluded that even though a minimum of 

one bit per epoch has been indicated as sufficient for conveying 

amplitude information, the true intelligibility from a TES system 

will be dependent upon the amplitude encoding/decoding algorithm 

as well as a number of other features of the TES coder/decoder.
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Figure 3.2 : System diagram for the process EAMPOO.
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Figure 3.3 : System diagram for the process EAMPIO.
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Figure 3,5 : System diagram for the process EAMP30.

- 104 —



intoBUFF 'nooISR 1200 ISR

AOC NEW NEW OLD OLD RESULT OAC

1030 1101

1102
1103AOC OFFSET zc zc AOC

XBUFF
amplitude
Pa rameter
DETECTION

1000
MAX AMP damp

1210

AOC STEPL

1010

STEPHAOC
1020

Figure 3.6 : System diagram for Che process EAMP50.

-70 -10
Relative Input (dB)

-70

(A)

- -70

-70 -10
Relative Input (dB) 

(B)
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Chapter 4 

Median Filtering



4.1 Introduction

Linear time invariant filters, or equivalently linear smoothers 

have recieved considerable attention in digital signal processing 

theory and application [59,60]. The frequency selective filtering 

of linear systems enables the power spectrum at the output of the 

filter to be determined when the input is a stationary random process 

with known power spectrum. As a consequence of this it is possible 

to eliminate unwanted signal components (like additive noise), if 

the signal processing is to be based exclusively on the frequency 

content of the processed signal and the contaminating signal. How­

ever, for some applications, linear filtering is inadequate due to 

the nature of the data to be smoothed. If the signal is a composite 

of the sum of a high frequency noise component and information bear­

ing sharp edges, then a linear smoother, upon removing the noise 

signal would also smear out the edges of the original signal. Such 

smearing of the data is unacceptable in many applications. To over­

come this difficulty, the use of non-linear smoothing devices must 

be contemplated. Tukey [61] is generally credited with the idea of 

introducing non-linear filters based on moving sample medians of the 

input signal. These are referred to as Median Filters.

The signals processed using Median and Moving Average filtering 

techniques are not unlike those produced by the sequential plots.

Figures 4.1(a),(b),(c) and (d) are sequential plots of epoch 

durations extracted from a coded speech file. Inspection of these 

plots reveals a number of features due to the characteristics of
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speech. The most prominant feature being the periodicity within the 

epoch sequences due to strong voiced sounds. The epoch sequences 

have a definite structure within each 'period', plus locally small 

variations (in comparison with neighbouring periods) of the order 

of 0.02ms. Such periodicity can be observed in figure 4.1(a), 

samples 0 - 50 and 110 - 200.

The epoch sequences due to voiced sounds which are not so 

strongly pronounced also exhibit periodicity over very short inter­

vals. A number of examples of this feature are observed in figure 

4.1(b), samples 10 - 30 and 215 - 235 and figure 4.1(c), samples 200 

- 215.

Within the epoch sequences, unvoiced sounds manifest as short 

epoch durations (.LT. 0.6ms) and the epoch sequences are very erratic 

within this range. However, occasionally during unvoiced sounds, 

epoch durations greater than 0.6ms do occur in isolation producing 

an impluse-like appearance in the epoch sequence. Examples of this 

may be seen in figure 4.1(d), samples 150 - 250.

Some epoch sequences appear to have little or no structure. 

The epoch durations vary between 0.25 and 1.25ms and variations 

which are small in comparison with the local topography also exist. 

Such sequences generally occur at the transition boundary between 

voiced and unvoiced speech, stop consonants and silence. This is 

also true for the inverse case. Examples of such sequences occur in 

figures 4.1(a), samples 75 - 105, 4.1(c), samples 0 - 120 and 4.1(d), 

samples 0 - 130.
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As described in Chapter 2 Section 2.2, the epoch durations 

corresponding to the silence intervals between utterances had been 

removed. However, periods of large epoch duration (.GT. 1.5ms) still 

existed. Such segments were believed to be due to the intonation of 

the speech at the end of one utterance and the beginning of the next. 

In figure 4.1(b) the epoch durations appear to oscillate about the 

1.75 ms level. It was surmised that this feature was a result of a 

'tone-like' segment of speech with a gradually decreasing d.c offset.

When developing and/or implementing data reduction algorithms, 

features such as the locally small variations (observed within strong 

voiced sounds), the impulse-like structure during voiced sounds or 

the oscillatory effect of the epoch lengths, cause a significant 

increase in either coder complexity and/or data required for the

adequate representation of the sequence.

Very little is known concerning the perceptual importance of 

these features and what the effect upon the overall synthesised

speech quality would be if these features were either attenuated or 

eliminated. It was hypothesised that if a parameter pre-processing

algorithm were developed which attenuated or eliminated these feat­

ures previously described, whilst retaining the basic structure of 

the sequence and without causing significant degradation in quality 

of the synthesised speech, coding of the pre-processed epoch sequence 

for data reduction could be implemented with greater efficiency

and/or less complexity.

The simulation algorithms developed smoothed the epoch duration 

sequence only. The amplitude and extrema information was not pro-
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cessed. The speech was synthesised employing the algorithm developed 

by Al-Doubooni (see chapter 2)

Section 4.2 describes the linear, non-linear and dual stage 

smoothers investigated for the pre-processing of the epoch sequences 

and the results achieved using these algorithm are presented in 

section 4.3. Section 4.4 presents the conclusions of this invest­

igation.

4.2 Smoothing Algorithms

The algorithms investigated as possible candidates for atten­

uating, if not eliminating, many of the features previously described 

consisted of two linear, two non-linear and four dual stage smoothers. 

In the following sections, 4.2.1 to 4.2.3, the algorithms implemented 

are outlined.

4.2.1 Non-Linear Smoothing

Median filtering is a non-linear signal processing technique 

useful for noise suppression [62]. Median filters have several 

interesting characteristics which can, in some applications, make 

them superior to linear filters. If a signal has impulse-like compon­

ents, median filtering can eliminate them without significantly 

modifying other components and, if a signal contains step-like compon­

ents, median filtering can preserve these discontinuities. Important 

applications in the processing of signals, where edges carry infor­

mation have been reported in the literature. Rabiner et al [63]
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used median filters to extract the "smooth" component of a speech 

signal and combined median filters with other stages of linear sys­

tems to smooth noisy sequences of a discontinuous signal. Jayant

[64] proposed a median based smoother to improve digital speech 

quality in the presence of channel errors. Finally, Huang et al

[65] and Frieden [66] have used median filters in image processing 

applications.

However, the majority of existing results are based upon empir­

ical work and few theoretical aspects of median filtering have been 

published. Recently, Gallagher and Wise [67] studied and defined 

various concepts associated with median filters. In particular they 

defined the following signal characteristics.

'A 'constant neighbourhood' is a region of at least N+1 consec­

utive points, all of which are identically valued.

An 'edge' is a monotonically rising or falling set of points 

surrounded on both side by constant neighbours.

An 'impulse' is a set of N or less points whose values are 

different from the surrounding regions and whose surrounding 

regions are identically valued constant neighbours.

4.2.1.1 One Dimensional Median Filtering

Median filtering is a discrete time process in which a window 

that spans 2N+1 signal samples, where N is the order of the median 

filter, is stepped across the input signal. At each step, the points

— 113 —



inside the window are ranked according to their values, and the

median value (middle number in size) of the ranked set is taken to

be the output value of the filter for each window position. An

example is given below for N = 1 and 2.

Input 1 4 3 3 6 4 8 7 8 9 10

Output (N=l) X 3 3 3 4 6 7 8 8 9 X

Output (N=2) X X 3 4 4 6 7 8 8 X X

4.2.1.2 Initial and Final Conditions

In order to implement a median filter the algorithm must account 

for start-up and end effects at the end points of the sampled signal. 

In the example given above the initial and final conditions were not 

calculated and the missing samples were replaced by x. Rabiner et 

al [63] investigated several techniques for generating a set of 

initial and final values, including constant, linear and quadratic 

extrapolation. For most applications, constant extrapolation from 

the initial and final data points proved to be entirely adequate. 

For other methods of treating the start-up problem where less emphasis 

is given to the first and last values encountered see reference [61].

Unlike many applications, the initial and final conditions are 

not so critical for the epoch sequences because these epochs, when 

synthesised, correspond to the beginning and end of an utterance 

which is generally a low level signal. Therefore, the simulation 

algorithm employed constant extrapolation of the initial and final 

epoch durations.
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The algorithm developed for the simulation of Median filtering 

required the user to specify the order of the median filter to be 

simulated (maximum order of 5) and the input and output data files. 

A flow chart of this algorithm is given in figure 4.2(a). Investiga­

tions were limited to the simulation of first and second order median 

filters because the initial results indicated that higher order 
filters would give little further benefit.

4.2.2 Linear Smoothing

As stated earlier in section 4.1, linear smoothers (time invar­

iant filters) are useful for eliminating unwanted signal components 

based on frequency content. The linear smooothers employed by Rab­

iner et al [63] were 19 point Finite Impulse Response (FIR) low^pass 

filters. However, the epoch sequences cannot be described in terms 

of frequency components because of the variable rate at which they 

are generated and the application of a smoother similar to that 

employed by Rabiner et al would result in excessive distortion of 

the epoch sequence.

A technique for reducing the variations within the epoch sequ­

ence involving averaging adjacent samples, is termed Moving Average 

Filtering. If the number of adjacent samples in the averaging is 

kept small, then slowly varying components are retained while the 

impulse-like components are attenuated. A moving average filter of 

order N-1, where N is the number of samples averaged, is defined by:

N—1
Y(n) = I A^ x(n-m) (4.1)

m=0
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where all the coefficients, A^, are equal to 1/N. Equation (4.1) 

is also the difference equation of an N point FIR low-pass filter.

In order to implement a moving average filter, once again, 

initial and final conditions must be taken into account. For reasons 

previously explained in section 4.2.1.2, constant extrapolation was 

utilised for the generation of a set of requisite initial and final 

values.

.The algorithm developed for the simulation of a Moving Average 

filter required the user to specify the order of the moving average 

filter to be simulated (maximum order of 10) and the input and output 

data files. A flow chart of the algorithm is presented in figure 

4.2(b). As in the case of the median filters these investigations 

were limited to simulation of first and second order filters only.

4.2.3 Dual Stage Smooothing

Linear smoothers separate signals based on their (approximat­

ely) non overlapping frequency content. Signal separation using 

non-linear smoothers is best performed by considering whether the 

signal content can be termed rough (noise-like) or smooth [68]. 

Thus a signal x(n) can be regarded as

x(n) = S[x(n)] + R[x(n)] (4.2)

Where R[m] is the rough part of the signal and S[m] is the 

smooth part of the signal. Figure 4.4 shows a block diagram of a 

simple smoothing algorithm, the output of which is an approximation
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to S[x(n)]. Since the approximation in many instance is not adequate 

a second stage of smoothing is incorporated into the smoothing algor­

ithm as shown in figure 4.5.

Since y(n) = S[x(n)] (4.3)

then v(n) = x(n) - y(n) = R[x(n)] (4.4)

The second stage smoothing of v(n) yields a correction signal 

which is the ' smooth of the rough’ and is added to y(n) to give z(n), 

a refined approximation to S[x(n)]. The signal z(n) satisfies the 

relation:

z(n) = S[x(n)] + S[R[x(n)l] (4.5)

If v(n) = R[x(n)] exactly ie. the smoother were ideal, then 

S[R[x(n)]] would be identically zero and the correction term would 

be unnecessary.

In order to implement the smoothing algorithm of figure 4.5 as 

a realisable system account must be taken of the delays in each path 

of the smoother. Figure 4.6 shows the block diagram of a realisable 

version of the smoother of figure 4.5.

To simulate the dual stage smoother an algorithm was developed

which:

- accounted for the delay introduced by each 

stage of smoothing.

- summed or differenced the input signals.

The user specified the operation required (summation or differ­

ence), the two input files and the output file. A flow chart of the
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algorithm is given in figure 4.3

Simulating the dual stage smoothers using the 'black box' 

principle, enabled combinations of smoothers to be implemented provi­

ded the correct delays were incorporated within the parallel branches 

of figure 4.6. The algorithms investigated are listed below in 

Table 4.1.

1 First Stage Second Stage
1 ■ 1 
I Abrv. 1 
1 1

1 First order Median Second order Median

1 1 
1 I 
I DSA I 1 1

1 First order Median First order Moving Average
1 1 
1 DSB 1 1 1

1 First order Median First order Median
1 1 
1 DSC 1 1 1

1 Second order Median First order Median
1 1 
1 DSD 1 
1 1

Table 4.1 Dual Stage Smoothing Algorithms Investigated

As well as the algorithms listed in Table 4.1, a first and 

second order median filter were cascaded and implemented as the first 

stage of a dual stage smoother with a second stage comprising of 

either :

(a) First order Median

(b) Second order Median

(c) Cascade of (a) and (b)

The output of the algorithms was highly distorted and the 

speech, synthesised from the resulting epoch sequences, was totally 

unintelligible. Very little information could be gained from inspec­

tion of these sequences and they have therefore been omitted.
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4.3 Results

The investigations were conducted in two stages. Initially, 

only the first and second order moving average and median smoothing 

algorithms were simulated.

Comparisons of the input and output sequences indicated that 

higher order moving average smoothers were required to produce ade­

quate smoothing. However, a further increase in the extent to which 

the sequences were smoothed would have resulted in highly distorted 

synthesised speech. Also, to implement the moving average filter as 

the first stage of a dual stage smoother would have little effect 

because: the difference signal, v(n), would consist of small varia­

tions about zero. Thus w(n), the smoothed signal derived from v(n), 

would generally be zero and therefore not introduce any correction. 

Thus the second phase of these investigations simulated the dual 

stage smoothers listed in Table 4.1.

For the purpose of making comparisons, the epoch sequences 

within the output files corresponding to figures 4.1(a) and (c) were 

isolated and plotted. Several sections of the isolated epoch sequ­

ences were selected and employed for speech synthesised. Using a 

Digital Fast Fourier Transformation software package the power spec- 

trums for the segments of synthesised speech were calculated and 

plotted.

Section 4.3.1 gives a comparison/discussion of the epoch sequ­

ences while in section 4.3.2 the quality of the synthesised speech 

is discussed. Finally, in section 4.3.3 the power spectrums are
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discussed Table 4.2 provides a cross reference and guide to the 

relationship between the diagrams referred to in sections 4.3.1,

4.3.2 and 4.3.3.

4.3.1 Epoch Duration Sequence Comparisons

Figures 4.1(a) and 4.1(c) present the epoch duration sequencies 

input to the smoothing algorithms.

The First Order Moving Average (FOMA) smoother attenuated a 

significant proportion of the impulse-like features present in the 

epoch sequences (figure 4.7(b)), and eliminated the locally small 

variations observed in the periodic segments. However, some epochs 

within the periodic sections exhibited substantial distortions which 

resulted in epoch extentions of up to 75%. These epochs corresponded 

to a segment of strong voiced sound.

The Second Order Moving Average (SOMA) smoother produced great­

er attenuation and elimination of the impulse-like features (figure 

4.8(b)) but resulted in 100% epoch extention during strong voiced 

sounds. However, a sequence of samples (No. 0 to 50 of figure 4.8 

(a)) was not severely distorted and retained all but its minor 

features.

The first non-linear smoother implemented was a First Order 

Median (FOM) smoother. This smoother had a similar effect on the 

epoch sequences to that produced by the FOMA, resulting in the elimin­

ation of the impulse-like features and locally small extrema (figure 

4.9(b)). Comparing the output and the periodic input sequence
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(figures 4.1(c) and 4.9(a)) demonstrates only too clearly the effect­

iveness of a median smoother. The initial periodic sequence retained 

all but the minor features while the epochs corresponding to the 

strong voiced sound were distorted and in some instances, experienced 

extensive epoch extention.

The Second Order Median (SOM) smoother resulted in almost 

total elimination of the periodic sequence as well as the impulse­

like features. The resulting sequences contained little of the des­

ired features and served only to highlight the very general trend of 

the original sequence (figures 10(a),(b)). Obviously, a SOM smoother 

alone was too severe for the processing of epoch sequences.

The first dual stage smoother (DSA) to be implemented produced 

an output very similar to that of a EOM, with less attenuation of the 

impulse-like features. The similarity between DSl and FOM is believ­

ed to be due to the nature of the difference signal, v(n). Since 

the ouput of the FOM was similar to the original a large proportion 

of the difference signal, v(n), was zero and the output signal of 

the SOM, w(n), with v(n) as the input signal was therefore also 

generally zero. Thus the output of the dual stage smoother, z(n), of 

figure 4.6, was approximately equivalent to the ouput of the FOM.

In order to combat these effects the second dual stage smoother 

(DSB) employed a FOMA as the second stage of smoothing while the 

first stage remained a FOM. The resulting output epoch sequences 

retained the majority of their periodic structure and only the first 

two periods (figure 4.12(a) samples 110 - 120) experienced substant­

ial epoch extention. The remainder experienced relatively minor
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distortions (0.1 or 0.15ms). The impulse-like features remained 

present to a greater extent but the smoother still eliminated the 

larger impulses, figure 4.12(b).

The third dual stage smoothing algorithm to be implemented 

(DSC) utilised FOM smoothers in each stage. The reasons for invest­

igating this configuration were the same as those of the previous 

algorithm, namely: Where a SOM produced a signal, w(n), which was

mainly zero in DSA, it was hypothesised that a FOM smoother may 

produce a correction signal which was non-zero for a greater percent­

age of the time.

The output of the FOM (figure 4.9) and the output of DSC 

(figure 4.13(a)) were seen to be very similar. The main differences 

exist in the impulse-like features. The second stage smoother 

appeared to have produced a correction term which re-introduced some 

of the features eliminated by the FOM. However, they were still 

highly attenuated in comparison with the input sequence.

A SOM produced an output sequence, y(n), which was, predom­

inantly highly distorted. If this had been the first stage of a 

dual stage smoother, the difference signal, w(n), would have been 

highly active. Smoothing the difference sequence produced a correc­

tion sequence which, when added to the output of the SOM, y(n), 

reduced the extent of the distortion. If the second stage was 

another SOM, the corrective sequence would be zero and therefore 

have no effect upon y(n). Conversely, if a FOMA was employed, it 

would have little effect upon the difference sequence, w(n), and 

therefore the final output signal, z(n), would be almost identical
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to the original sequence. Thus the fourth algorithm investigated 

(DSD) consisted of a SOM as the first stage smoother which would 

yield a highly active difference signal and a FOM in the second 

stage to smooth the difference signal.

The periodic sections of the output sequence were severely 

distorted with many epochs showing extentions/contractions of over 

50%. However, the erratic sections were similarly smoothed to that 

produced by a SOMA.

4.3.2 Informal Subjective Appraisal

The speech synthesised employing the unprocessed coded speech 

files (CSF) (the data input to the smoothing algorithms) was of high 

quality and intelligibility. The description of distortions in the 

speech synthesised utilising processed CSFs are therefore relative 

to that produced employing the unprocessed CSFs.

The processed CSFs output of the smoothing algorithms were 

utilised as the input files for the speech synthesis algorithm descr­

ibed in chapter 2. The synthesised speech was output, bandlimited 

(300 to 3400Hz) and informal subjective comparisons of the synth­

esised utterances were conducted.

The quality of speech synthesised using the epoch sequences 

output from the linear smoothing algorithms was noticably different 

to that for the non-linear smoothers. The speech synthesised from 

the epoch sequence output of the SOM smoother was totally unintelli- 

igible.
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During informal listening, one listener who was not familiar with 

the sentence was able to discern the word "telephone" after a great 

deal of concentration and several repeats of the sentence.

The speech synthesised from the FOM smoothed epoch sequence 

was intelligible but sounded gargled, particularly if originating 

from a female utterances. The female fricative /s/ of 'yes’ was 
masked by noise. The male voiced sounds had a rough, dry throated, 

husky quality which affected the accent of the speaker but not the 

intelligibility, while the plosives were indistinct. Nasal sounds 

within both the male and female utterances appeared to be less dis­

tortion than the 'main body' of the complete utterance.

The epoch sequence output from the FOMA smoother, when synth­

esised, produced speech which was grainy and fuzzy but still clearer 

than that produced using the FOM epoch sequence. The male utterances 

contained prominent low frequency components which were probably due 

to excessive pitch period distortion. The female frication of 'yes' 

was severely distorted and was perceived as impulse 'dicky' noise. 

The plosives and nasal consonants were well preserved.

The synthesised speech from the SOMA smoothed epoch sequence 

was very similar to that of the FOMA. After informal listening, one 

listener did state that they thought its quality was marginally 

better than that of the FOMA.

The speech synthesised using the epoch sequence output from 

the dual stage smoothers DSA and DSB were subjectively identical to 

that produced by the FOM smoother. The major differences existed in
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the segments of erratic epochs which correspond to stop consonants 

and fricatives and transitions from one to another. In such regions, 

the synthesised speech from FOM smoothing .was noisy and frication 

were perceived as noise. Unless gross distortions have occurred 

within the corresponding epoch segments output from DSl and DS2, the 

differences in quality are extremally difficult to distinguish.

The speech synthesised using the epoch sequence output from 

DSC was intelligible and speaker recognition was possible. However, 

the quality was similar to that produced by a dirty gramophone rec­

ord: random clicking and noisy background. During some of the male

utterances, the speech had a nasal quality to it. The plosives of

'Balam* and 'Walam' were very robust to the distortions. The nasal 

sounds were severely distorted by dicky, scratchy sounds. During 

the female utterance of 'yes', the frication /s/ was highly distorted 

yet the /c/ of 'can' was easily distinguished.

The final section of speech, synthesised from the epoch sequ­

ence output from DSD, was highly distorted and not very different to

that produced by the second order median smoother.

In retrospect perhaps it is not surprising that a significant 

reduction in speech quality/intelligibility occurred. Licklider [69] 

found that the locations of the real zeros of the speech waveform 

were very important. The smoothing algorithms introduced distortions, 

in some instances severe, of the epoch durations which causes the 

distortions of the location of the waveforms real-zeros during synth­

esis.
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4.3.3 Power Spectral Density Measurements

The original speech was unavailable and therefore a segment of 

speech (figure 4.15(a)), synthesised from the unprocessed CSF (figure 

4.1(c)), was utilised to compute a power spectrum (figure 4.15(b)) 

with which generalised comparisons of power spectra, computed from 

speech synthesised using processed CSF, were conducted. The aim of 

this section is, in general, to highlight the changes in the power 

spectra due to epoch duration sequence smoothing. For this purpose 

the examples given were selected because the synthesised speech from 

which the power spectral density plots (PSD?) were calculated differed 

in quality and intelligibility.

When the epoch sequences were input to the speech synthesis 

algorithm, the distortions in the epoch duration sequence due to the 

smoothing algorithm manifested as time distortion of the waveform. 

These resulted in an increase and/or decrease in the power spectrum 

over bands of frequencies. However, due to the non-linear nature of 

some of the smoothing techniques used and the transformation from 

TES domain to time domain these effects cannot simply be catagorised. 

The time distortions were a result of both the data and algorithms 

which cannot be compensated for by post-filtering.

Investigations using differential discrimination of changes in 

the formant amplitudes and frequencies using synthetic vowel sounds 

have been reported by Flanagan [70,71]. It was demonstrated that a 

change of approximately 1.5 dB in the amplitude of the first formant 

and a 3 to 5% change in formant frequency were just discrimrainable.
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Due to the resolution of the power spectral density plots 

(PSDP), changes of less than 2dB in amplitude and 10% in frequency 

are difficult to resolve. Therefore by comparing the PSDP with that 

of the original speech it can be stated, with near certainty, that 

any differences observed exceed the 'just discrimminable' levels. 

This gives some indication as to the source of some of the distor­
tions perceived.

It was generally observed from the PSDP's that the higher 

frequencies (greater than 3.5kHz) had been distorted to a greater 

extent than the lower frequencies (less than 1.5kHz). In fact the 

first and second spectral peaks, although distorted in amplitude 

and/or frequency, had not incurred distortions of the same magnitude 

as that of the higher frequencies. Distortions in the higher fre­

quencies generally varied between 10 and 20dB over complete bands of 

frequencies and not in isolation, which was the case of distortions 

in the lower frequencies.

If we consider the distortions introduced by the smoothing 

algorithms, it is not so difficult to understand the causes of the 

trends indicated above. Within the TES domain those epochs distorted 

(increased or decreased in duration) are affected by varying percent­

ages depending on their original length, irrespective of the incre­

mental change. For example, consider epochs of duration 0.5 and 

1.25 ms. Both are increased by 0.25 ms thus having durations of 0.75 

and 1.5ms. The percentage change being 50% and 20% respectively.

Given a sequence of epochs produced by sampling speech at 20klfe 

it is not strictly true to say that an epoch of N ms in duration,
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extracted from the sequence, would produce a component at 1/2N kHz 

within the power spectrum because of inter-epoch relationships. 

However, it does help to give an indication as to why the higher 

frequencies experience the greater distortions. Applying this relat­

ively simplistic approach, the epoch distortions described previously 

would result in the original components of 2.0kHz and 0.8kHz being 

distorted to 1.3kHz and 0.6kHz, changes of 0.7kHz and 0.2kHz, respect­

ively .

As stated earlier these distortions are not predictable and 

may occur across the spectrum, the cummulative effect being an in­

crease and/or decrease in power spectrum over bands of frequencies.

Figure 4.16(b) is the PSDP for the speech synthesised from the 

CSF processed by. the SOMA smoother, figure 4.16(a). The reason for 

the prominent low frequency components, described in section 4.3.2, 

are very clear. The first and second spectral peaks were distorted, 

and inparticular, the second spectral peak was attenuated (by approx­

imately lOdB) and decreased in frequency. The spectrum below 600Hz 

was highly attenuated yet the speech was still judged to be highly 

intelligible.

The speech synthesised from the CSF processed by the SOM smoo­

ther, figure 4.17(a), was judged to be totally unintelligible. The 

PSDP computed from the segment of speech of figure 4.17(a) is given 

in figure 4.17(b). Compared with figure 4.16(b) it is clearly obser­

ved that the first and second spectral peaks had merged, the result­

ing spectral peak had also been increased in frequency. The majority 

of the spectrum below 800Hz was attenuated while at frquencies
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greater than l.OkHz the spectrum had been amplified. Such signif­

icant spectral changes resulted in the speech being unintelligible.

Finally, figure 4.18(b) is the PSDP for the speech of figure 

4.18(a), which was synthesised from the CSF processed by the third 

dual staged smoother, DSC. Comparing figures 4.18(b) and 4.17(b) it 

is observed that the spectra are very similar. However, the speech 

output from DSC was intelligible and speaker recognition was possible 

whereas the speech output from the SOM smoother was totally unintell­

igible. It was therefore presumed that the epoch duration sequences 

these power spectra related to had experienced very similar distor­

tions when smoothed and this resulted in the similar spectra on 

synthesis.

4.4 Conclusions

The smoothing algorithms investigated were found to be effect­

ive in the elimination and/or attenuation of the erratic and ’impulse­

like' features within the epoch sequences. In so doing, the smoo­

thers introduced significant distortions into the periodic epoch 

duration sequences.

It was observed that the Second Order Median smoother yielded

the greatest smoothing but the speech synthesised from the resulting

epoch duration sequence was unintelligible.

The First and Second Order Moving Average smoothers output the 

least attenuated sequence and the speech synthesised from this was 

intelligible though noticeably degraded.
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The First Order Median and Dual Stage smoothers output differed 

in the extent to which smoothing was achieved and hence the quality 

of synthesised speech.

These investigations have sought to demonstrated that only 

modest levels of smoothing may be applied to the epoch duration 

sequences before significant degradation in speech quality occurs.

Since the smoothing algorithms were investigated as possible 

pre-processors to enhance the effectiveness of other data reduction 

techniques, it must be concluded that a pre-processor of the epoch 

duration sequence, involving simple numerical smoothing, is of little 

value for it appears to degrade the quality/intelligibility of 

the synthesised waveform in an unacceptable manner. However, it 

has been suggested that median smoothing may be a useful tool if a 

more sophisticated epoch classification technique were to be adopted 

[72] .
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1 SEGMENT I ALGORITHM I
1 PROCESSED 1 ALGORITHM OUTPUT 1

1 1(a) 1
1 1(c) 1

1 1(a) 1 1st. Order 7(a) 1
1 1(c) 1 Mov. Ave. 7(b) 1

1 1(a) 1 2nd. Order 8(a) 1
1 1(c) 1 Mov. Ave. 8(b) I

1 1(a) 1 1st. Order 9(a) I
1 1(c) 1 Med, Filt. 9(b) 1

1 1(a) 1 2nd. Order 10(a) I
1(c) 1 Med. Filt. 10(b) 1

1 1(a) 1 Dual Stage 11(a) 1
1 1(c) 1 Smoother A 11(b) 1

1 1(a) 1 Dual Stage 12(a) I
1 1(c) 1 Smoother B 12(b) 1

1 1(a) 1 Dual Stage 13(a) 1
1 1(c) 1 Smoother C 13(b) 1

1 1(a) 1 Dual Stage 14(a) 1
1 1(c) 1 Smoother D 14(b) 1

Table 4.2 : Cross reference of figure numbers 

and algorithms.
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Figure 4,1(a),(b) : Sequential plots of Epoch duration output

from Al-Doubooni’s TES coder.
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Figure 4.1(c),(d) : Sequential plots of Epoch duration output

from Al-Doubooni's TES coder.
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x(n) SMOOTHER

Figure 4.4 : Black box representation of a Single 

stage smoother.

2(n)y(n)x(n)

w(n)v(n)

1st. STAGE 
SMOOTHING

2nd. STAGE 
SMOOTHING

Figure 4.5 : Black box representation of a Dual 

stage smoother.

y(p)x(n)

w (n )
DELAY

DELAY1st. STAGE 
SMOOTHING

2nd. STAGE 
SMOOTHING

Figure 4.6 : Black box representation of a 

realisable Dual Stage Smoother.
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Figure 4.7 ; (a) Epoch sequence of Figure 4.1(a) processed by a 

1st order Moving Average Filter.

(b) Epoch sequence of Figure 4.1(c) processed by a 

1st order Moving Average Filter.
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Figure 4.8 : (a) Epoch sequence of Figure 4.1(a) processed by a 

2nd order Moving Average Filter.

(b) Epoch sequence of Figure 4.1(c) processed by a 

2nd order Moving Average Filter.
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Figure 4.9 : (a) Epoch sequence of Figure 4.1(a) processed by a 

IsC order Median Filter.

(b) Epoch sequence of Figure 4.1(c) processed by a 

1st order Median Filter.
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2.5,---

250Sample Number100

Figure 4.10 ; (a) Epoch sequence of Figure 4.1(a) processed by a

2nd order Median Filter.

(b) Epoch sequence of Figure 4.1(c) processed by a 

2nd order Median Filter.
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Figure A.11 : (a) Epoch sequence of Figure 4.1(a) processed by the 

Dual Stage Smoother A.

(b) Epoch sequence of Figure 4.1(c) processed by the 

Dual Stage Smoother A.
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Figure 4.12 : (a) Epoch sequence of Figure 4.1(a) processed by the 

Dual Stage Smoother B.

(b) Epoch sequence of Figure 4.1(c) processed by the 

Dual Stage Smoother B.
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Figure 4.13 : (a) Epoch sequence of Figure 4.1(a) processed by the

Dual Stage Smoother C.

(b) Epoch sequence of Figure 4.1(c) processed by the 

Dual Stage Smoother C.
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2.5

100 250Sample Number

Figure 4.14 ; (a) Epoch sequence of Figure 4.1(a) processed by Che 

Dual SCage Smoother D.

(b) Epoch sequence of Figure 4.1(c) processed by the 

Dual Stage Smoother D.
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800 ---

-1000 --

Figure 4.15 : (a) Segment of speech waveform synthesised using the

input epoch duration sequence of Figure 4.1(c). 

(b) Corresponding power spectral density plot .

Frequency (kHs) 5.0
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800

Figure 4.16 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 4.10(b) 

(b) Corresponding power spectral density plot.

Frequency (kHz) 5.0

-30
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-1000

Figure 4.17 : (a) Segment of speech waveform synthesised using 

the epoch duration sequence of Figure 4.12(b). 

(h) Corresponding power spectral density plot.
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Figure 4.18 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 4.15(b) 

(b) Corresponding power spectra density plot.
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Chapter 5

Predictors, Interpolators and 

Extremal Coding



5.1 Introduction

Numerous redundancy reduction and data compression techniques 

have been investigated by independent researchers for applications 

within communication systems [73-78]. Their common goal being to 

ensure that only significant data is transmitted. The techniques 

reported were, in general, waveform coders rather than source coders. 

The most effective and widely used of these techniques being poly­

nomial predictors and interpolators.

The polynomial prediction algorithms were based on a finite 

difference technique by means of which an n-th order polynomial was 

to be passed through n+1 data points. The polynomial was extrapol­

ated one data point at a time to yield the predicted data. If the 

next data point fell within a tolerance band (or aperture) about the 

predicted value, it was rejected as redundant since that data point 

could be reconstructed (within a specified tolerance) using previous 

values. If the new data point was outside the aperture then it was 

transmitted.

A First Order Predictor (FOP) utilises an extrapolation 

polynomial of the form

y(n+l) = 2.y(n) - y(n-l) (5.1)

This extrapolation is a straight line between the last two 

data points. Initially the first two data points are transmitted 

and a straight line is extrapolated through them for one data point. 

An aperture is placed about the predicted point. If the next data
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point is within the prediction aperture then that point is not trans­

mitted and the line is extrapolated a further data point. If the 

next point is outside the prediction aperture then the data point is 

transmitted and the line extrapolated through the present data point 

(which is transmitted) and the previous data point. The functional 

operation of a FOP algorithm is shown in figure 5.1.

Inspection of figures 5.2(a), 5.3(a) and 5.4(a) reveal that, 

between extrema of an epoch sequence, the epochs appear to lie approx­

imately on a straight line. Pilot investigations were conducted in 

order to estimate the data reduction achievable using FOP alogrithms 

on a sequence of epoch durations.

When applied in the time domain, FOP's employed an aperture 

whose width was a constant value. For the TES domain, a choice of 

aperture width was difficult because a small aperture (%.lms) meant 

that the shorter epoch durations had a realistic tolerance band 

while the larger epoch durations had a much tighter tolerance and 

this reduced the extent of the achievable data reduction. The con­

verse situation arose when a larger aperture (^.4ms) was employed. 

Here the larger epoch durations had a realistic aperture while that 

of the shorter epoch durations was excessive. For such an aperture, 

a data reduction of 1.2:1 was achieved yet the synthesised speech 

was totally unintelligible.

A possible strategy was to make the aperture a function of the 

predicted sample or past samples. The simplest function being a

percentage of the predicted value. For example, if the predicted

value was y(n) then the corresponding aperture would be O.ly(n) for
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a 20% tolerance band. However, unless the tolerance band was greater 

than 20%, no significant data compression would be achieved since 

the shorter epochs (.LT. 0.5ms) would have no aperture. With toler­

ance bands greater than 20%, data réductions were achieved although 

but the speech synthesised was not intelligible.

It was soon realised that the application of a FOP to the epoch 

duration sequences would not yield a suitable degree of data reduction 

while maintaining a high degree of intelligibility in the synthesised 

speech. Higher order polynomial predictors may yield marginally

better results than the FOP but due to the qua si-stationary nature 

of the epoch duration statistics the synthesised speech would still 

be of very poor quality.

It was stated previously that interpolators have also been 

widely used for data compression. Interpolators differ from the

corresponding prediction algorithms by the fact that all sample 

values between the last transmitted value and the present value 

affect the interpolation. Interpolators are more efficient in envi­

ronments where the samples are perturbed by low level, high frequency 

noise [73]. A number of examples of interpolators for data compress­

ion are given in the literature [73-76]. Even though the epoch

sequences may be thought of as a sequence plus noise (chapter 4), 

the 'noise' cannot be considered to be low level and, in order to

achieve useful data reductions, large apertures would be required. 

The effect of such an aperture would be similar to that described 

earlier in case of the prediction algorithms. Therefore, for epoch 

sequences these interpolation algorithms would not yield better data
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compression than that of the predictors.

It was therefore concluded that predictors and interpolators 

of the type described could not achieve useable levels of data comp­

ression. To minimise distortions would result in an increase in the 

required data due to the rapid changes in epoch sequences.

In 1959 the results of investigations into Extremal Coding for 

Speech Transmission were reported by Mathews [53]. The paper descri­

bed h(vf time positions of a waveforms extreme were located and the 

waveform was reconstructed employing an interpolation function between 

extrema. The synthesis was such that the original extreme were 

retained and no discontinuities existed in the waveform nor its 

derivative at its extrema. The information transmitted consisted 

of the signal amplitude at the extreme and Çhe time interval between 

successive extrema. Subjectively, extremal coding was found to 

require approximately half the channel capacity of companded PCM for 

equivalent speech quality transmission.

From the work by Mathews it was hypothesised that extremal 

coding of epoch duration sequences, employing a suitable interpol­

ating function for reconstruction, may yield a significant data 

reduction whilst retaining a high degree of intelligibility together 

with reasonable quality of synthesised speech. As previously noted 

the interpolators and predictors investigated were unable to 'track* 

the sudden changes of the epoch sequences. However, Extremal Coding 

does not attempt to predict the extrema but utilises them for the 

prediction of the 'samples' between extrema. This technique would 

eliminate the need to transmit the epoch durations which exist between
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the extrema or alternatively lie outside some preset tolerance band 

about a predicted value.

In order to investigate the hypothesis, two sets of algorithms 

were developed. Such a set consisted of a transmitter and receiver 

algorithm. The first set employed extremal coding of the epoch 

duration sequence only and the remaining TES parameters were 'trans­

mitted* unprocessed. This algorithm was developed to isolate the 

type and extent of the distortions introduced by extremal coding of 

the epoch duration sequence. The second set of algorithms involved 

processing of the peak magnitude sequence as well as extremal coding 

of the epoch duration sequence.

5.2 Extremal Coding Algorithms

In section 5.1 it was stated that two sets of algorithms were 

developed and that they differed in their treatment of the peak 

magnitude information. This section describes a) the encoding, 

decoding and synthesis of the epoch sequences and b) the encoding, 

decoding and synthesis of the peak magnitude sequence (hereafter 

referred to as magnitude sequence).

5.2.1 Epoch Encoding

From inspection of the epoch sequences in figures 5.2(a), 

5.3(a) and 5.4(a) it was noted that, besides the existance of eas­

ily defined extreme, as seen in figure 5.5(a), conditions do occur 

where it may be argued that the extreme exists in one of two posit­
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ions, or that both positions are true extrema. This condition can 

be observed in figure 5.4(a). In general, for speech waveforms, 

interpolation is employed to determine the precise position and 

amplitude of the extreme thus removing any uncertainty. Unfortun­

ately, this technique is not applicable to the epoch sequences 

because the the data originates from a discrete source and is undef­
ined between data points. For the purpose of extremal coding the 

extreme must exist in one of the two positions, but which ?.

A number of options were considered for resolving this dil­

emma. One possibility was to allocate an extra codeword which the 

receiver would interpret as meaning that two consecutive points of 

equal value formed the extreme. The receiver algorithm would then 

interpolate between the previous extreme and the first extreme posit­

ion of the current extreme. The second extreme position would then 

be treated as the previous extreme thus retaining both extrema posit­

ions .

An alternative option involves the principle of a biased de­

cision. When two samples 'contend* the extreme position, the en­

coder allocates it to either the first or second sample position 

under all conditions.

The inclusion of an extra codeword for signalling the occurr­

ence of a dual sampled extreme would at least prevent the distor­

tion of one epoch sequence sample. However, it was decided that, 

for an increase in algorithm complexity, no increase in quality 

would be perceived due to the masking effect of the distortions 

introduced by the surrounding epoch durations distorted by the encod-
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and synthesis. It must also be noted that the use of a special 

codeword requires more data to be transmitted with little, if any, 

gain in quality therefore reducing the overall efficiency of the 

algorithm.

A decision on which position to choose for the option of bias­

ing, or alternatively restricting the extreme position to the first 

or second sample position was an arbitrary choice. The extent of 

the distortion experienced by the rejected sample position was 

dependant upon the value of the next extreme if the first sample 

were chosen, or the previous extreme if the second sample were chosen. 

Clearly, the number of samples between extrema was also be a contrib­

uting factor. Since the biasing technique requires no extra codewords 

and enabled the algorithm to yield greater data reduction with little 

or no effect upon the overall speech quality, the final algorithm 

employed biasing to the first sample position. The choice of bias 

direction was arbitrary.

Figure 5.5(c) depicts the conditions where three samples of 

equal value form an extreme. Without added complexity, the algor­

ithm would treat this condition in the same manner as that of the 

two sample extreme. However, this would result in excessive dis­

tortion of the samples between the current extreme and the next 

extreme detected. It is arguable that the second, or central, sample 

position should be treated as the extreme sample. If this were the 

case the neighbouring samples would be subjected to distortions 

similar to those experienced in the two sample extreme biasing. In 

one respect to choose the central position would be a suitable
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solution, but, contingencies had to be made for the condition where 

four or more samples of equal value formed an extreme, albeit uncommon 

within the current coded speech file. If an even number of samples 

(greater than 2) formed an extreme, then ambiguity of extreme position 

existed since two samples contended the central sample position. 

Another disadvantage of choosing the central position would be the 

extent of epoch duration distortion. If, for example, an extreme 

was formed by five equal valued samples and the central sample was 

chosen as the extreme position, four of the five samples would be 

distorted. The degree to which these samples were distorted increased 

as the separation distance between sample position and chosen extreme 

sample position increased. Distortions of so many samples would 

become apparent since five undistorted epoch durations could repre­

sent upto 16ms. of synthesised speech.

Another factor considered was that of algorithm complexity and 

processing time. The greater the number of possible types of extreme 

the greater the algorithm complexity. Also the delay required before 

a decision as to which type of extreme had been detected would also 

increase. Clearly, a real-time implementation of such an algorithm 

would have an upper limit to the processing time available to be 

dedicated to such decisions. If too much processing time were spent 

on parameter analysis then the input sample buffer could rapidly 

fill resulting in data loss.

Rather than process 3, 4, 5, ... sample position extreme as

separate events, where special measures were employed to handle even 

numbered sample events, it was decided that all extreme of 3 or more
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sample positions would be processed identically.

If 3 successive sample positions had the same value then the 

first sample position was chosen as one extreme position and its 

value, with a code to represent the number of sample positions since 

the last extreme (distance measure) were transmitted. A count of 

the number of equal valued sample positions was then maintained. 

When a sample position which differed in value was detected the 

sample position prior to it was chosen as an extreme and its value 

and distance measure were transmitted. This technique is shown in 

figures 5.5(c) and (d) for extreme of 3 and 4 sample positions, 

respectively.

This technique has a number of advantages. The algorithm 

complexity is minimised. The extreme detection, processing and coding 

time is the same as that of the two sample extreme irrespective of 

the number of sample positions forming the extreme and the original 

extreme sample values remained undistorted. The algorithm complexity 

was minimised by the ’arbitrary* choice of biasing the two sampled 

extreme to the first sample.

While describing the real-time digital voice channel in chapter 

2, silence signalling was also discussed. The codeword employed to 

signal silence was, in general, taken from the amplitude dictionary. 

However, there is no reason why a codeword from the tes-dictionary 

could not be employed. In such a situation the occurrence of extrema 

with at least three equal valued samples positions would be very 

frequent. Distortion of these samples could not be tolerated as 

they would be decoded by the TES decoder (not the extremal decoder)
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as an ordinary epoch parameter. However, the technique described 

above would prevent distortions of this nature from occurring.

5.2.2 Peak Magnitude Encoding

In order to distinguish between the two algorithms developed 

they shall in future be referred to as EXTRl and EXTR2, respectively. 

In section 5.2 it was indicated that the algorithms differed in 

their, treatment of the magnitude information. In fact EXTRl did not 

attempt to encode the magnitude information and transmited all values. 

If N samples occurred between extrema, the information transmitted 

was the extreme value and N+1 magnitude values. The distance measure 

was redundant and the (N+l)th magnitude was the value associated 

with the current extrenje.

EXTRl was developed in order to demonstrate (a) the quality of 

speech achievable without added distortions introduced by magnitude 

encoding, (b) that extremal coding affects the various speech sounds 

and (c) the average data required per epoch.

The algorithm EXTR2 utilised the extrema detection of the 

epoch duration sequence to signal coding of the magnitude sequence. 

Comparing the sequential epoch duration plots of figure 5.2(a), 

5.3(a) and 5.4(a) with the corresponding sequential magnitude plots 

of figure 5.2(b), 5.3(b) and 5.4(b), it can be seen that when pro­

nounced epoch sequence repetition occurs the extrema of the epoch 

and magnitude sequences coincide. This feature may be observed in 

greater detail by comparing figures 5.10(a) and 5.14(a) which are an
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enlarged section of figures 5.4(a) and 5.4(b), respectively. During 

periods of erratic epoch sequence the magnitude values tend to be 

low levelled which hindered observations for similar epoch-magnitude 

relationships. To determine whether such a "phase" relationship 

also existed during erratic epoch sequences, enlarged sections of 

sequential epoch and magnitude plots were taken.

Comparisons of the enlarged epoch sequential plots of figures 

5.7(a), 5.8(a) and 5.9(a) with their corresponding enlarged magni­

tude sequential plots of figures 5.11(a), 5.12(a) and 5.13(a), respec­

tively, revealed, in general, for the short duration epochs (less 

than 0.75ms), the minima of the magnitude sequence coincides with 

those of the epochs. Unlike the periodic epoch sequences, from 

observations to date, no generalisation may be made concerning the 

magnitude sequences corresponding to the erratic epoch sequences.

It has previously been mentioned that the low level erratic 

epoch sequence occurs during unvoiced sounds. From the model of 

speech production and the discussion of vocoders in chapter 1 we 

have seen that the unvoiced sounds are generated by a random noise 

source. Singh [79] demonstrated that unvoiced sounds could be re­

placed by a noise source but "sharper synthesis" was achieved when 

spectrally shaped noise sources were employed.

The coding of the magnitude sequence utilised the "phase" 

relationship of the epoch and magnitude sequences. When an epoch 

extreme was detected, the corresponding epoch magnitude was trans­

mitted with the extreme value and distance measure. At the recei­

ver, the epoch and magnitude sequence were reconstructed in parallel.
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Even though distortion of the magnitude sequence would be 

greatest within the unvoiced segments it was speculated that the 

distortions introduced into the synthesised speech would be more 

pronounced for the voiced rather than unvoiced segments. As reiterated 

above, unvoiced sounds can be represented by a random noise source 

and therefore it was conjectured that the erratic epoch segments 

would tolerate a greater degree of magnitude distortion than the 

periodic segments.

5.2.3 Decoding

Mathews [53] proposed two interpolation functions which pres­

erved the extrema of the original signal and synthesised the wave­

form so that no discontinuities existed in that waveform or its 

derivative at its extreme. Once again such techniques are not applic­

able here due to the nature of the data. The epoch sequences between 

extrema are most accurately approximated by straight lines due to 

the rapid changes of epoch durations which exist. Also the epoch 

and magnitude sequences do not require an interpolation functions 

which ensures continuity at the extreme.

Straight line interpolation was therefore employed for the 

synthesis of the sequences betweem extrema and the extrema retained 

their original value. The interpolated values were rounded to the 

nearest integer.

EXTR2 also employed straight line interpolation for the synth­

esis of the magnitude sequence. However, it was discovered that
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epoch elimination within the synthesised speech was possible during 

erratic epoch/low level magnitude sequences. Epoch elimination 

occurred when an epoch extreme was detected whose corresponding 

magnitude was zero valued and if the next extreme detected also had 

a zero valued magnitude, then on synthesis all magnitude values 

between these extrema would be zero valued. Figure 5.6 depicts the 

functioning of the algorithms EXTRl and EXTR2 and includes an example 

of epoch elimination. Epoch elimination would resulted in periods 

of silence being inserted into the synthesised speech. The frequency 

of occurrence of epoch elimination was not a predictable parameter 

but the periods of silence introduced were, in general, would probably 

be of very short durations (0.3ms or less). Miller and Licklider 

[80] conducted investigations into interrupted speech which demon­

strated that speech intelligibility would not be grossly affected by 

this form of distortion, although the quality would suffer.

In order to determine the average data rate and information 

per epoch, several counters and one dimensional arrays were incorp­

orated into each algorithm. Their function was to establish the 

number of epoch/magnitudes processed, the number of codes trans­

mitted and the frequency distribution of (a) the distance measure

and (b) the epoch durations occurring as extreme. Neither algor­

ithm set a limit upon the distance measure because observations 

upon the epoch duration sequences revealed that, unless the TES

encoder utilised silence signalling, the distance measure between

extrema rarely exceeded seven sample positions. In order to cal­

culate data rates, a fictitious limit had to be imposed upon the 

distance measure.
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5.3 Results

After processing the coded speech files (CSF) with either EXTRl 

or EXTR2, sections of epoch and magnitude sequences which corresponded 

to the enlarged sections of the original sequence were plotted. This 

This enabled detailed comparisons of the original and processed 

sequences to be conducted and to establish the sources and extent 

of the distortions due to extremal coding. An algorithm for the 

synthesis of speech from the processed CSFs was then implemented. 

Informal comparisons of speech synthesised from both the processed 

and unprocessed CSFs were conducted to gain an insight into the way 

the distortions within the Tes domain were manifest in the time 

domain. Section 5.3.1 presents the discussion concerning the sequence 

comparisons and section 5.3.2 gives an informal subjective appraisal 

of the synthesised speech achieved using the CSFs output from EXTRl 

and EXTR2. Section 5.3.3 presents the results of the power spectral 

density measurements.

5.3.1 Sequence Comparisons

Figures 5.2(a), 5.3(a) and 5.4(a) present the epoch duration 

sequencies input to the extremal coding algorithms and figures 5.2(b), 

5.3(b) and 5.4(b) present the magnitude sequencies input to the 

extremal coding algorithms.

Table 5.1 defines the segments of the input epoch duration and 

magnitude sequencies for which enlarge sequential plots have been 

produced. For comparison purposes enlarged sequential plots were
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also produced for the processed epoch duration and magnitude sequences 

These plots are also defined in Table 5.1.

The initial comparisons of the original and processed epoch 

sequences gave the impression that extremal coding had been capable 

of reproducing the sequences without excessive distortion. Close

comparison of figures 5.7(a) and 5.7(b) reveals that the majority of 

the sequences are identical for single sample position extreme and 

the deviations occurred where extrema were formed by two sample

positions. The description of the encoding algorithm in the previous 

section had already highlighted the possible occurrence of such

distortions at the extreme. Comparing figures 5.8(a) and 5.9(a)

with their processed equivalents, figures 5.8(b) and 5.9(b), indicates

that the majority of distortions again occurred when epochs of similar

value were encountered. However, in these examples, the original 

epoch durations were, in general, less than 0.5ms.

Figure 5.10(a) gives the epoch sequence produced by a strong

voiced sound, while figure 5.10(b) is the same sequence after extremal 

coding. These figures highlight two possible situations. The first 

exists when the algorithm yields a perfect reproduction of the orig­

inal sequence (samples 100 to 125) and the second is that of the

distortion caused by dual valued extreme, or a series of epoch durat­

ions of similar value occurring between extrema. These distortions 

result in an increase in the high frequency component when that 

section is employed for speech synthesis. The perceptual effect 

will be equivalent, atleast, to low level background noise.

From inspecting the reconstructed epoch sequences it was appar­
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ent that time distortion would exist within the synthesised speech. 

The perceptual affect this has on the synthesised speech could not 

be predicted because the shorter epochs were distorted to a higher 

degree than the larger epochs when distorted by 'equal' amounts (see 

section 4.3.3).

The effect of the pseudo extremal coding of EXTR2 on the magni­

tude sequence was not unlike that previously described. The extent 

of the distortion depended on the distance measure. When a maximum 

distance measure of two occurred, the magnitude sequence was, in 

general, reproduced very accurately. This may be seen by comparing 

figures 5.11(a) and 5.11(b), inparticular sample numbers 115 to 145. 

The difference between these sections was minimal. The distortions 

became more pronounced as the distance measure increased or the 

"phase" relationship became non-existant. Referring back to figures 

5.11(a) and 5.11(b), close inspection of samples 85, 95 and 110

reveal high attenuation of the original sequence. Since these samples 

originated from a voiced segment and originally were of both large 

epoch duration and magnitude then they were perceptually significant 

since distortions of voiced speech were more obvious than those of 

unvoiced speech.

Comparing figure 5.12(a) with 5.12(b) and 5.13(a) with 5.13 

(b) there are a number of instances where excessive distortions had 

occurred. A large extreme value, at sample 105 of figure 5.12(a), 

has suffered severe attenuation. In figure 5.12(a), samples 127 to 

133 and figure 5.13(a) samples 12 to 15, and 23 to 25 have been 

eliminated. The magnitude extreme at samples 135 to 137 and 148 to
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150 of figure 5.12(a) have been merged. In this particular instance, 

as drastic as the distortions appear to be, the perceptual effect 

will probably be insignificant because this section corresponds to 

the transition between the /a/ and /1/ of "operator", where the /1/ 

is a voiced stop consonant and so the build up to the /1/ sound 

(which this section corresponded to) was low level noise. The occurr­
ence of such a distortion else where within the sequence, would have 

had a dramatic effect upon the speech quality.

Finally, a very interesting comparison is that of the epoch 

duration probability distribution before and after extremal coding, 

presented in figures 5.14(c) and 5.14(d). The probability of an 

epoch duration of 0.05 or 0.1ms remains approximately the same, 

while that of epoch durations of 0.15 to 0.3ms, which were the most 

probable originally, has been reduced significantly. The most prob­

able epoch duration within the extremal coded sequence was 0.7ms in 

duration. This was a result of the interpolation. As will be 

shown later, the majority of the extrema were either the short epoch 

durations of unvoiced sound (.LT. 0.5ms) or durations greater than 

1.0ms (during voiced sounds). The linear interpolation between 

extrema caused the increase in intermediate values of epoch duration. 

For epoch durations greater than 1.5ms, the probability distribution 

remained very similar to that of the original. The shifting of the 

epoch duration probability distribution may manifest as an increase 

in the mid-band frequency components. Table 5.1 summaries the 

figures discussed within this section.
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5.3.2 Informal Subjective Appraisal

The speech synthesised employing the unprocessed coded speech 

files (CSF) (the data input to the transform algorithms) was of high 

quality and intelligibility. The description of distortions in the 

speech synthesised utilising processed CSFs are therefore relative 
to that produced employing the unprocessed CSFs.

The CSFs output from the transform algorithms were utilised as 

the input files for the speech synthesis algorithm described in 

chapter 2. The synthesised speech output was bandlimited (300 to 

3400Hz).

Informal listening of the speech synthesised from the CSF 

output of the epoch duration extremal coding algorithm (EXTRl) indic­

ated that a high degree of intelligibility had been retained. The 

quality varied over the test utterance and in the most severe cases 

sounded grainy and rasping. The speakers were still recognisable 

but it was the utterances of the male speaker which had incurred the 

majority of the distortions. The female utterances, in general, had 

a very crisp sound to them.

The male utterance of "I'd like to make" had a very drawled 

quality, while the utterance of "No I said Balam in England" took on 

a more irrate tone than that of the original speech. These effects

were believed to be a result of the time distortion introduced by

the linear interpolation. The slow drawling sound being a result of 

an increase in the total time of the utterance and the irrate charac­

teristic due to a decrease in time.
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The majority of the nasal and stop consonant sounds were very 

distinct. The /1/ of "what" was distorted but the extent of which 

was not sufficient to affect the passage. The grainy rasping sounds 

mentioned previously were prominent during voiced sounds. This was 

understandable since a number of epoch durations during the voiced 

sounds had suffered considerable distortion.

As expected, the quality of the speech produced by the synth­

esised of speech employing the output of EXTR2 was less than that of 

EXTRl. The male speaker sounded muffled and raspy. The female spoken 

sections were again found to be more robust against distortion. The 

female utterance "did you say" was very clear with the ending of 

"say" beginning to become raspy. The nasal sounds /m/ of "Balam" by 

the male speaker was totally obscured. Again the female nasal sounds 

were more distinct even though they had suffered some distortion.

However, although the quality of the female spoken sections 

were believed to be better than that of the male, this was only true 

when one compensated for the interrupt nature of one female utterance. 

The utterance "What part of England is that" was broken up by several 

short silence intervals due to the occurrence of magnitude elimination 

in the Tes domain. This, combined with the poor reproduction of the 

plosive sounds, gave the speech a hesitant quality, yet intelligibil­

ity and speaker identification were not unduly affected. Once again 

time distortion was very evident.
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5.3.3 Power Spectral Density Measurements

Extremal coding of the epoch duration sequence and pseudo- 

extremal coding of the magnitude sequence are non-linear, signal 

dependant techniques. The effect of these coding techniques, combined 

with the Tes transformations, had upon the power spectra of the 

speech cannot be predicted. However, from figures 5.14(c) and (d) 

it was observed that the probability of epochs in the region of 

0.4ms (8 samples) and 1.4ms (28 samples) had been significantly 

increased by the interpolation process. It was therefore conjec­

tured that the increased probability would result in considerable 

mid-band changes within the power spectra. However, in general, 

comparisons of the power spectra have not revealed any significant 

trends which could be attributed to this.

The speech segment and Power Spectral Density Plot (PSDP) of 

figures 5.15(a) and (b) correspond to a transition from a stop conson­

ant to a voiced sound. Comparing these with figures 5.16(a) and 

(b), which are the equivalent segment after the epoch durations had 

been processed by EXTRl, the spectra are seen to differ considerably 

at frequencies greater than 600Hz . In the Tes domain, some some 

voiced sounds do not exhibit high periodicity in the epoch duration 

sequence. The power spectrum for such sequences after processing by 

EXTRl differed from the original spectrum but followed its general 

trend. Major departures were observed for the epoch duration sequ­

ences relating to the unvoiced and transitional sounds. During 

such sounds the spectra were, in some instances, vastly different 

to that of the original yet, from the previous discussion on the
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informal listening, the unvoiced sounds appeared to be more robust 

to the distortions introduced by the extremal coding than the voiced 

sounds.

The variations within the power spectrum were due to the distor­

tion introduced by the linear interpolation synthesis of the epoch 

duration sequence. These distortions were similar to those intro­

duced by the smoothing algorithms investigated in chapter 4. The 

extent of the distortions were dependant upon the relative position 

of the epoch duration sample position to the extreme, between which 

the interpolation was being conducted, together with the accuracy of 

the interpolation of the sequence compared with the original. Al­

though individually the distortions were not very significant, the 

overall effect was very apparent on inspection of the synthesisd 

speech and Power Spectral Density Plots, PSDP.

The effects of magnitude elimination in the Tes-domain, as 

described in sections 5.2.3 and 5.3.2, can be seen by comparing 

figure 5.15(a) (the original waveform) with figure 5.17(a) (the wave­

form synthesised using the output of EXTR2). A segment which origin­

ally corresponded to 2.1ms. of silence became extended to 4.4 ms.

The pseudo-extremal coding of the magnitude sequence caused 

only locally small variations of the power spectra, when compared 

with the power spectra for EXTRl. However, the differences that 

existed were clearly significant because the quality and intelligi­

bility of the speech produced by synthesising EXTR2's output was 

informally judged to be inferior to that for EXTRl.
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5.4 Data Reductions

The output of counters embeded into the algorithms indicated 

that 13,824 epoch durations were processed and 6,659 codes were 

transmitted. On first inspection a compression ratio of 2:1 had 

thus been achieved. However, a code consists of the epoch duration 

and a distance measure. The transmitted epoch durations were of the 

same accuracy as those processed (6 bits), thereby eliminating quant­

isation errors and distortions during the encoding and decoding, 

and the distance measure was not restricted. Therefore, to calculate 

the average number of bits per epoch the distance measure distribution 

had to be inspected. Using this, the average number of bits per 

epoch were calculated for specific values of restricted distance 

measurements (r.d.m).

The probability distribution of the distance measure is given 

iti figure 5.18(a). As expected, the shorter and zero distance 

measures were the more probable and distance measures greater than 9 

were not encountered.

To implement r.d.m extremal coding it was envisaged that when 

the maximum distance occurred and no extreme has been detected, the 

last sample would be designated an extreme. The relevant codes 

would be transmitted and the processing would continue until an 

extreme was detected or the maximum distance measure was once more 

reached. If the distance measure were restricted to 3 (thus requiring 

two bits) then a distance measure of five would be transformed into 

two sets of codes. That is, one set of codes for the maximum distance
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of 3 plus the value of the epoch duration at that point and another 

for a distance measure of 2 plus the extreme value.

In order to calculate the average data per epoch two case of

r.d.m were investigated. These were:

(a) r.d.m of 3 (2 bit representation)

(b) r.d.m of 7 (3 bit representation)

If an r.d.m of 3 were implemented the number of codes trans­

mitted would have been 7,594, each consisting of 2 bits for distance

and 6 bits for extreme representation. Therefore, a total of 60,753 

bit would be required to represent 13,824 epoch durations resulting 

in an average representation of 4.4 bits per epoch.

An r.d.m of 7 would have resulted in 6,961 codes being trans­

mitted, each consisting of 3 bits for distance and 6 bits for extreme 

representation. A total of 62,649 bits would therefore be required 

yielding an average representation of 4.5 bits per epoch.

For an r.d.m of 3 or 7 an average data compression ratio of 

1.36:1 and 1.33:1, respectively, may be achieved using r.d.m extre­

mal coding of the epoch duration sequence.

These results apply only to compression of the epoch duration 

sequence. The data compression achieved by EXTR2 would be greater 

since the magnitide sequence is also encoded. For an r.d.m of 3 and 

the magnitude values transmitted with the same accuracy as within 

the coded speech files (9 bits) a total of 17 bits per exteme would 

be required. This was equivalent to 129,098 bits for the represent­
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ation of 13,824 epochs, an average representation of 9.34 bits per 

epoch instead of 15 bits (6 bits epoch duration and 9 bits magnitude). 

For an r.d.m of seven 18 bits per code transmitted would be required, 

a total of 125,298 bits for representing 13,824 epochs, an average 

of 9.06 bits per epoch.

Therefore, with an r.d.m of 3 or 7 an average data compression 

ratio of 1.61:1 and 1.65:1, respectively, may be achieved using 

extremal coding with r.d.m of the epoch duration sequence. Table

5.2 summaries the results presented above.

5.4.1 Parameter Coding

In section 5.4 it was shown that EXTR2 yielded better data 

compression than EXTRl. However, the quality of speech from EXTRl 

was subjectively better than that of EXTR2. In order to further 

increase the data compression ratio the possibilities of transmitting 

different parameters to those currently employed or non-linear quant­

isation of the extrema values was inspected.

Given two extrema, E% and E2 , and the number of sample positions 

between extrema, N, the interpolation value, ly, can be calculated. 

The interpolation value, which may be calculated using equation (5.1)

( El - E2 )
ly =   (5.1)

N + 1

is the increment by which E]̂ is adjusted to yield the first inter­

polated sample between E]_ and E2. Figure 5.18(b) gives the First
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Order probability distribution of the absolute values of the interpol­

ation value. From the distribution, we see that the probability of 

an interpolation value greater than 1.6ms is less than 0.0025. It 

was therefore suggested that instead of transmitting the extreme 

value and distance code, the interpolation value could be calculated 

to 5 bit accuracy (32 level) within the transmitter and transmitted 

with the distance measure. The receiver would assume alternating 

polarity of I^, except for when 1^ = 0.

On first inspection this approach appeared to be a plausible 

technique. However, when r.d.m*s are imposed, some polarity diffi­

culties occur. An example where an r.d.m of 3 has been applied, and 

the distance measure exceeds this value, is depicted in figure 5.19

(a). When the distance measure equals the maximum value, the corres­

ponding sample position is chosen as an extreme. The interpolation 

value is calculated and coded along with the distance measure and 

transmitted. At the receiver, the codes are decoded and the interpol­

ation values are given alternating polarity. However, the polarity 

of the interpolated values did not alter when the distance between 

extrema was greater than the r.d.m but, the epoch duration sequence 

would be reconstructed as if the polarity had changed. Thus the 

sequence is severely distorted. It may not be assumed that when a 

value for the distance measure which equals the r.d.m, is transmitted, 

the next interpolated value and distance count received are a contin­

uation of the previous distance measure because distance measures 

equal to the r.d.m have a finite probability of occurrence.

In order to overcome the problems associated with the intro­
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duction of an r.d.m, the polarity of the interpolated value must be 

transmitted. This means that, for increased complexity in the trans­

mitter algorithm and possibly no improvement in speech quality, more 

data must be transmitted resulting in a reduction of the data compress­

ion so far achieved.

A further technique suggested was to implement 4 or 5 bit non­

linear quantisation of the epoch duration extrema values. Figure 

5.19(b) illustrates the probability distribution of the epoch dura­

tions occurring as extrema for the unrestricted distance measure. 

However, a major problem perceived with this technique is one of

changing distributions. The probability distribution is dependant 

upon the utterance and is therefore quasi-stationary. To impose 

non-linear quantisation would be sub-optimal resulting in degradation 

of certain speech sounds. Further degradation of the speech may

cause severe loss of intelligibility, particularly for EXTR2.

5.5 Conclusions

These investigations have demonstrated that the restricted 

distance measure (r.d.m) extremal coding of the epoch durations 

(EXTRl) can yield data compression ratios of 1.36:1 (with an r.d.m 

of 3) and 1.33:1 (with an r.d.m of 7). The synthesised speech was 

informally judged to have retained a high degree of intelligibility 

but varied in quality. The characteristics of speakers, in partic­

ular the male utterances, were found to have altered.

When the peak magnitude sequences were pseudo-extremally coded
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(EXTR2) overall data compression ratios of 1.61:1 (with an r.d.m of 

3) and 1.65:1 (with an r.d.m of 7) were achieved. However, a feature 

of this form of coding was the "zeroing" of epoch peak amplitudes 

which manifested as silence in the synthesised speech. The overall 

quality was judged to be inferior to that synthesised from the output 

of EXTRl.

- 176 -



1
1 Enlarged 
1

Plots i

1 1 
1 1 
1 Section | 
1 1

Samples

1 1 
1 Original Epoch I 
1 Durations 1

Processed by 1 
EXTRl and EXTR2 |

1 1 
1 5.2(a),(b) 1 65 - 145

1 1 
1 5.7(a) 1 1 1 5.7(b) 1

1 5.3(a),(b) 1 100 - 170 1 5.8(a) 1 I 1 5.8(b) 1

1 5.4(a),(b) 1 0 - 50 1 5.9(a) 1 1 1 5.9(b) 1

1 5.4(a),(b) 1 70 - 150 1 5.10(a) 1
I 1

5.10(b) 1

1 1 1 
1 Enlarged Plots I 
1 1

1 1
1 1 
1 Original Peak I Processed I

1 Section I 
1 1

Samples 1 Magnitudes 1 
1 1

By EXTR2 |

1 1 
1 5.2(a),(b) 1 1 1 65 - 145 1 5.11(a) 1 5.11(b) 1

1 5.3(a),(b) 1 1 1 100 - 170 I 5.12(a) 1 1 1 5.12(b) 1

1 5.4(a),(b) 1 1 1 0 - 50 1 5.13(a) 1 1 1 5.13(b) 1

! 5.4(a),(b) 1 70 - 150 1 5.14(a) 1 5.14(b) 1

Table 5.1 : Cross reference of Figures and summary of epoch

duration and magnitude sequencies processed.

Restricted Distance Measure (r.d.m). (bits) I ____________11
2 1 3

----------- 1
1

1 Process Bits/epoch I Compression Bits/epoch I
----------- 1
Compression ______ 1

1 EXTRl 1 1 4.4 1I 1.36:1 1 1 4.5 1 1 1.33:1 1 11
1 EXTR2 1 
1

9.34 1 
1

1
1.61:1 1 

1

1
9.06 1 

1

1
1.65:1 1 

1

Table 5.2 : Summary of Data Compression achieved.
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J.U

0.5

25050 Sample Number

Figure 5.2 : (a) Sequence of epoch durations output from 

Al-Doubooni's Tes coding algorithm.

(b) Corresponding sequence of epoch peak, magnitudes.

600

200

250Sample Number50
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3.0

0.5

50 250Sample Number

Figure 5.3 : (a) Sequence of epoch durations output from 

Al-Doubooni's Tes coding algorithm.

(b) Corresponding sequence of epoch peak magnitudes
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2 . 5

0.5

Sample Number 250

Figure 5.4 : (a) Sequence of epoch durations output from 

Al-Doubooni's Tes coding algorithm.

(b) Corresponding sequence of epoch peak magnitudes
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D

f f

Figure 5.5 : Possible Epoch sequences with the extreme detected

by EXTRl and EXTR2 indicated.
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Figure 5.6 : Functional representation of the algorithms 

EXTRl and EXTR2.
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0.75

75 Sample Number

Figure 5.7 : (a) Enlarged segment of Figure 5.2(a).

(b) Equivalent segment to Figure 5.7(a) after 

processing by EXTRl.
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3.0

8

§

1.0

170110 Sample Number

Figure 5.8 : (a) Enlarged segment of Figure 5.3(a).

(b) Equivalent segment to Figure 5.8(a) after 
processing by EXTRl.

3.0

110 Sample Number

- 185 -



0.5

5010 Sample Number

Figure 5.9 : (a) Enlarged segment of Figure 5.4(a).

(b) Equivalent segment to Figure 5.9(a) after 

processing by EXTRl.

2.5

5010 Sample Number
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1.5

a

I

0.5

15080 Sample Number

Figure 5.10 : (a) Enlarged segment of Figure 5.5(a).

(b) Equivalent segment to Figure 5.10(a) after 

processing by EXTRl.

80 ISOSample Number
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100

Sample Number

Figure 5.11 (a) Enlarged segment of Figure 5.2(b).
(b) Equivalent segment to Figure 5.11(b) after 

processing by EXTR2.

100
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160

40

110 170Sample Number

Figure 5.12 : (a) Enlarged segment of Figure 5.3(b).

(b) Equivalent segment to Figure 5.12(b) after 

processing by EXTR2.
160

AC

170no Sample Number
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Sample Number

Figure 5.13 : (a) Enlarged segment of Figure 5.4(b).

(b) Equivalent segment to Figure 5.13(b) after 

processing by EXTR2.
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500

100

80 150Sample Number

Figure 5.14 : (a) Enlarged segment of Figure 5.5(b).

(b) Equivalent segment to Figure 5.14(b) after 

processing by EXTR2.
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o

Figure 5.14(d) : Epoch duration probability distribution 

after extremal coding.

Figure 5.14(c) : Epoch duration probability distribution 

before extremal coding.
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22.510.0 Time (ms)

I

-1000

Figure 5.15 : (a) Segment of speech waveform synthesised utilising

the input epoch durations of Figure 5.4(a) and 

the peak magnitudes of Figure 5.4(b).

(b) Corresponding power spectral density plot.

Frequency (kHz)

3.0 5.0

-30

- 193 -



noo

22.5Time (ms)

-1000

Figure 5.16 : (a) Segment of speech waveform synthesised utilising

the epoch durations of Figure 5.9(b) and the peak 

magnitudes of Figure 5.4(b).

(b) Corresponding power spectral density plot.

Frequency (kHz) 5.02.5

-30
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1000

10.0 22.s
Time (ms)

-800

Figure 5.17 : (a) Segment of speech waveform synthesised utilising

the epoch durations of Figure 5.9(b) and the peak 

magnitudes of Figure 5.13(b).

(b) Corresponding power spectral density plot.

Frequency (kHz) 5.02.5

-30 L. .
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Figure 5.18(b) : Absolute value of the interpolation 

values probability distribution.

-O

Figure 5.18(a) :-Distance Measure Probability 

Distribution.
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Chapter 6 

Orthogonal Transformations



6.1 Introduction

Orthogonal transformation techniques for digital speech pro­

cessing have been suggested and researched to various degrees by a 

number of investigators [81,82,84-87]. The general approach is to 

choose an arbitrary sample block, N, which offers effective spectral 
resolution as well as computational efficiency. The performance of 

discrete Karhunen-Loeve (K-L), Fourier and Walsh orthogonal trans­

formations applied to bit rate reduction for the transmission of 

speech signals have been measured and reported by independent re­

searchers [84-86,88]. Their results tended to indicate that the K-L 

transformations offered greater efficiency in terms of data compress­

ion, while the remainder may be rated in the order they appear above.

For the K-L transformation [85], the orthogonal functions used 

were a special set determined from the autocorrelation functions 

computed over an ensemble of talkers and utterances typical of those 

to be processed. These have been reproduced along with the equi­

valent Fourier and Walsh discrete orthogonal functions in figure 

6.1, for N = 16.

The K-L and Fourier transformations favour smooth-varying sig­

nals whereas the Walsh transformation favours rectangular, or more 

precisely, discontinuous signals. It was therefore not quite so 

surprising that the K-L and Fourier transformations achieved superior 

data reductions to that of the Walsh transformations.

The fact that Walsh transformations favour discontinuous signals 

gave rise to the initial impetus for these investigations. As des­
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cribed earlier (chapter 4), sequences of epoch durations exhibit 

periods of both erratic and periodic behaviour. During erratic 

sequences, the differences between successive epoch durations varies 

considerably and this is manifested as pronounced discontinuities 

within the sequential plots. The segments of periodic sequences 

were formed by the repetition of a sequence of 6 or 8 epoch dura­

tions which were produced by the coding of voiced sounds within the 

input speech. The "boundary" between one sequence and the next 

repeat exists at the transition from an epoch duration of typically 

0.2 to 0.4ms to that of 1.0 to 1.2ms long. At these points prominent 

discontinuities exist. To "adequately" represent sequences with 

such discontinuities, the K-L and Fourier transformations would 

require a greater number of transform coefficients in comparison to 

that of the Walsh transformation. '

6.2 Terminology

During initial literature searches an inconsistent vocabulary 

pertaining to Walsh functions and transformations was found to exist. 

An unsuccessful attempt was made by Ahmed et al [89] to introduce a 

more compact and standard notation. It is therefore the purpose of 

appendix A5 to introduce and define the three general classifications 

of the continuous and discrete Walsh functions.

Using the three classes of Hadamard matrices of appendix A5, 

one can define the corresponding transformations as follows :

Y(N) = Hw(N).X(N) (6.1)

Y(N) = Hh(N).X(N) (6.2)
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Y(N) = H p ( N ) .X ( N )  ( 6 . 3 )

where X(N) is a column input vector

and Y(N) is a column transform vector

In the literature, the expression (6.3) has been referred to as 

the dyadic-ordered and Paley-ordered Walsh transform, while (6.1) and 

(6.2) have been referred to as Walsh [91], Hadamard [83,85], Walsh- 

Hadamard [86], Walsh-Fourier [90] and BIFORE transform [92]. To 

eliminate ambiguity when referring to the three possible transforms 

Table 6.1 was produced. This table presents the full and short-form 

names of each transform, the abbreviations used and the name given 

to the elements of the column transform vector, Y(N).

6.3 Data Reduction with Hadamard Transforms, (WT)^.

A Fortran program was developed which employed the Fast Hada­

mard Transform (FHT) subroutine given in appendix A5. The program

required the user to specify the following information:

(a) Input and Output files

(b) Number of points (samples) per transform

(c) Forward or Inverse transform required.

Using the Hadamard transform, three data reduction techniques 

were implemented and investigated. These techniques were incorp­

orated into the main program as subroutines. When the user specified 

that the inverse transform was required a menu of coefficient pro­

cessing techniques were presented to the user. The menu also inclu­

ded a "no action" option. The data reduction techniques were based
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upon the objective of achieving a direct 2:1 data reduction, as well 

as spectral considerations (in the sequency sense), of the input 

sequence. The techniques employed are outlined below:

6.3.1 Dominant Coefficient Retention - retain N/4 + 1 coefficients.

For an N point transform only n dominant coefficients (in 

terms of the largest absolute value in the transform domain) were 

retained [86,88]. In so doing this the majority of the selected 

components were in the high energy region of the spectrum. This 

then preserved the dominant characteristics of the input sequence. 

Since the sequency of the dominant coefficients depends on the charac­

teristics of the input sequence, information was also transmitted to 

specify the sequency positions of the coefficients retained.

6.3.2 Sequency-based Vector Filtering

Two different sequency-limited filters were implemented. The 

filters utilised were:

(a) Low-pass Sequency Filtering - Elimination of alternate Hadamard 

coefficients.

The elimination of alternate coefficients auto­

matically reduced the data requirements by a 

factor of 2. It also eliminated the N/2 highest 

sequency components thereby low-pass filtering 

the input sequence.
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(b) Multiple Band-pass Sequency Filtering - Elimination of the last 

N/2 Hadamard coefficients.

Once again an immediate data reduction by a 

factor of 2 was achieved. However, in terms of 

sequency N/4 "stop-band", each of two sequency 

components, were imposed. The filter retained 

the highest and lowest sequency components plus 

mid-band components in groups of two.

Figure 6.2 depicts each of these filters for (a) the Hadamard- 

ordered Walsh Transform and (b) the Sequency-ordered Walsh Transform.

To implement these filters, the column vector was "multiplied" by an 

(NxN) diagonal filter matrix before re-transformation took place.

The diagonal elements of the filter matrix were Himited in value to 

either 0 or 1.

The values of the input sequence were limited to the range of 

{1,64}. The discarding of coefficients before inverse transforma­

tion may have resulted in samples having values outside the permitted 

range of the input data. Contingencies for this eventuality were

therefore incorporated into the Fortran program.

The first row of all three classes of the transform consisted 

of only +l's. Since the input data was limited to the range {1,64}, 

following a forward transformation, the first coefficient, y^, repre­

sents the summation of the N samples of the input vector. Thus, in

all situations, the first coefficient was of the greatest absolute

value and represented the total duration of the N epochs of the
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input vector. It was, therefore, ensured that this coefficient was 

not distorted by any of the data reduction techniques.

The value of y g was recorded before the inverse transformation 

was performed. On completion of the inverse transformation, the new 

data sequence was inspected for the occurrence of values outside the 

permitted range, {1,64}. If none were encountered then the data 

was stored in the output file, otherwise further processing was con­

ducted. If a sample value was greater than 64, then its value was

automatically truncated to 64. In the event of negative or zero 

valued samples being encountered, the summation of all the samples, 

x'(i), with values greater than zero was performed. The difference, 

DIFF, between y^ and the resultant of the summation was calculated. 

If the difference was zero then all samples, x’(i), with values less 

than one were set to one. However, if the difference was greater 

than zero, and L of the N samples were less than one, then DIFF was

divided by L and the resultant was rounded to the nearest integer

(greater than zero). The L samples were reset to this value. These 

operations are summarised below:

N
DIFF = y@ - 'I x'(i) for all x'(i) greater than zero 

i=l

If DIFF .EQ. 0 : Then for all x'(i) .LT. 1, x'(i) = 1

If DIFF .GT. 0 : Then LDIFF = Round {d IFF/L }

However,

If LDIFF .LT. 1, Then LDIFF = 1,

and for all x'(i) .LT. 1, x'(i) = LDIFF
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6.4 Bit Allocations and Reductions

The input sequence consisted of positive integer data in the 

range {1,64} which required six bits per sample. It was the philo­

sophy of these investigations not to quantise the transform coeffic­

ients. Thus distortions due to the data reduction techniques were
highlighted and not masked by distortions resulting from coefficient 

quantisation.

Since the input data were positive integer values and numerical

division did not take place in the forward transformation, the range

of values to which the coefficients were limited may be estimated.

6.4.1 Maximum Coefficient Value

As stated previously, the first row of the transform matrix

consisted of only 4-1’s. If the N samples of the input vector were

equal to 2®, where ra is the bit accuracy, then after transformation

the first coefficient, y^, equalled;

Yo = N.2™ (6.1)

Thus for constant length codewords

m + log2 (N) bits (6.2)

are required to accurately represent y^.
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6.4.2 Minimum Coefficient Value

Apart from the first row of the transform matrix, the elements 

of all other rows consist of N/2 +l's and N/2 -I's. If an input

vector were composed of N/2 samples equal to 2®, with the remaining 

N/2 samples equal to one, and the order of the data in the input 

vector was such that, positionally, the N/2 samples of one coincided 

with the N/2 +1 elements of the nth row. After transformation the 

nth coefficient, y^, equalled:

y^ = - N.2™ + N (6.3(a))
2 2

= - N.2®"^ + N (6.3(b))
2

re-arranging equation 6.3(a),

y^ = - N.(2™ - 1) (6.4)
2

Thus for constant length codewords

or

log2 (2” - 1) + l o g j W  bits
2

log2(2” - 1) + log2 (N) - 1 bits (6.5)

were required to accurately represent the absolute value of y^» From 

equation 6.3(b), equation 6.5 may be approximated by:

(m - I) f log2 (N) bits (6.6)

Comparing equations 6.2 and 6.6, it is observed that the positive
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range of the coefficients required one bit more than the negative 

range. To distinguish between positive and negative coefficient 

values, a polarity bit would be required. Therefore, employing 

constant length codewords

m + 1 + log2(N) bits (6.7)

are required to represent the full range of the transform coeff­

icients. As specified earlier, the input samples were represented 

with six bit accurracy. Therefore equation 6.7 becomes :

7 + log2 (N) bits (6.8)

With the number of bits required to represent each transform coeff­

icients established, it is then instructive to compare the number of 

bits required by the data reduction techniques of section 6.3, for 

the representation of a block of N epoch durations, with that orig­

inally employed.

6.4.3 Dominant Coefficient Retention - Retain N/4 + 1  Coefficients.

Theoretically, for each coefficient transmitted, its sequency 

position must also be transmitted. However, from previous dicussions 

it is known that the first coefficient, y^, was the summation of the 

elements of the input vector and always had the greatest absolute 

value. It was not therefore necessary to transmit its sequency pos­

ition. Therefore N/4 + 1  coefficients and N/4 sequency positions

were transmitted. Thus for a block of N "samples" the number of

bits, B, required for each transform was:
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B = ( N +  1).(7 + log2(N)) + N.log2(N) (6.9)
4 4

= N.(2.1og2(N) + 7) + log2 (N) + 7 (6.10)
4

Substituting values for the transform block size, N, into 

equation 6.10 the bit requirements per transform and per epoch was 
calculated. This information is summarised in Table 6.2 for N = 2^, 

where k = 2, 3, ... ,6. Inspection of Table 6.2 revealed that the 

optimum transform block size (from a bit reduction piont) occurred 

for N = 16, where a compression ratio of 1.35:1 was achieved (4.44 

bits per epoch).

6.4.4 Low-pass Sequency Filter - Elmination of Alternate Hadamard 

Coefficients. :

For an input vector of N samples, N coefficients were produced 

by the transformation, of which only N/2 were transmitted. The 

number of bits, B, required per transformation was :

B = N.(7 + log2(N)) bits (6.11)
2

Substituting values for the transform block size, N, into 

equation 6.11 the number of bits required per transform, and hence 

per epoch, was calculated. This information is summarised in Table

6.3 for N = 2^, where k = 2, 3, ... ,6. Inspection of Table 6.3

revealed that, for a transform block size of 32 "samples", data 

compression was not achieved and, for block sizes greater than 32, 

more bits were required for the representation of the transform
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coefficients than the original sequence required.

It has been shown in appendix A6 that the elements of the 

output vector x ’(i), for the above data compression technique may 

also be derived as follows:

Given an input sequence

• • • » » ^n+l * ^̂ 4-2 * * * * for n — 0,1,2, ...

x ’(i) = (x(i) + x(i + 1)) for i = 1,3,5, ... (6.12)
2

and x'(i+l) = x'(i)

From equation 6.12, it was observed that this process only 

involved calculating the average of two adjacent input samples and 

replacing them with the average value. This process required a 

system delay of only one input sample, a single addition and division 

by 2 (one bit shift left). The average value, which has an accuracy 

of six bits, would be transmitted and thus represent two input samples. 

Therefore an average of 3 bits per input sample would be employed 

for transmission, resulting in a data reduction ratio of 2:1.

An N point Hadamard Transform requires a system delay of N 

input samples, N.log2N additions/subtractions (employing the fast 

transform) and, depending on the input vector size, varying degrees 

of data reduction ratios were achieved, all less than 1.5:1. An 

interesting feature of equation 6.12 is that this technique is not 

restricted to transform block sizes of N, which are a power of two. 

In fact, any even valued length of input vector may be considered.
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6.4.5 Multiple Band-pass Sequency Filter - Elimination of Last N/2 

Hadamard Coefficients.

For an input vector of N samples, N coefficients were produced 

by the transformation, of which only N/2 were transmitted. The 

number of bits, B, required per transformation were:

B = N.(7 + log2(N)) bits (6.13)
2

Comparing equations 6.11 and 6.13, it is noted that they are 

identical and therefore the information contained in Table 6.3 also 

applies to this data reduction technique.

It has been shown in appendix A6 that the elements of the 

output vector x'(i), for the above data compression technique may 

also be derived as follows:

Given an input sequence

•••> ^^+1» ^^n+2> *** for n — 0,1,2, ...

x'(i) = (x(i) + x(i + N/2)) for i = 1,2, ... ,N/2 (6.14)
2

and x'(i+N/2) = x’(i) over a block of N samples.

The process, defined by equation 6.14, only involves calculating 

the average of two input samples, and replacing those samples with 

the average value. For an input vector of N samples, a system delay 

of N/2 input samples would be incurred before the above process 

could be performed. Some N/2 additions and divisions by 2 (one bit
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left shift's) are involved and the resulting N/2 average values,

which have six bit accuracy, would be transmitted to represent the N 

input samples. Therefore, an average of 3 bits per sample would be 

employed for the transmission which represents a 2:1 data reduction.

As with the process of equation 6.12, equation 6.14 is not

restricted to transform block sizes of N, where N is a power of 2.

Once again, any even valued length of input vector may be processed 

using this technique.

6.5 Results

The results presented were output from the following processes:

Transformation of (1) N = 8,16 and 32 - retaining the N/4 + 1

coefficients of the greatest absolute value.

(2) N = 16 - retaining alternate coefficients

Ci, i = 0,2,4, ... , N-1

(3) N = 16 retaining the first N/2 coefficients

Ci, i = 0,1,2, ... , N/2 - 1

A series of different transformation sizes were implemented for

process (1). Table 6.2 shows the optimum transform size, N, to be

sixteen for which only 4.44 bits per epoch were required. The next 

best value for N was eight, for which 4.5 bits per epoch were re­

quired followed by a third best transform size of N = 32, which 

resulted in 4.625 bits per epoch being utilised. These three trans­

form sizes were therefore investigated.
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It was observed that during periodic segments of epoch sequ­

ences, the periodic structure comprised, in general, six or eight 

epoch durations. Section 6.4, and appendix A6, demonstrated that 

the same result would be achieved with process (2) irrespective of 

the transform size, N. However, in process (3), N specified the 

delay over which the epoch "average and repeat" operation occurred 

and the number of epochs to be repeated, ie. N/2. A transform size 

of 8 would have involved the inclusion of a maximum of one complete 

periodic segment. For process (3), this would have introduced 

severe distortion because epochs at the beginning of the transform 

window would have been averaged with the epochs beyond the centre of 

the transform window and these would have a significantly different 

value. To have adopted a transform window of 32 would have involved 

the averaging of epoch durations separated by 16 "samples". In such 

a window, approximately 3 repetitions of an epoch sequence may exit. 

Therefore, it is possible that the transform might average the orig­

inal sequence with the second repetition of the epoch sequence and 

also average the first repetition of the epoch sequence with the 

third repetition. However, the correlation between neighbouring 

repetitions will, in general, be greater that that of repetitions 

which are separated by a repetition. Therefore, distortions will be 

introduced by a transform window of 32. Also, if a transition from 

periodic to erratic epoch durations, or visa versa, occurs within 

the transform window then the periodic segment would be averaged 

with the erratic segment resulting in distortion of the periodic 

sequence. It was therefore decided to employ a transform window of 

N = 16. Thus, in general, neighbouring periodic segments would be
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averaged and the distortions which arise during the transition be­

tween the different type of epoch duration sequences would be re­

duced. Since the distortions introduced by process (2) are independ­

ent of transform size, N, a transform of N = 16 was also employed.

Two segments of epoch duration sequence with differing charac­

teristics were chosen for detailed comparison. One was of an erratic 

nature, figure 6.3(a), while the other exhibited a strong periodic 

element, figure 6.3(b). To perform the comparisons the epoch dura­

tion sequences of the output files which corresponded to figures 

6.3(a) and (b), were isolated and plotted. Segments of speech were 

synthesised using the processed CSFs which corresponded to the unpro­

cessed CSF of figure 6.3(b). Employing a Digital Fast Fourier Trans­

formation software package, the short-term power spectral density 

was obtained and plotted for comparison purposes.

Section 6.5.1 discusses the output epoch duration sequences, 

section 6.5.2 presents an informal subjective appraisal of the synth­

esised utterances and, finally, section 5.3 inspects the power spec­

tral density plots. Table 6.4 provides a cross reference between 

the processes utilised and the diagrams presented.

6.5.1 Epoch Duration Sequence Comparisons

Figures 6.3(a) and 6.3(b) present the epoch duration sequencies 

input to the transform algorithms.

The epoch duration sequences output from process (1) (Dominant 

Coefficient Retention) with N = 8 are presented in figure 6.4(a) and
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(b). Comparisons of figures 6.3(a) and 6.4(a) indicated that the env­

elope of the original sequence was retained, albeit slightly atten­

uated. As expected, varying degrees of distortion of the epoch dura­

tions were experienced but the erratic nature of the input sequence 

appeared to have been preserved. Sample 17 to 40 of figure 6.4(a) 

exhibited a "step-like" characteristic. A more detailed examination 
revealed that this was a similar effect to that which occurs due to 

low-pass sequency filtering. With a transform size, N, of eight 

this effect occurred on three consecutive transforms. Examination 

of the data revealed that the dominant coefficients of the transform 

were the same as those which would have been utilised by a low-pass 

sequency filtering transform. Therefore, these occurrences were a 

function of the data and the similarity was purely coincidental. 

The epoch duration sequence of figure 6.4(b) retained the general 

envelope of the original sequence (figure 6.3(b)). However, no 

obvious periodic characteristics could be perceived. Varying degrees 

of sample distortion occurred and these eliminated the periodicity 

which was so predominant within the original sequence.

The epoch duration sequences of figures 6.5(a) and (b) were 

produced utilising process (1) (Dominant Coefficient Retention) with 

N = 16. The sequence of figure 6.5(a) retained the envelope of the 

original sequence plus the erratic characteristics. However, an 

interesting feature emerged over the samples of 20 to 25, 33 to 36 

and 37 to 48. This feature either "Assymmetric" or "Symmetric Mirror 

Imaging". Assymmetric Mirror Imaging occurred when samples x^-i = 

Xn+i, Xn_2 = x^+2» ••• le. the samples were centred about the sample 

at Xjj. However, Symmetric Mirror Imaging occurred when x^ = x^-1,
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x̂ i+l “ x^_2, ••• ie. the samples were centred about a point halfway 

between samples x̂ j and x^-i. All three examples cited above were 

of symmetric mirror imaging ie. samples 33 and 36, 34 and 35 were 

equal in value. This feature also occurred in figure 6.5(b) over 

the samples 9 to 16 an 18 to 31. Another feature, termed "delayed 

sample repetition" can be seen in figure 6.5(b). Samples 32 to 36 

were repeated at samples 38 to 42. This feature was predicted to 

occur due to the multiple band-pass sequency filtering (process (3)) 

of the epoch duration sequence. However, this occurrence was not 

due to process (2) because the repeated sequence was separated from 

the original by a "spurious" sample. No. 37. Apart from these "patt­

erns" a periodic characteristic was not evident within figure 6.5(b).

For N = 32 in process (1), the epoch duration sequences of 

figures 6.6(a) and (b) were produced. The sequence of figure 6.6(a) 

retained the envelope of the input waveform and had an erratic charac­

teristic. Asymmetric mirror imaging centred on sample number 51, 

over the range of samples 48 to 55 occurred. Otherwise, apart from 

the expected sample distortions, no other features existed. The 

sequence of figure 6.6(b) preserved the envelope of the original 

sequence. Symmetric mirror imaging occurred between samples 36 to 61. 

It was demonstrated in appendix A6, section 2(ii) that symmetric 

mirror imaging would be produced when alternate coefficients of a 

Sequency-Ordered Walsh Transform were discarded ie. sequency of 1, 

3, 5 and 7 for N = 8. However, in the Hadamard domain this does not 

manifest as a pattern and therefore cannot be attributed to any 

particular feature of the Dominant Coefficient Retention technique.
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For N = 16, the Low-pass Sequency Filtering (process (2))

produced the epoch duration sequencies of figures 6.7(a) and (b).

As shown in appendix A6, these sequences are identical to that achie­

ved by calculating the average of two ajacent epoch durations and 

replacing the original values with the averaged values. Thus the 

sequences exhibit a square/step-like characteristic. Much of the 

erratic form of figure 6.3(a) was eliminated (figure 6.7(a)). How­

ever, the envelope of the original sequence was retained. Figure 

6.7(b) shows that a periodic characteristic of the original sequence 

(figure 6.3(b)) was preserved but the shorter epoch durations (less 

than 0.5ms) were severely distorted.

Multiple Band-pass Sequency Filtering (process (3)) with N = 16

produced the epoch duration sequences of figures 6.8(a) and (b).

Without prior knowledge of appendix A6 it was not immediately obvious 

that samples 9 to 16 were identical to those of 1 to 8 for each trans­

form window. The sequence of figure 6.8(a) appear to have retained 

its erratic form but its envelope is not so well defined. The per­

iodic characteristic of figure 6.3(b) was almost non-existant in 

figure 6.8(b). The majority of epoch durations had values in the 

range of 0.5 to 0.75ms and any periodic structure perceived may be 

attributed to the average and repeat process.

6.5.2 Informal Subjective Appraisal

The speech synthesised employing the unprocessed coded speech 

file (CSF) (the data input to the transform algorithms) was of high 

quality and intelligibility. The description of distortions in the
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speech synthesised utilising processed CSFs are therefore relative 

to that produced employing the unprocessed CSF.

The CSFs output from the transform algorithms were utilised as 

the input files for the speech synthesis algorithm described in 

chapter 2. The synthesised speech output was bandlimited (300 to 

3400Hz).

The synthesised speech produced, using the CSF output from 

process (1) with N = 8, was intelligible and time warping was very 

evident. Due to the distortions of the epoch durations inflicted by 

the transformations, the time duration of the synthesised utterance 

was less than that of the original. This caused the speech to sound 

"speeded up". Some granular noise was perceived in the background 

but otherwise the speech was of good quality.

The synthesised speech created, utilising the CSF from process 

(1) with N = 16, was, marginally, of inferior quality to that pro­

duced with N = 8. Once again, granular noise was evident and time 

warping of the speech had occurred. The male utterance of the word 

"Balam" was muffled. This disturbance was not significant enough to 

cause loss of word intelligibility but sufficient enough for it to 

be highlighted by the remainder of the utterance and therefore give 

an impression of reduced quality to the complete utterance.

The synthesised speech generated from the CSF output of process 

(1) with N = 32 was found to contain some low frequency disturbances. 

This caused masking of the true quality of the synthesised speech. 

The low frequency cut-off of the band-pass filter was increased to
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400Hz before the disturbances were eliminated. The resulting speech 

was however severely time warped to such an extent that truncation 

of the last word of the complete utterance occurred. These effects 

resulted in a loss of naturalness within the speech, which in turn 

gave an impression of reduced quality in comparison with that pro­

duced for N = 8 and 16 in process (1). Word and sentence intell- 

igibity were retained.

The speech synthesised using the CSF output from process (2) 

was of high quality and intelligibility. Some granular background 

noise at a very low level was detected, but its level was such that 

it did not distract the listeners attention from the utterance.

The utterance synthesised employing the CSF output of process

(3) had a gargled/muffled quality, this being more pronounced in thé 

male utterance of "Balam". The female utterance of the word "yes" 

was less 'crisp* than the original and had a "flat and drawled" 

quality. The /s/ of "yes" was obscurred by noise. Time distortion 

was not evident but any such occurrences may have been masked by the 

poor quality and reduced intelligibilty.

6.5.3 Power Spectral Density Measurements

When the processed epoch duration sequences were input to the 

speech synthesis algorithm the distortions in the sequences (due to 

the transformations) manifested as time distortions of the waveform. 

As described in the previous section, the resulting distortion, 

termed "time warping", was predominantly of the variety which caused
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the complete utterance to occur over a shorter time period. Distor­

tions of this nature caused variations in the power spectrum over 

bands of frequencies. However, due to the non-linear nature of the 

distortions introduced by the transformations implemented (Tes-domain 

to Time-domain) these effects cannot be catagorised nor can the fre- 

quecies affected be predicted. The time distortions were a function 
of the data, the bit reduction and transformation algorithms which

cannot be compensated for be post filtering.

Inspection of the power spectral density plots (PSDP) revealed 

that the majority of the differences, in comparison with the original 

spectra, occurred over the mid-band frequencies (1.5 to 3.0kHz). 

These differences were, in general, an increase in the power spectra 

of the synthesised speech.

Figures 6.9(a) and (b) presented the speech synthesised from 

the epoch duration sequence of figure 6.3(b) and the computed power 

spectrum. A general comparison of power spectra revealed that the 

power spectrum of the speech segment synthesised using the Low-pass 

sequency filtered epoch durations, figure 6.13(b), had incurred the 

least distortions. The second spectral peak was attenuated while 

the midband frequencies were amplified. The distortions of the 

power spectra produced from the speech synthesised utilising the 

epoch durations output from the Dominant Coefficient Retention algor­

ithm, appear to have increased as the transform size, N, increased. 

The second spectral peak was merged into the spectrum for transforms 

of 8 (figure 6.10(b)) and 16 samples (figure 6.11(b)). For the 

transform of 32 samples the second spectral peak began to separate
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from the power spectrum (figure 6.12(b)). The power spectra resulting 

from the Multiple Band-pass Sequency Filtered epoch durations had 

incurred the greatest distortions with both the first and second 

spectral peaks experiencing frequency shifts and/or attenuation to 

a greater extent than any of the other power spectrums, figure 

6.14(b).

6.6 Conclusions

A maximum data reduction of 1.35:1 was achieved employing 

Dominant Coefficient Retention with N = 16 in a Hadamard Transform. 

The resulting speech was intelligible but of moderate quality.

The speech synthesised from the Low-pass Sequency Filtered 

Hadamard coefficients was of high quality and intelligibility. A 

maximum data reduction of 1.33:1 was achieved for N = 4. However, 

analysis of this process demonstrated that an identical epoch dura­

tion sequence (to that output from the transform) is achieved if the 

average of pairs of adjacent epoch durations was calculated and the 

original epoch durations were replaced with the average value. This 

process yielded a 2:1 data reduction in the epoch duration sequence 

because only the average value need be transmitted. This process 

also reduced the system delay from N epoch durations to two epoch 

durations, where N is the size of the Hadamard transform, ie by a 

factor of N/2.
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Campanella and Robinson [84]).
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Figure 6.3(a),(b) : Discrete sequential plots of epoch durations output

from Al-Doubooni's TES coder.
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0.23

60Sample Number

Figure 6.4 : (a) Sequence of Figure 6.3(a) after Forward and 

Inverse Hadamard transformation (N = 8) 

employing Dominant Coefficient Retention.

1.25

0.25

10 Sample Number

Figure 6.4 : (b) Sequence of Figure 6.3(b) after Forward and 

Inverse Hadamard transformation (N = 8) 

employing Dominant Coefficient Retention.
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6010 Sample Number

Figure 6.5 : (a) Sequence of Figure 6.3(a) after Forward and 

Inverse Hadamard transformation (N = 16) 

employing Dominant Coefficient Retention.
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10 S a m p le  N u m b e r

Figure 6.5 : (b) Sequence of Figure 6.3(b) after Forward and 

Inverse Hadamard transformation (N = 16) 

employing Dominant Coefficient Retention.
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10 Sample Number 60

Figure 6.6 : (a) Sequence of Figure 6.3(a) after Forward and 

Inverse Hadamard transformation (N = 32) 

employing Dominant Coefficient Retention.
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Figure 6.6

S a m p le  N u m b e r

(b) Sequence of Figure 6.3(b) after Forward and 

Inverse Hadamard transformation (N - 32) 

employing Dominant Coefficient Retention.
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0.25

Sample Humber

Figure 6.7 : (a) Sequence of Figure 6.3(a) after Forward and Inverse

Hadamard transformation (N = 16) employing Low Pass 

Sequency Filtering of the transform coefficients.

1.25

0.25

10 60Sample Number

Figure 6.7 : (b) Sequence of Figure 6.3(b) after Forward and Inverse 

Hadamard [ rans f o rma c i. oo f N' = 16) employing Low P a s < 

Sequency Filtering of ch<- transform coefficients.
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Figure 6.8 : (a) Sequence of Figure 6.3(a) after Forward and Inverse 

Hadamard transformation (N = 16) employing Multiple 

Bandpass Sequency Filtering of the transform coefficients

1.25

0.25

10 Sample Number

Figure 6.8 : (b) Sequence of Figure 6.3(b) after Forward and Inverse 

Hadamard transformation (N = 16) employing Multiple 

Bandpass Sequency Filtering of the transform coefficients 
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Figure 6.9 : (a) Segment of speech waveform synthesised using the 

input epoch duration sequence of Figure 6.3(b). 

(b) Corresponding power spectral density plot.
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Figure 6.10 : (a) Seginenc of speech waveform synthesised using

the epoch duration sequence of Figure 6.4(b). 

(b) Corresponding power spectral density plot.
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Figure 6.11 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 6.5(b), 

(b) Corresponding power spectral density plot.
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Figure 6.12 : (a) Segraenc of speech waveform synthesised using

the epoch duration sequence of Figure 6.6(b) 

(b) Corresponding power spectral density plot.
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Figure 6.13 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 6.7(b). 

(b) Corresponding power spectral density plot.
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Figure 6.14 : (a) Segment of speech waveform synthesised using

the epoch duration sequence of Figure 6.8(b), 

(b) Corresponding power spectral density plot.
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CHAPTER 7

Real-Time Implementations of TES 

and TES related Systems



7.1 Introduction

The development of a versatile real-time simplex digital voice 

channel was presented in section 2.3 of chapter 2. This system was 

developed for the real-time implementation and investigation of 

speech coding systems, and in particular TIME ENCODED SPEECH (TES).

This chapter highlights the implications of embodying TES and 

TES related algorithms upon the real-time simplex digital voice link 

for various bit-rates, system delays and data reduction techniques.

Section 7.2 reviews King and Goslings simulation algorithm and 

relates its real-time implementation to the algorithm developed for 

the real-time simplex digital voice channel. Al-Doubooni's simula­

tion algorithm is reviewed in section 7.3. Also presented are the 

restrictions imposed/alterations required upon the coder before a 

real-time implementation was possible.

The system considerations for the implementation of the real­

time coders are presented in section 7.4. The system parameters and 

a discussion of the implications of the real-time implementations are 

also included in this section.

Section 7.5 describes the TES coders which have incorporated 

either the differential or group amplitude signalling techniques 

investigated in Chapter 3.

The real-time TES coders with Hadamard Transformation of the 

epoch sequence are presented in section 7.6. The technique employed 

was investigated in chapter 6.
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Section 7.7 presents an informal assessment of the coders

developed and highlights some of the issues related to quality. 

Finally, section 7.8 presents the summary of the chapter.

7.2 TES Coder : King and Gosling

The Time Encoded Speech (TES) originally reported by King and 

Gosling utilised a coding alphabet of 23 coded shape descriptors

[30]. ' Each data frame of the TES coder comprised of eight "coded

shape descriptors" (tes-codewords) and a single eight bit codeword 

to communicate the mean amplitude of the preceding eight codewords. 

The waveshapes utilsed for the synthesis of the speech signal were

square waves. Further research by King and Holbeche [93] demonstra- 

ated that a coding alphabet of 28 tes-codewords produced speech of 

superior quality to that utilising 23 tes-codewords. These invest­

igations also inspected the utilisation of "rounded" waveshape for 

synthesis. However, the quality of the speech synthesised was judged 

to be poorer than that synthesised for square wave synthesis wave­

shapes .

From the description of the digital voice channel it is obser­

ved that the software for the channel does not require any altera­

tions for the implementation of King and Goslings TES coder. The 

software support enabled a coding alphabet of 28 tes-codewords to be 

formed. The synthesis waveshapes of the alphabet are presented in 

figure 7.1. Inspection of figure 7.1 reveals that, for some of the 

multiple extrema segments, an element of skewness was incorportated. 

Informal appraisal of speech synthesised from coding alphabets with
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varying degrees of skewness indicated that, subjectively, skewness 

towards the right most extreme yielded higher quality. The philos­

ophy of King and Gosling was that epoch durations greater than 2ms 

(40 samples at 20kHz sampling) occur due to low frequency components 

and may be clasified as noise. Therefore, the synthesis waveshape 

for codeword 28 is shown to be a square wave of 40 samples. However, 

this waveshape, when implemented in a TES coder by King and Gosling, 

had zero amplitude. Figure 7.2 shows the coding matrix for the 28 

codeword alphabet. This diagram also highlights the quasi-logarithmic 

quantisation of the epoch durations described by King and Gosling. 

The exception to this is the epoch duration of 0.05ms (1 sample) 

which was signalled as an epoch of 0.1ms (2 samples). The codeword 

numbers of figure 7.2 are positioned at the synthesis "co-ordinates". 

For example, when an epoch of 0.75ms duration and 3 minima is detec­

ted codeword 12 is transmitted. On receiving this codeword the 

receiver synthesised an epoch of 0.85ms duration with 2 minima.

7.3 TES Coder : Al-Doubooni

Al-Doubooni's TES coder [39] differed from that originally 

developed by King and Gosling. As described in chapter 2, mapping of 

the quantised time and shape descriptors onto a reduced alphabet was 

excluded and the amplitude information was communicated on an epoch 

to epoch basis, rather than after every eight epochs. To reduce the 

effects of background noise and the data required for encoding per­

iods of silence, symmetrical thresholding of the speech signal was 

applied. Epochs with a peak magnitude less than the threshold level
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were assigned a zero valued peak magnitude. A succession of such 

epochs were combined to form a single epoch of zero magnitude and 

duration equivalent to the sum of the durations of those epochs 

combined.

The epoch parameters 'transmitted* were : Epoch duration.

Number of minima and peak magnitude. Al-Doubooni employed the full 

quantisation range for peak magnitude (0 to 511) and epoch duration 

(1 to 2047 samples) encoding. Extra codewords were required to 

signal the extrema information.

To implement such a coder, the real-time channel software 

required alterations to accommodate a data frame comprised of one 

amplitude codeword and one tes-codeword. Although Al-Doubooni trans­

mitted extrema information when synthesising the speech signal a 

half waveform with either one or three extrema was used. Thus, in 

the real-time system only two stylised waveshapes were required. 

These are given in figure 7.3.

Due to the symmetrical thresholding, epoch durations of the 

order of 0.1ms (2000 samples) were possible in the simulation algor­

ithm. To encode epochs of such duration in a real-time system would 

involve excessively large alphabets and system delay (since the min­

imum system delay must be equal to the largest epoch duration). To 

overcome this, all epoch durations between 0.05 and 1.95ms (1 to 39 

samples) inclusive were considered valid. Any single epochs of a 

duration greater than 1.95ms (39 samples) were classified as silence 

and represented by a single codeword representing an epoch of 2.0ms 

duration (40 samples) and zero amplitude. To preserve polarity, the
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number of epochs combined by the symmetric thresholding was restric­

ted to odd values. When the sum of the epoch durations of the comb­

ined epochs, Tj., was greater than 1.95ms, a codeword representing 

an epoch of 2.0ms and zero amplitude was transmitted and T(. was set 

equal to T̂ . - 2.0ms. Thus, time warping was not introduced by this 

technique and the excessively large epochs produced by Al-Doubooni's 

simulation algorithm did not occur.

In the simulation algorithm the number of extrema were sig­

nalled for all epoch durations. However, epoch durations of 0.05 

and 0.1ms (1 and 2 samples, respectively) may only be represented by 

half waveforms with one extreme. Since the synthesis routine requir­

ed only one of two waveshapes the represention of extrema information 

required only one bit codeword.

The digital voice link of chapter 2 was developed for the 

transmission of two independant codewords. Significant software 

alterations would have been necessary for the transmission of amp­

litude information, epoch duration and the number of extrema. It 

was therefore chosen to combine the extrema and epoch duration infor­

mation to prevent the need for software alterations. To represent 

all valid epochs 2 codes were required for the represention of epoch 

durations of 0.05 and 0.1ms, each of the epochs in the duration range 

of 0.15 to 1.95ms inclusive, may be represented by 2 codewords per 

epoch (either a single or multiple extrema synthesis waveform) and 

one codeword to represent epoch duration of 0.2ms was required. 

Therefore, to implement a real-time equivalent of Al-Doubooni's TES 

coder an alphabet of 77 tes-codewords was required for the coding
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matrix. This is given in figure 7.4. As in Figure 7.2 the codeword 

numbers of figure 7.4 are positioned at the synthesis co-ordinates.

7.4 System Considerations

The performance of a real-time digital voice transmission 

system depends upon transmission rate, length of transmitter (Tx.) 

and receiver (Rx.) buffers and the overall system delay introduced 

by the buffer arrangment. Operating at modest transmission rates 

with finite buffer lengths and system delay, which enable effective 

two way communications, will inevitably introduce buffer overflowing 

and underflowing, causing further distortions which degrade the 

speech quality.

(i) Buffering

Figures 7.5(a) and (b) illustrate the variations in source 

symbol generation rate for two utterances possessing widely different 

characteristics. To produce these figures the symbol rate was de­

fined over a period of 5ms and plotted against time. The speech 

signal had a bandwidth of 0.1 to 4.5kHz.

These utterances were characterised by an approximately uniform 

mean symbol generation rate in the range 0.5 to 1.5 ksymbols/second 

for the majority of the time, which corresponds mainly to voiced 

sounds, while sustained bursts of high generation rate occurred due 

to unvoiced sounds. Constant rate transmission of the symbols 

therefore required buffering to smooth out the fluctuations in
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generation rate.

The buffer structure employed in the simplex digital voice 

channel was such the transmitter (Tx.) and receiver (Rx.) buffer 

lengths were defined by the maximum number of codewords the buffers 

were capable of storing, and not the maximum number of bits. There­

fore, if the buffers employed in each coder were of equal lengths 

(in the sense of the number of codewords they were capable of stor­

ing) then the maximum number of data frames which may be stored in 

Al-Doubooni*s coder (hereafter referred to as ADcoder) will be grea­

ter than in King and Gosling's coder (hereafter referred to as KGco- 

der). However, the data frames stored in the buffers of the HScoder 

represent more epochs than the data frames stored in the buffers of 

the ADcoder. Using the same argument, if the length of the buffers 

were specified in bits then again the ADcoder would be capable of 

storing more data frames than the K3coder but, the data frames stored 

in the K3coder would represent a greater number of epochs and there­

fore a greater period of time (segment of speech).

Since buffers of the same length (whether defined in terms of 

data frames, codewords or bits) were capable of storing codewords 

which represent segments of speech of differing lengths, so the rates 

at which the Tx. buffers filled, for the same segment of speech, 

also differed. This implied that the point at which Tx. buffer over­

flow became imminent would differ in the ADcoder and R]coder. Al­

though the mechanisms for Tx. buffer overflow managment were identical 

in each coder, its interaction occurred at different points within the 

speech signal. Therefore, the auditory effects would be dissimilar.
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As stated earlier, the data frames employed by Al-Doubooni 

differed from that originally specified by King and Gosling. To re­

iterate, Al-Doubooni structured a data frame employing one 9 bit 

amplitude codeword and one 7 bit tes-codeword (Coded Shape Descrip­

tor), a total of 16 bits per data frame. King and Gosling utilised 

one 8 bit amplitude-codeword and eight 5 bit tes-codewords, a total 

of 48 bits per data frame.

If N data frames were to be discarded to prevent buffer over­

flow, then a total of 16.N bits (N tes-codewords) in the ADcoder, or 

48.N bits (8.N tes-codewords) in the R]coder, would be discarded. 

To discard a set number of data frames for the prevention of Tx. 

buffer overflow results in a greater number of tes-codewords being 

discarded in the HGcoder than in the ADcoder. Therefore, a larger 

segment of speech is discarded by the Rlcoder than the ADcoder. If 

the discard were conducted in terms of bits then, 3 data frames of 

the ADcoder must be discarded for each data frame discarded by the 

HGcoder. However, once again more epochs are discarded by the HGco­

der than the ADcoder.

From the above it was clear that, even in the ideal situation 

of distortionless transmission within both coders, for the storage 

of either an equal number of codewords or data frames within each 

coder buffers of different lengths were required in each coder. 

This situation occurred because the structure of the buffers in the 

digital voice channel were word-storage orientated. To specify 

buffers of different lengths in each coder implied different dura­

tions of transmission delay.
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Only if the buffer lengths were defined in bits would each 

coder have identical values of system delay. However, in this situa­

tion they had different characteristics since they were capable of 

storing different quantities of dataframes/codewords.

The implementation of the coders was to be bit orientated since 

each coder was to be studied using various serial bit transmission 

rates. It was therefore decided to specify the length of the buffers 

and the extent of the data discarded/repeated to prevent Tx. buffer 

overflow/underflow, in bits. However, due to differing lengths of 

codewords in each coder identical values of Tx. and Rx. buffer len­

gths could rarely be achieved.

(ii) Transmission Delay

Time Encoded Speech involves the coding of variable-rate source 

signals into constant-rate signals for transmission. Buffer storage 

at transmitter and/or receiver is required to permit this "variable- 

rate to constant-rate" transformation. As a result, delays are 

introduced into the communication process. This form of delay is

commonly referred to as Transmission Delay.

The mechanisms involved, the influences of buffer size and the

delays associated with TES systems were described by Turner et al 

[34], who concluded that "fairly long delays (of the order of two

seconds round trip delay) may be involved in the distortionless trans­

mission of speech encoded using information about the waveform seg­

ments linking successive real zeros from speech signals". Extending
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this analysis Mason and Balston [35] proposed a modest increase (by a 

factor of 1.5 to 1.9) in transmission rate over the average source 

generation rate for the distortionless transmission of time encoded 

speech with a tolerable transmission delay of 200ms (400ms round 

trip delay). Turner et al [36] derived explicit expressions for the 

limiting delay in time encoded speech type systems operating at data 

transmission rates higher than the average rate at which the infor­

mation is produced by the variable-rate source. However, King and 

Holbedhe [37] offered experimental evidence which indicated that 

transmission delays in time encoded speech may be reduced an order 

of magnitude by utilising sub-optimum bounded entropie codes in 

place of constant length codes.

A number of researchers have studied the effects of delay upon 

voice transmission. Krauss and Bricker [94] had male and female 

subjects converse and solve puzzles over circuits with round trip 

delays of zero, 600ms and 1800ms. Measurements of word counts and 

subjective opinions indicated no significant differences between 

zero and 600ms delays, but the 1800ms delay caused an increase in 

reports of "difficulty in communicating due to the circuit".

Klemmer [95] found that users were very seldom disturbed by 

delays of 600ms and 1200ms. These studies appeared to indicate that 

subjects were generally unaware of, and undisturbed by, round trip 

delays of upto 1200ms.

Transmission delay is a highly contentious subject in the field 

of communications. The contention is, in the main, due to the tech­

niques utilised for the testing of telephonic systems. The majority
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of results presented are based upon "subjective opinions".

The previous discussion of buffering highlighted the fact that 

the codewords in the two coders were of different bit lengths and 

that the number of codewords which constituted a data frame were not 

always the same. Since the buffers of the coders were word-storage 

orientated the buffer lengths could not be precisely specified in 

bits. Instead they were specified to a length which enabled the 

storage of an integer number of codewords.

For many data frames and codewords implemented it was imposs­

ible to define the transmission delay precisely in each coder. 

Therefore, the delay nearest to 300ms (or whatever value) was util­

ised.

To implement the real-time algorithms presented in this thesis, 

upon the simplex digital voice channel, it was chosen to employ a 

transmission delay of the order 300ms (equivalent to round trip delay 

of the order of 600ms) since the majority of researchers dispute 

the results obtained for delays greater than this figure.

(iii) Transmission Rate

The subject of digital speech encoding and bit-rate compression 

has been one of considerable interest in recent years. Attention has 

focused strongly on bit rates in the range of 9.6 to 16kb/s for applic­

ations where good "communications quality" and robustness across a 

wide range of background noise conditions and speaker variations is 

required [96]. The bit rate of 9.6kb/s appears, at present, to be
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about the lowest practical rate at which "communication quality" and 

robustness can be readily achieved. Below 9.6kb/s presently known 

techniques have a noticable synthetic quality and are considered 

more fragile to differences in speakers and background conditions 

[96].

Although this thesis investigated data reduction techniques for 

TES it has not strived to develop the ultimate TES coder. In fact, 

the real-time implementations of Al-Doubooni and King and Gosling 

coders still require extensive research before they may be claimed 

to be in any sense the "optimum" TES coder.

The MIPROC system, upon which the real-time digital voice 

channel was implemented, has several pre-set clock signal generators 

which may be employed for transmission timing. The pre-seTt clock 

rates are 5, 10, 15 and 20kb/s.

Since the algorithms implemented in Real-time were not "opti­

mum" it was chosen to employ the pre-set clock rates of 10 and 15kb/s 

for the transmission timing. In some instances a transmission rate 

of 4.8kb/s was inspected.

7.4.2 System Parameters

Table 7.1 presents the system parameters utilised for the real­

time implementation of Al-Doubooni’s and King and Goslings coder.

This table highlights the differences in the size of data frame 

employed in these coders. Because the data frames were of different
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sizes so the filler-words, which prevent Tx. buffer underflow, also 

differed since each filler-word had to have the same number of bits 

as the complete data frame.

The extrema sensitivity parameter of the extrema detection 

algorithm was set at 44dB below the maximum possible peak magnitude, 

in all the coders developed. This parameter, which is described in 

chapter 2, eliminated the very small extrema generated by either low 

level noise or last bit uncertainty within the analogue-to-digital 

converter.

7.4.2 Discussion

From figures 7.5(a) and (b) it is observed that the rate of 

generation of epochs for undifferentiated bandlimited speech may 

vary from as low as 200 epochs/second, which results from voiced 

segments of speech, upto 8000 epochs/second which occurs due to 

bursts of unvoiced speech. The speech employed to produce the plots 

of figures 7.5(a) and (b) was bandpass filtered from 0.1 to 4.5kHz. 

To impose the telephone bandwidth of 0.3 to 3.4klfe would reduce the 

upper generation rate to approximately 5000 epochs/second. Convers­

ely, the lower generation rate would be increased to approximately 

800 epochs/second.

To signal epoch information the ADcoder utilised 16 bits per 

epoch. Therefore, the rate at which symbols (bits) were generated 

varied from 12.8kb/s upto 80kb/s. Clearly, with transmission (Tx.) 

buffer delays of the order of 100ms and serial transmission rates of
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10 or 15kb/s, Tx. buffer overflow was a frequent event in the ADcoder. 

Increasing the system buffer delay reduced the extent of buffer 

overflow. However, distortion began to arise due to the buffer 

managment dicarding/repeating technique. As the length of the Tx. 

buffer was increased the condition arose where the Tx. buffer was 

able to store a small segment of voiced speech and a complete segment 

of unvoiced speech. At this point the Tx. buffer began to overflow 

and data was discarded. Because of the discarding of data by the 

Tx. buffer the Rx. buffer began to underflow. The last M data frames 

within the Rx. buffer were therefore repeated to prevent total Rx. 

buffer underflow. However, the repeated segment represented a voiced 

segment of speech and the repetition of such a segment produced a

grossly distorted waveform.

The situation also arose where the TES codes repeated repres­

ented a segment of inter-word silence. The repetition of such seg­

ment also resulted in a significant loss of input speech.

The HGcoder employed 48 bits to signal information for a group 

of eight epochs. Therefore, the symbol generation rate for this 

coder varied from 4.8kb/s upto 30kb/s. The extent of Tx. buffer

overflow was significantly less than that of the ADcoder for the same 

parameters. If the system delay was increased such that the occurr­

ences of Tx. buffer overflow were reduced until a condition of distor­

tionless transmission was achieved, the audible effects encountered 

with the ADcoder did not occur.

- 248 -



7.5 Amplitude Signalling

The results of the investigations reported in chapter 3 indic­

ated that amplitude information of the order of one bit per epoch 

produced speech of acceptable quality. The speech of highest intell­

igibility and acceptability was produced utilising the following 

techniques:

(a) Employing 2 bit Differential Pulse Code Modulation 

(DPCM) for successive epoch amplitude parameters.

(b) Signalling the amplitude parameter for a group 

of N epochs.

Implementation of the 2 bit DPCM of the epoch peak amplitude 

(hereafter referred to as amplitude) required substantial software 

changes within the analysis and synthesis routines of the real-time 

algorithms. The alterations required within the ADcoder were relat­

ively straight forward and a data frame consisted of a 2 bit ampli­

tude-codeword and a 7 bit tes-codeword. To retain the data frame 

structure of the HGcoder would have significantly increased coder 

complexity and therefore reduced the viability of TES. It was there­

fore chosen to employ the same data frame structure as utilised by 

the ADcoder. Thus a data frame consisted of a 2 bit amplitude- 

codeword and a 5 bit tes-codeword.

The signalling of the amplitude parameters for groups of epochs 

involved detection, over N successive epochs, of the maximum epoch 

amplitude as well as the individual epochs amplitudes. Each epoch 

within the group was normalised such that the individual epochs
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amplitudes were equal to that of the maximum amplitude of the group.

The signalling of amplitude information over groups of epochs 

was precisely what King and Gosling originally proposed. The only 

difference being the group size. In the investigations of chapter 3 

an 11 bit amplitude-codeword was employed for signalling the ampli­

tude of 11 epochs. King and Gosling utilised an 8 bit amplitude- 

codeword for a group of 8 epochs. However, the intrinsic information 

differs. To employ an 8 bit codeword, instead of an 11 bit codeword, 

results in the amplitude information being coarsly quantised which 

increases the quantisation noise. However, to code a group of 

eight epochs instead of eleven reduces the extent of the amplitude 

distortions introduced by normalisation of each epoch within the 

group to the maximum value within the group. The investigation 

reported in chapter 3 indicated that it was difficult, but not im­

possible, to discriminate between algorithms using groups of 8 and 

11 epochs. However, in those investigations a group size of eight 

was equivalent to 1.37 bits of amplitude information per epoch.

The algorithms which incorporated amplitude signalling over 

groups of N epochs were developed from the original HGcoder. Clearly, 

no alterations were required for the inclusion of this technique 

within the HGcoder. However, a threshold level was incorporated 

within another version of this algorithm such that, if the maximum 

amplitude of the group of epochs, A^, was less than the threshold 

level, then Aĵ  was set equal to zero.

The data frames employed were: (a) one 8 bit amplitude-codeword 

and eight 7 bit tes-codeword (for the ADcoder) and one 8 bit amplitude-
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codeword and eight 5 bit tes-codeword (for the HGcoder).

7.5.1 System Parameters

The system parameters for the implementation of the ADcoder 

and HGcoder with amplitude information signalled for groups of eight 
epochs are presented in Table 7.2. From comparison of the parameters 

for the coders employing the King and Holbeche coding alphabet (KHal- 

phabet) of Tables 7.1 and 7.2 it is observed that they differ only in 

the number of data frames manipulated by the buffer managers.

Although the number of codewords forming a data frame were the 

same for each coder the number of bits per data frame differed. There­

fore, to ensure that the filler—word was unambiguously decoded by 

the receiver of each coder, the filler-word was formed from four 16 

bit words. Since the number of bits forming a data frame differed so 

the number of data frames discarded/repeated by the buffer managment 

software had to differ to ensure that the same quantities of data 

were being discarded by each coder.

The system parameters for the coder which incorporated differen­

tial amplitude signalling are given in Table 7.3 which shows that, 

for this particular coder, a filler-word of only 16 bits was required. 

Due to the differing sizes of data frame 3 data frames were discarded 

by the coder when Al-Doubooni's coding alphabet (ADalphabet) was 

implemented compared with 4 data frames when KHalphabet had been 

incorporated.
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7.5.2 Discussion

The algorithms which employed amplitude signalling over groups 

of 8 epochs yielded very similar bit generation rates to that of the 

HGcoder of Table 7.1. The extent of Tx. buffer overflow experienced 

with the original ADcoder was significantly reduced in the version of 
Table 7.4 because the information employed for signalling epoch

amplitude had been reduced from nine to one bit per epoch. However, 

the ADcoder of Table 7.2 yielded a greater bit generation rate than 

that of the HGcoder.

The buffer managment technique of discarding and repeating data 

frames created its own problems in the differential amplitude signal­

ling implementation. The differential step sizes were set at 42dB 

and 20dB below the maximum possible peak amplitude. When an imminent 

Tx. buffer overflow condition occurred, the buffer manager discarded 

N data frames. At some time after this event the Rx. buffer reached 

a condition of imminent underflow and the buffer manager repeated 

the last N data frames. This technique had been sufficient for the 

coders described so far. However, since this coder utilised differ­

ential amplitude signalling, the discard and repeat of the codewords 

destroyed the amplitude sequence. This resulted in the incorrect 

levels being synthesised and the speech synthesised was noisy and 

unintelligible. If left sufficiently long enough, the system occas­

ionally recovered from this situation until the next discard/repeat.

This distortion was considered unacceptable and measures were 

required to prevent this or to ensure a quick recovery. One tech-
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nique would be to encode the amplitude information prior to trans­

mission. This would ensure that the discarding of data would not 

affect the amplitude signalling. However, the point.in time, after 

the Tx. buffer discard, at which the Rx. buffer repeats a segment 

cannot be predicted. Therefore, the data transmitted cannot be appro­

priately adjusted to prevent a discontinuity of amplitude levels 
caused by the repetition at the receiver.

It was chosen to employ a technique which ensured a quick recov­

ery from the effects of buffer overflow rather than attempt to adapt 

the codes at such times. To do this, four different step sizes were 

specified for the coder such that, the rate of decay of the synth­

esised speech was much greater than the rate of attack. The step 

sizes for increasing the amplitude were 42dB and 20dB below the 

maximum possible peak amplitude and the step sizes for decreasing 

the amplitude were 36dB and 14dB below the maximum possible peak 

amplitude.

When using these step sizes, if a discard/repeat was performed, 

which totally corrupted the sequence for decoding, resulting in unin­

telligible speech, it was found that the speech level was quickly 

forced to zero eliminating the disturbing audiable effects. The 

algorithm also tended to recover quickly from this situation where 

if the standard algorithm managed to recover, in general, it a signif­

icant period of time had elapsed before recovery.

This technique had two advantages. Firstly, instead of the 

listener having to tolerate, sometimes quite loud, noise the level 

was rapidly forced to zero. This produced a significant perceptual
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effect upon the speech quality and intelligibility. Secondly, the 

algorithm recovered from the disturbances introduced by the discard/ 

repeat mechanism.

7.6 Orthogonal Transformations

A maximum data reduction of 1.35:1 was achieved employing 

Dominant Coefficient Retention within a Hadamard Transform (N = 16). 

The resulting speech was intelligible but of moderate quality.

The speech synthesised from the Low-pass Sequency Filtered 

Hadamard coefficients was of very good quality and intelligibility. 

A maximum data reduction of 1.33:1 was achieved for N = 4. However, 

analysis of this process (appendix 6) demonstrated that an identical 

epoch duration sequence (to that output from the transform) was achie­

ved if the average of pairs of adjacent epoch durations was calcu­

lated and the original epoch durations were replaced with the average 

value. This process yields a 2:1 data reduction in the epoch duration 

sequence because only the average value need be transmitted. This 

process also reduced the delay introduced by the transformation 

from N epoch durations to two epoch durations, where N was the size 

of the Hadamard transform, ie. by a factor of N/2.

The coded shape descriptors contain information concerning the 

epoch shape as well as duration. To implement the transformation of 

epoch duration only, within a real-time system, would have increased 

the data required for the representation of epoch parameters within 

the HGcoder. Significant software alterations and redesign of the
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codeword alphabets would also have been necessary for such an imple­

mentation. It was therefore decided that the epoch duration and 

shape information (extrema count) were to be 'transformed* simult­

aneously .

The pseudo-Hadamard Transform (here after referred to as Had- 

amard Transformation only) yielded the greatest data reduction for 

the least system delay and complexity of implementation. This tech­

nique was therefore adopted rather than implementing a standard 

Hadamard Transformation within transmitter and reciever.

Two algorithms were developed for the inclusion of Hadamard 

Transformations of the epoch duration and extrema count. The first 

algorithm developed utilised the structure of the ADcoder. A data 

frame within this coder, the Hadamard Transform ADcoder (HTADcoder), 

consisted of two 9 bit amplitude-codewords and one 7 bit tes-codeword. 

To incorporate such a data frame the Receiver Interrupt Service and 

Analysis and Synthesis routines of the ADcoder were altered to develop 

the HTADcoder.

These alterations were necassary because the HTADcoder trans­

mitted two consecutive amplitude-codewords per tes-codeword while 

the ADcoder transmitted one amplitude-codeword per tes-codeword. If 

the KHalphabet was utilised within the HTADcoder algorithm then the 

data frame consisted of two 8 bit amplitude-codewords and one 5 bit 

tes-codeword.

The second algorithm was developed from the IGcoder. Once 

again the majority of software changes were conducted within the
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analysis and synthesis routines. However, a data frame within this 

coder, the Hadamard Transform KEcoder (HTKÎcoder), was comprised of 

one 8 bit amplitude-codeword and four 5 bit tes-codewords. If the 

ADalphabet was incorporated within the HTICcoder then one 8 bit 

amplitude-codeword and four 7 bit tes-codewords formed the data 

frame.

7.6.1 System Parameters

The system parameters for the HTADcoders implemented are pres­

ented in Table 7.4. The filler-word for both coders was 32 bits 

(two 16 bit words). The number of data frames discarded/repeated by 

the buffer manager were 4 (for the HTADcoder with ADalphabet) and 6 

(for the HTADcoder with ^Halphabet). This represents 100 and 126 

bit discarded/repeated, respectively. As in the case of the coder of 

section 7.5, to discard an equal number of bit from each coder would 

have required extensive data to be discard which would have been 

impractical.

The HTR3coder also employed a filler-word of 32 bits. These 

coders signalled amplitude information for groups of eight epochs. 

Comparing Tables 7.1 and 7.5 it is observed that the filler-word 

required by the H T coder is half that for the R3coder. The data 

required to form a data frame has been reduced by ratios of 1.5:1 

and 1.7:1 when the coders include the ADalphabet and KCalphabet, 

respectively.
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7.6.2 Discussion

The symbol generation rate for each of the algorithms of sec­

tion 7.6 was less than that of the algorithms of section 7.2, irres­

pective of which coding alphabets were employed. This was a result 

of the reduced data requirement for each epoch. The HTADcoder with 

ADalphabet required 12.5 bits for signalling epoch information comp­

ared with 16 bits required by the ADcoder. If the KHalphabet was 

implemented in the HTADcoder then the bit requirement per epoch was 

further reduced to 10.5 bits.

The HTHJcoder with KHalphabet transmitted 28 bits per data 

frame which was equivalent to 3.5 bits per epoch compared with 48 

bits per data frame (6 bits per epoch) for the KJcoder. If the 

ADalphabet was implemented then the data frame was 36 bits (4.5 bits 

per epoch).

Table 7.4 indicates that the prevention of Tx. buffer overflow/ 

Rx. buffer underflow in the HTADcoder involved the discarding/repeat­

ing of 4 data frames when the ADalphabet was utilised and 6 data 

frames for the HTADcoder with the KHalphabet. In the HTADcoder a 

data frame consisted of two amplitude-codewords and one tes-codeword. 

However, the tes-codeword represents two epochs and therefore the 

discard/repeat of 4 or 6 data frames actually involved 8 or 12 data 

framesof an ADcoder, repectively.

The HTADcoder (of Table 7.4) employ 10.5 bits per epoch (for 

the application of the KHalphabet) or 12.5 bits per epoch (for the 

application of the ADalphabet) compared with 16 bits in the ADcoder.
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Therefore, for every data frame stored in the Tx. buffer of the 

ADcoder 1.3 data frames, when utilising the ADalphabet, or 1.5 data 

frames, for the application of the IGalphabets, were stored in a 

HTADcoder Tx. buffer which was of the same bit length to that of the 

ADcoder.

Table 7.5 shows that the prevention of Tx. buffer overflow/Rx. 

buffer underflow within a HTKGcoder involved the discarding/repeating 

of 3 data frames when ADalphabet was utilised and 4 data frames for 

the implementation which employed the KHalphabet. In this coder a 

data frame consisted of one amplitude-codeword and four tes-codewords. 

A tes-codeword within a HTKGcoder represented two epochs and there­

fore, the information contained in a HT M3 coders data frame was equal 

to that of a KGcoders data frame.

The HTH3coder (of Table 7.5) employed 3.5 bits per epoch (for 

the application of the HSalphabet) or 4.5 bits per epoch (for the 

application of the ADalphabet) compared with 6 bits in the ADcoder. 

Therefore, for every data frame stored in the Tx. buffer of the 

M3 coder 1.3 data frames, when utilising the ADalphabet, or 1.7 data 

frames, for the application of the KHalphabet, were stored in a 

HTKGcoder Tx. buffer which was of the same bit length to that of the 

ADcoder.

The above, indicates that the HTADcoder and the HT M3 coder 

store a greater number of epochs than the ADcoder and M3 coder, respec­

tively, for buffers of the same bit lengths. Therefore, the rate at 

which the Tx. buffer of the Hadamard Transform coders reached a cond­

ition of imminent overflow differed to that of the standard coders.
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The perceptual effects Introduced into the synthesised speech by Tx. 

buffer overflow/Rx. buffer underflow within the coders utilising 

Hadamard Transformations were therefore different to those of the 

ADcoder and M3 coder.

7.7 Informal Subjective Appraisal

In section 7.4 it was indicated that the TES and TES related 

real-time coders presented within this chapter, in the opinion of the 

author, are by no means the final versions and further research is 

still required. Therefore, it would have been unjust to have con­

ducted quality and intelligibility assessments for each coder. How­

ever, having discussed the various coders it would have been equally 

unjust not too have commented upon the present quality and intelligi­

bility achievable at set transmission rates and delay. The system 

parameters utilised in these assessments have been specified in 

Tables 7.1 to 7.5.

In the following comments, unless otherwise specified, the 

transmision (Tx.) delay was approximately 300ms.

With a Tx. rate of 15kb/s the speech output from the ADcoder 

sounded very granular with spasmodic clicking. In the female seg­

ments of speech this effect was more severe and some truncation of 

words was detected. The female spoken fricative of the word 'Yes* 

was very distorted, mainly by Tx. buffer overflow/Rx. buffer under­

flow, which resulted in the 'Yes' sounding like 'Yeah*. Other utter­

ances such as the word 'Newcastle* sounded very gargled and the 'ch*
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of 'Charles* was distorted such that it sounded very "squeaky". 

Overall, the speech was of moderate to fair quality, intelligible 

and speaker recognition was possible.

When the Tx. rate was reduced to lOkb/s the fricatives of the 

speech output were very distorted. Clearly, buffer underflow/over­

flow was playing a significant part in the introduction of distor­

tions. The speech output was not considered to be of lower quality 

than that produced by the coder at 15kb/s but occasionally sounded 

slightly synthetic.

At a Tx. rate of 15kb/s the speech output from the MGcoder 

sounded very synthetic, almost musical, and was of low quality and 

intelligibility. Because the speech sounded so synthetic in the 

subjective listenings no differences in quality and intelligibility 

were readily perceived for a Tx. rate of lOkb/s.

For a Tx. rate of 15kb/s, the algorithm which employed ADalpha­

bet and encoded amplitude information over groups of eight epochs 

was found to produced a higher level of background noise yet much 

cleaner speech to that of the ADcoder. Utterances sounded more 

'crisp* with only the occasional 'clicking*. When the Tx. rate was 

set at lOkb/s the speech took on a more granular quality with 'click­

ing* occurring more frequently than at 15kb/s. The quality and 

intelligibility of this coder at either 10 or 15kb/s was considered 

to be superior to that of the ADcoder and vastly superior to that of 

the M3 coder for a Tx. delay of 300ms.

The speech output from the algorithm employing differential
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amplitude signalling and the KHalphabet was of similar quality and 

intelligibility to that of the M3 coder at both 10 and 15kb/s.

For the application of the ADalphabet in this coder, at 15kb/s, 

the background and inter-word noise was found to be very prominent 

and distracting. The speech was "crackly" which was found to inter­

fere/interupt the utterance. The speech was very distinct and of 

fair quality and intelligibily. For a Tx. rate of lOkb/s the back­

ground and inter-word noise was again very prominent and the 'crack­

ly ' sound had increased. This caused a subjective reduction in 

quality and intelligibility. The increase in speech distortion was 

attributed to an increase in the frequency with which the buffers 

were over flowing/under flowing.

: There were no obvious differences in quality/intelligibility of 

the speech output by the HTADcoder with the KHalphabet and that 

output from the H3coder at data Tx. rates of 10 or 15kb/s. The 

speech sounded synthetic and was of low intelligibility.

With the ADalphabet in the HTADcoder at 15kb/s the background 

noise was quite loud and the female utterances were not as distinct 

as the male. The speech output was of fair quality and intelligi­

bility. When the Tx. rate was lOkb/s, the background noise sounded 

discontinuous, as though it was being interrupted. The speech was 

slightly 'garbled’ during some utterances and was not as clear as 

that for 15kb/s data transmission. The male uttered 'Yes' was very 

indistinct and the female version was of similar quality. The 

speech output was considered to be of moderate to fair quality and 

intelligibility.

- 261 —



The HTADcoder with the ADalphabet was assessed for a data Tx. 

rate of 5kb/s. For Tx. delays of both 300 and 600ms the background 

noise was found to be very broken up and of a lower level to that for 

lOkb/s transmission. The speech output with a delay of 300ms was of 

low quality and intelligibility because it sounded very synthetic. 

For a delay of 600ms the speech sounded slightly less synthetic but 

was still of low quality and intelligibility.

The final group of algorithms were the HTHScoders. Once again,

with the KHalphabet implemented the quality was only marginally bett­

er than that of the HScoder, for Tx. rates of 10 and 15kb/s«

With the ADalphabet implemented in the HTH3coder the speech

produced was slightly gargled and some words were not very clear

because of the ’crackly' noise inparticular, the 'c' of the words

'centre' and 'code' were very distorted by this. For a Tx. rate of

lOkb/s similar effects were heard and it was difficult to distinguish 

between the speech output at lOkb/s and 15kb/s. The speech quality 

and intelligibility at both data rates, was considered to be fair.

At a Tx. rate of 5kb/s and delays of 300 and 600ms the speech 

was 'crackly' with the occasional 'clicking'. This caused the speech 

to be subjectively perceived as of lower quality to that produced at 

10 and 15kb/s. When the delay was 300ms the speech was considered

to be slightly clearer than that output for a delay of 600ms.
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7.8 Summary

In this chapter the real-time implementation of the Al-Doubooni 

and King and Gosling TES coders have been discussed. Also discussed 

were the TES related coders which have incorporated techniques for 

reducing the data required for signalling of epoch amplitude and 

duration information.

It was discovered that the subjective quality of the speech 

output from the Al-Doubooni TES coder was superior to that output by 

the King and Gosling TES coder at all Tx. data rates with a Tx. 

delay of 300ms. In all the real-time applications which employed 

the King and Holbeche coding alphabet the speech output had a very 

synthetic quality. The algorithm which synthesised the speech of, 

subjectively, the highest quality and intelligibility at 10 and 

15kb/s was the Al-Doubooni coder with amplitude information signalled 

for groups of eight epochs. This technique yielded a 2:1 data 

reduction to that required within the original Al-Doubooni coder.

The coders which included Hadamard Transformations of the epoch 

duration sequence and the Al-Doubooni coding alphabet produced speech 

of moderate to fair quality and intelligibility at Tx. rates of 10 

and 15kb/s and Tx. delay of 300ms. With the King and Holbeche coding 

alphabet implemented the speech output sounded synthetic and was of 

very poor quality and intelligibility.
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Chapter 8

Conclusions and Recommendations 

For Further Research.



8.1 Conclusions.

This thesis has presented:

a) The development of a simplex digital voice channel which is 

a powerfull tool for the study of speech coders, and in 

particular TIME ENCODED SPEECH (TES), in real-time.

b) A study of techniques for the pre-processing of TES param­

eters for the enhancement of other data reduction techniques.

c) Investigations into techniques for achieving a reduction in 

the information requirements for the signalling of TES param­

eters.

and d) The real-time implementation of TES and TES related coders 

for various transmission bit rates and delays.

The real-time studies of chapter 3 have indicated a minimum of 

one bit per epoch as sufficient for conveying amplitude information 

for the synthesis of speech of acceptable quality. Diagnostic Rhyme 

Tests (DRT) yielded scores of the order of 88% intelligibility for 

algorithms which utilised one and two bits of amplitude information 

per epoch. The DRT scores, in both cases, were appreciably less 

than for the unprocessed control PCM samples. Direct Comparison 

Tests did not highlight any clear preference between the two coding 

techniques assessed in the DRT's.

These investigations were conducted such that only the ampli­

tude parameter was distorted, all other TES parameters were undis­

torted and buffering was not incorporated. Therefore, it must be 

concluded that the true intelligibility from a TES system will be
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dependant upon the amplitude encoding/decoding technique as well as a 

number of other features of the TES system.

The simulation investigations into median and moving average 

smoothing algorithms for the pre-processing of the epoch duration 

sequences demonstrated that only modest levels of smoothing may be 

applied to such sequencies before significant degradation in the 

speech quality occurs. Therefore, it must be concluded that the 

application of epoch sequence pre-processing which involves simple 

numerical smoothing, is of little value for it appears to degrade 

the quality of the synthesised speech in an unacceptable manner.

The simulation investigations into extremal coding have demon­

strated that the restricted distance measure (r.d.m) extremal coding 

of the epoch durations (EXTRl) can yield data compression ratios of 

1.36:1 (with an r.d.m of 3) and 1.33:1 (with an r.d.m of 7). The 

synthesised speech was informally judged to have retained a high 

degree of intelligibility but varied in quality. The character­

istics of speakers, in particular the male utterances, were found to 

have altered.

When the peak magnitude sequences were pseudo-extremally coded 

(EXTR2) overall data compression ratios of 1.61:1 (with an r.d.m of 

3) and 1.65:1 (with an r.d.m of 7). However, a feature of this form 

of coding was the "zeroing" of epoch peak amplitudes which manifested 

as silence in the synthesised speech. The overall quality was judged 

to be inferior to that produced from the output of EXTRl.

The investigations, which were conducted in simulation, into
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Orthogonal Transformations of the epoch duration sequences yielded a 

maximum data reduction of 1.35:1 which was achieved employing 

Dominant Coefficient Retention in a 16 point Hadamard Transform. 

The resulting speech was intelligible but of moderate quality.

The speech synthesised from the Low-pass Sequency Filtered 

Hadamard coefficients was of high quality and intelligibility. A 

maximum data reduction of 1.33:1 was achieved for N = 4. However, 

analysis of this process demonstrated that an identical epoch dura­

tion sequence (to that output from the transform) is achieved if the 

average of pairs of adjacent epoch durations was calculated and the 

original epoch durations were replaced with the average value. This 

process yielded a 2:1 data reduction in the epoch duration sequence 

because only the average value need be transmitted. This process 

also reduced the 'transformation' delay from N epoch durations to 

two epoch durations, where N is the size of the Hadamard transform, 

ie. by a factor of N/2.

The real-time implementation of the Al-Doubooni and King and 

Gosling TES coder were presented in chapter 7. Also discussed were 

the TES related coders which have incorporated techniques for reduc­

ing the data required for signalling of epoch amplitude and duration 

information.

It was found for the system delays under investigation, viz. 

600ms round trip delay, that the subjective quality of the speech 

output from the Al-Doubooni TES coder was superior to that output by 

the King and Gosling TES coder at all data Tx. rates. In all of the 

real-time applications which employed the King and Holbeche coding
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alphabet the speech output had a very synthetic quality. The algor­

ithm which synthesised the speech of, subjectively, the highest qual­

ity and intelligibility at 10 and 15kb/s was a modified Al-Doubooni 

coder with amplitude information signalled for groups of eight epochs. 

This technique yielded a 2:1 data reduction to that required within 

the original Al-Doubooni coder.

The coders which included Hadamard Transformations of the epoch 

duration sequence produced speech of moderate to fair quality and 

intelligibility.

From the research presented in this thesis it may be con­

cluded that data reduction is possible in low complexity TES systems 

without producing speech of unacceptable quality. However, it is 

clear from the real-time investigations that further work is required 

in the development of TES algorithms which are less vulnerable to the 

mutilations inherent in real-time implementations before the quality 

of speech output in simulation exercises may be achieved in a real­

time TES coder.

8.2 Recommendations for Further Research.

During the course of this thesis a number of aspects of Time 

Encoded Speech have been investigated. However, it is the authors 

opinion that further work is required in the following areas:

(1) The three main attributes of a TES system are: amplitude, epoch 

duration and shape. The amplitude information has been investi­

gated in real-time while preventing the distortion of the other
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attributes or the introduction of buffering and its associated 

problems. The remaining attributes also need to be studied 

independatly in real-time. The isolation of the results of all 

three investigations may aid the development of a superior coder 

to that of the present art.

(2) A powerful tool is now available to the researcher in the Time 

Encoding field, namely the simplex digital voice channel des­

cribed in this thesis. Using this system, extensive studies of 

buffer management stratergies may be conducted to assess the 

effectiveness of, and distortion introduced by, such techniques. 

This system may also be utilised for the instantaneous compari­

sons of stylised waveform segments for speech synthesis, applica­

tion of variable/run length coding, effects of system parameter 

variations or the development of coding alphabets.

(3) Median and moving average filters have been seen to be of little 

value when applied directly to the TES epoch duration sequences. 

However, the selective application of this technique via an 

"intelligent" algorithm may enhance its effectiveness and there­

fore be of interest for further work. Fricative segments of 

speech have the greatest symbol generation rate and the smoothing 

of such segments could enable more effective encoding.

(4) During unvoiced speech the spectral descriptors are slowly vary­

ing and only require updating over periods of the order of 20ms. 

The incorporation of a repeat codeword and an intelligent inser­

tion routine may be used for the repetition of a 3ms segment of 

unvoiced speech. This could achieve data reductions of the order
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of 6:1 and assist in the reduction of transmission buffer over­

flow. Such a method would also require a technique within the 

receiver for the prevention of the disturbing effects which 

result when a segment of speech is repeated several times.
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APPENDICES



Appendix 1 

Listing of Commented Mnemonic Code for 

Transmitter and Receiver Algorithms



Hardware Data and Peripheral Codes

Analodue-to-DiSital Converter(sidnals)
Board number = 00575
Operational model 16 sinSle ended inputs

12 bit resolution
-100 to +100 input ranse
2's complement representation

a d m u l t : ♦ EQ *30 fMultiplexer channel
ADCTRL: .EQ ♦ 31 ; Control channel
a d s t a t : .EQ ♦ 32 TStatus channel
a d i n : ♦ EQ ♦ 33 rData channel
»
i Parallel Interface Card
T Board number = 00403
T
p a i n : *EQ ♦CO ; Input channel A
p a o u t : ♦ EQ ♦Cl ; Output channel A
p a s t a t : ♦ EQ ♦ C2 TStatus channel A
p a c t r l : ♦ EQ ♦C3 ÎControl channel A
p b i n : .EQ ♦C4 ? Input channel B
p b g u t : .EQ ♦ C5 rOutput channel B
p b s t a t : ♦ EQ ♦C6 rStatus channel B
p b c t r l : ♦ EQ • ♦C7 ÎControl channel B
r Hardware Multiplier Card
r Board number = 00581
MX: ♦ EQ ♦ AO fLoad X (no roundinS)
MXR: ♦ EQ ♦ A1 îLoad X (roundins)
m y : ♦ EQ ♦ A2 rLoad Y
MXYMS: ♦ EQ ♦ A3 îDump product (ms word)
MXYLS: ♦ EQ ♦ A4 y Dump product (Is word)
r Seria 1 Interface Card
r Board number = 00401
s i n : ♦ EQ ♦ 10 y input data
sour: ♦ EQ ♦ 11 y output data
s r s t a t : ♦ EQ ♦ 12 y receiver status
s r c t r l : ♦ EQ ♦ 13 y receiver control
STSTAT: ♦ EQ ♦ 14 y transmitter status
s t c t r l : ♦ EQ ♦ 15 y transmitter control
s b s t a t : ♦ EQ ♦ 16 y baud rate status
s b c t r l : ♦ EQ ♦ 17 ybaud rate control
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Transmitter algorithm

ADVEA: ♦ DS ♦ 0 1
ADVEE: ♦ DS ♦0 1
ADVEX: ♦ DS ♦0 1
f

TXVEA: ♦ DS ♦0 1
TXVEE: ♦ DS ♦0 1
TXVEX: ♦ DS ♦ 0 1
LI : ♦ DC ♦0 to 100
Bi: ♦ DC ♦0 tOBOO
Ri : ♦ DS ♦0 1
wi: ♦ DS ♦ 0 1
, y
L2: ♦ DC ♦ 0 t0040
B2: ♦ DC to tocoo
R2: ♦ DS to 1
W2: ♦ DS to 1
l d : ♦ DC to t0002
b d : ♦ DC to tOOEO
p d : ♦ DS to 1
a d c h a n : ♦ DC to toooo
a d t r i g : ♦ DC to ticso
a d o f f : ♦ DC to toooo
y
PATRIOT ♦ DC to tooco
p b t r i g : ♦ DC to t0004
s t m a s k : ♦ DC to •I673B
y
so: ♦ DS to 1
SI : ♦ DS to 1
SSI : ♦ DS to 1
SMIN: ♦ DC to toooo
Dso: ♦ DS to 1
DSi : ♦ DS to 1
Dssi : ♦ DS to 1
DSMIN: ♦ DC to toooo
f

IS: ♦ DS to 1
MS: ♦ DS to 1
ic: ♦ DS to 1
Mc: ♦ DS to 1
A: ♦ DS to 1
AMAX: ♦ DC to t07FF
f

a c o d e : ♦ DC to y tOlOO
t c o d e : ♦ DC to y t0900

Îvolatile environment - ISRAD

» volatile environment ISRTX

y*** AD buffer lenSth *** 
y** AD buffer start address 
y AD buffer read pointer 
y AD buffer write pointer
y*** TX buffer lensth *** 
y** TX buffer start address 
y TX buffer read pointer 
yTX buffer write pointer
yNumber of FRAMES to be discar 
yDelay buffer start address 
y READ/WRITE pointer
y ADC multiplexer address 
y ADC control word 
;** ADC offset **
yparallel interface A control 
yparallel interface B control
yserial interface status
y current sample 
yprevious sample 
y last non—zero sample 
yzero-crossinS sensitivity 
y current SO-Sl 
yprevious SO-Sl 
y last non-zero difference 
y extremum sensitivity
y sample counter 
y maximum number of samples 
yextremum counter 
ymaximum number of extrema
y amplitude 
y maximum amplitude
y ** amplitude look u p  encoder 
y** tes look U P  encoder **
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lAw; . DS 10 1 Tamplitude word counter
NAU: .DC to tOOOl ;*** number amplitude words ***
t
irw: .DS ♦ 0 1 ; ftes word counter
NTU: .DC to toooa ;*** number of tes words ***
f
NSW .DC to t0 0 0 4 ,no. 12 bit words to form filler
ISYNC .DS t o 1 rno. frames since synchronisation
NSYNC .DC t o tOlOO ; max♦ value of ISYNC
FUORD .DS t o 1 îfiller word status
T
IB: .DS t o 1 ;bit counter for data
b i t s : .DS t o 1 ; input data for transmission
r
WARN : .DC t o tOOOD îASCII codes for error messaSe

.DC to tOOOA

.DC t o t0 0 4 5

.DC t o t0 0 7 2

.DC t o t0 0 7 2
♦ DC t o t0 0 6 F
♦ DC t o t 0 0 7 2
♦ DC t o t0 0 2 0
♦ DC t o t0 0 4 E
♦ DC to t0 0 7 5
♦ DC t o t006D
♦ DC t o t0 0 6 2 _
♦ DC t o t0 0 6 5
♦ DC t o t 0 0 7 2
♦ DC t o t0 0 2 0
♦ DC t o toooo

T
FRAME: ♦ DS t o . 1 ^transmitter frame
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Initialisation Routine

s t a r t :

AGAINl

IGF
CLRA
OTA *01
PAGE ♦ Of to
CLRA
STA Rl
STA R2
STA SO
STA SI
STA SSI
STA DSO
STA DSI
STA DSSI
STA A
STA lAW
STA ITW
STA IB
STA PD
STA FWGRD
LDA TCGDE
RAX
LDEW
STE MS
INCA
RAX
LDEW
STE MC
LCA toi
STA IS
STA IC
CLRA
STA Wl
LCE too
LDA Wl
ADD Bl
RAX
STEW
LDA Wl
INCA
SUB LI
SKZP
ADD LI
STA Wl
SKZ
JMPC AGAINl

rdisable interrupts 
funmask all levels

fzero variables

initialise counters

fzero AD buffer
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AGAIN2

AGAIN3

CLRA
STA W2
LCE ♦ 00
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
SKZ
JMPC AGAIN2
CLRA
STA PD
LCE ♦0
LDA PD
ADD BD
RAX
STEW
LDA PD
INCA
SUB LD
SKZP
ADD LD
STA PD
SKZ
JMPC AGAIN3
LDA ADCHAN
OTA ADMULT
LDA ADTRIG
OTA ADCTRL
LDA PATRIG
OTA PACTRL
ION
JMPC LOOP

rzero TX buffer

r Zero discard buffer

; Increment pointer

set UP ADC

set UP parallel channel A

îenable interrupts 
fStart processing
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Error Message Generation

ERROR : lOF
CLRA
RAX

T

ERIO: LDAX
SKNZ

WARN
JMPC ER20

r
OTA sour

ERii : INA STSTAT
ERA
SKZ

STMASK
JMPC ERll

f

NOPT
NOP
JMPC ERIO

ER20: LCA
ADDE

*30
OTA SOUT

ER21 : INA STSTAT
ERA
SKZ

STMASK
JMPC ER21

T

ER30: LCA ♦ OD
OTA SOUT

ER31 : INA STSTAT
ERA
SKZ

STMASK

JMPC ER31
ER40: LCA *0A

OTA SOUT
ER41: INA STSTAT

ERA
SKZ

STMASK
JMPC ER41

ER50 : JMPC ER50
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Interrupt Vector Table

♦ LOG
lONR
lONR
lONR
JMPC
lONR
JMPC
lONR
lONR
lONR
lONR
lONR
lONR
lONR
lONR
lONR
lONR

♦OOFO
♦FO
♦ FI
♦ F2 
ISRAD
♦ F4 
ISRTX
♦ F6 
♦F7 
♦F8
♦ F9 
♦FA
♦ FB
♦ FC 
♦FD
♦ FE
♦ FF

TISR Î Analogue-to-Digital 
flSRITransmiss ion
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r
y Analogue-to- Digital Interrupt Service Routine
r ----
y

y

ISRa d : STA ADVEA fsave volatile environment
STE ADVEE
STX ADVEX

ADii: INA ADIN f input sample
SUD ADOFF r adjust for de offset
RAE

AD12: LDA Wl îstore sample
ADD Bl
RAX
STEW

y
AD13: LDA Wl r increment pointer

INCA
SUB L1
SKZP
ADD L1
STA Wl

AD14: LDA Wl ' îtest for imminent overflow
SUB Rl
LCE *01
SKNZ
JMPC ERROR

AD15: LDX ADVEX y restore volatile environment
LDE ADVEE
LDA ADVEA
lONR *F3
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Transmitter Interrupt Service Routine

ISRTX:

TX2:

TX4:

TX6:

Txa :

Txio:

STA TXVEA
STE TXVEE
STX TXVEX
INA PASTAT
CLRA
BSET *2
OTA + 01
ION
LDA IB
SKZ
JMPC TX18
LDA W2
SUB R2
SKNZ
JMPC TXIO
CLRA
STA FWORD
LDA R2
ADD B2
RAX
LDEW
LDA R2
INCA
SUB L2
SKZP
ADD L2
STA R2
CLRA
SLE
SLE
SLE
SLE
STA IB
STE BITS
JMPC TX18
RPA
ADDC + 04
ADD FWORD
JMA
JMPC TX12
JMPC TX14
JMPC TX16

fsave volatile environment

rclear interrupt 
Tmask interrupts at this level

? enable unmasked interrupts 
ftest for new input 
f Jump if more bits remain 
rtest for empty tx buffer

finsert filler word

rread next word

rincrement pointer

rseperate fields
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TX12:

TX14:

TX16:

TX18:

TX19:

TX20:

LCA +01 fassume next filler word
STA FWORD
LCA 110 rbits 0 - 15 of filler-word
STA IB
LCA -1 r 1111 1111 1111 1111
STA BITS
JMPC TX18
LCA +02
STA FWORD
LCA + 10 rbits 16 - 31 of filler word
STA IB
LCA -1 r 1111 1111 1111 1111
STA BITS
JMPC TX18
CLRA
STA FWORD
LCA + 10 rbits 32 - 47 of filler word
STA IB
LCA -2 r 1111 1111 1111 1110
STA BITS
LDA BITS
OTA PAOUT routput data on channel A
SLE
STA BITS
LDA IB rdecrement input bit count
DECA
STA IB
lOF rdisable interrupts
CLRA runmask interrupts at this level
OTA +01
LDX TXVEX rrestore volatile environment
LDE TXVEE
LDA TXVEA
lONR +F5
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Main Analysis Loop

l o o p :

ANll :

AN12:

AN12A

LDA Wl
SUB Rl
SKNZ
JMPC LOOP
LDA Rl
ADD Bl
RAX
LDAW
STA SO
LDA Rl
INCA
SUB LI
SKZP
ADD LI
STA Rl
LDA SO
SUB SI
STA DSO
CLRA
SUB DSO
SKZP
LDA DSO
SUB DSMIN
SKZP
JMPC AN12A
LDA DSO
LDE DSSI
STA DSSI
ERAE
BSKO *F
JMPC AN12A
LDA IC
INCA
STA IC
LCE ♦ 07
SKZP
JMPC ERROR
CLRA
SUB SO
SKZP
LDA SO
SUB SMIN
SKZP
JMPC AN 13

rcheck for empty sample buffer

Îfetch next sample

; increment read pointer

Îupdate externum count

r ABS( DSO ).GE.DSMIN
; .FALSE.
; .TRUE.

rtest for change in direction

r increment extreme count

; ABS( so ).GE.SMIN
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AN13Î

ANi:

AN16:

LDA SO
LDE SSI
STA SSI
ERAE
BSKZ ♦ F
JMPC AN20
LDA IS
INCA
STA IS
LCE ♦ 08
SKZP
JMPC ERROR
CLRA
SUB SO
SKZP
LDA SO
RAE
SUB A
SKN
STE A
LDA SO
STA SI
LDA DSO
STA DSI
JMPC LOOP

change of sign

rincrement sample counter

; update amplitude measure

rupdate working variables
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End of Epoch Routine

AN20I

AN23:

AN25:

AN26Î

AN27:

LDA IC
SRZ
INCA
STA IC
LDA IC
LDE MC
SUBE
SKN
STE IC
LDA IC
LCE ♦01
SUBE
SKZP
STE IC
LDA IS
LDE MS
SUBE
SKN
STE IS
LDA IS
LCE ♦ 01
SUBE
SKZP
STE IS
LDA TCODE
ADDC ♦ 2
ADD IC
DECA
RAX
LDAW
ADD TCODE
ADD IS
DECA
RAX
LDEW
CLRA
STA IS
STA IC
LDX ITW
STEX FRAME
LDA ITW
INCA

rtruncate component count

r IC > max, value (MC) ?

;.TRUE, set IC = MC 
; IC < 1 ?

;.TRUE, set IC = 1 
Îtruncate sample count

Tencode extrema/sample count

5 reset epoch parameters

y increment epoch count
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SUB NTU
SKZP
ADD NTU
STA ITW
SKZ rtest for end of frame
JMPC AN13 rFalse - process next sample
JMPC AN30 r T rue - process frame
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standard End of Frame Routine

AN30:

AN33:

AN34:

AN3!

LDE AMAX
LDA A
SUBE
SKZP
LDE A
LDA ACODI
ADDC ♦ 1
ADDE
RAX
LDEW
CLRA
STA A
LDA U2
SUB R2
SKZP
ADD L2
ADD NAW
ADD NTW
SUB L2
SKZP
JMPC AN34
LDA PD
ADD BD
RAX
LDAW
STA W2
LDA W2
ADD B2
RAX
STEW
LDA PD
ADD BD
RAX
LDA W2
STAW
LDA PD
INCA
SUB LD
SKZP
ADD LD
STA PD
LDA W2
INCA

rencode amplitude

rreset amp, measure

7tx buffer full ?

7 False
7True - retreive delayed pointer

rwrite amplitude code-word

rStore pointer in discard buffer

7 increment delay pointer

7 increment write pointer
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AN36:

AN37 :

AN38:

AN40:

SUB L2
SKZP
ADD L2
STA W2
LDX ITW
LDEX FRAME
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
LDA ITW
INCA
SUB NTW
SKZP
ADD NTW
STA ITW
SKZ
JMPC AN36
LDA ISYNC
INCA
SUB NSYNC
SKZP
ADD NSYNC
STA ISYNC
SKZ
JMPC AN13
LCA -1
BCLR ♦ D
BCLR ♦ C
RAE
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
LCA -1
BCLR ♦ D

îtranscribe frame

rincrement write pointer

; increment frame pointer

7 increment frame count

7 load bits 0 - 1 1  of fillerword

7Store fillerword in t x . buffer

7 increment write pointer

7 load bits 12 - 23 of fillerword
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BCLR ♦c.
RAE
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
LCA -1
BCLR ♦ D
BCLR ♦ C
RAE
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
LCA -1
BCLR *D
BCLR ♦ C
BCLR ♦ 0
RAE
LDA W2
ADD B2
RAX
STEW
LDA W2
INCA
SUB L2
SKZP
ADD L2
STA W2
JMPC AN13

» store fillerword in tx , buffer

Îincrement write pointer

7 load bits 24 - 35 of fillerworc

7Store fillerword in tx. buffer

7 increment write pointer

7 load bit 36 - 47 of fillerword

fStore fillerword in t x . buffer

7 increment write pointer

.END
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t

r Receiver alogorithm
r

T

f

RXVEA: .DS ♦0 1
RXVEE: .DS ♦0 1
RXVEX: .DS ♦ 0 1
r

DAVEA: .DS ♦0 1
DAVEE: .DS ♦0 1
DAVEX: .DS ♦ 0 1
f

a d c h a n : .DC ♦ 0 toooo
a d t r i g : .DC ♦0 ticso
r
PBTRIG: .DC ♦ 0 tOOOG
f

s t m a s k : .DC ♦0 t673B
L3: .DC ♦0 tOlOO
B3: .DC ♦ 0 10700
R3: .DS ♦0 1
W3: .DS ♦0 1
l r : .DC ♦0 t0002
b r : .DC ♦0 tOOEO
PR: .DS ♦0 1
f
L4: .DC ♦0 tOlOO
B4: .DC ♦0 tOlOO
R4: .DS ♦ 0 1
W4: .DS to 1
r

lAW: ♦ DS *0 1
lAWi : .DS to 1
NAW: .DC to tOOOl
t

ITW: .DS to 1
iTwi: .DS to 1
NTW: .DC to 10008
T

IBA: .DS to 1
MBA: .DS to 1
IBT : .DS to 1
MBT : .DS to 1
lA: .DS to 1
lAi : .DS to 1
n a : .DS to 1
i t : .DS to 1
ITi : .DS to 1
NT: .DS to 1

rvolatile environment - ISRRX

îvolatile environment - ISRDA

ADC multiplexer channel 
ADC control word
parallel interface A control word 
serial interface status
*** RX buffer length
** RX buffer start address **
RX buffer read pointer 
RX buffer write pointer
Number of FRAMES repeated 
Repeat buffer start address 
READ/WRITE pointer
*** DA buffer length ***
** DA buffer start address **
DA buffer read pointer 
DA buffer write pointer
amplitude word counter 
amplitude word counter (ISRRX)
*** number of amplitude words ***
tes word counter
tes word counter (ISRRX)
*** number of TES words ***
bit counter for amplitude word 
maximum ♦ amplitude bits 
bit counter for tes word 
maximum I for test bits
amplitude dictionary index 
amplitude dictionary index (ISRRX 
size of amplitude dictionary 
tes dictionary index 
tes dictionary index 
size of tes dictionary
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a c o d e : ♦ DC to t0200
TCODE: ♦ DC to t0400
BITS: ♦ DS to 1 routput from bit handler
LASTO: ♦ DS to 1 rseouence buffer
LASTi: ♦ DS to 1 îseouence buffer
LAST2: ♦ DS to 1 rseauence buffer
MASKO: ♦ DC to tFFFE ;*** synchronisation mask ***
MASKl : ♦ DC to tFFFF ;*** synchronisation mask ***
MASK2: ♦ DC to tFFFF ;*** synchronisation mask ***
FWORDO: ♦ DC to tFFFE ;*** filler word ***
FWORDl: ♦ DC to tFFFF T*** filler word ***
FW0RD2: ♦ DC to tFFFF 7*** filler word ***
n b f : ♦ DC to t0030 7*** tbits in filler word ***
i b f : ♦ DS to 1 7status of 1 word buffer
RXWD2: ♦ DS to 1 7 input to decoders
r
f l a g : ♦ DS to rl îstatus flag
d i c t : ♦ EQ tE 7 tE set if decoding amplitude
s y n c : ♦ EQ tF 7 tF set if synchronised
i s : ♦ DS to 1 7sample counter
Ns: ♦ DS to 1 7number of samples in epoch
MS: ♦ DC to t0040 7*** maximum tsamples in epoch
A: ♦ DS to 1 7 ampltiude
DM: ♦ DS to 1 îaddress of synthetic sample
WARN: ♦ DC to tOOOD îASCII codes for error message

♦ DC to tOOOA
♦ DC to t0045
♦ DC to t0072
♦ DC to t0072
♦ DC to t006F
♦ DC to t0072
♦ DC to •10020
♦ DC to t004E
♦ DC to t0075
♦ DC to t006D
♦ DC to t0062
♦ DC to t0065
♦ DC to t0072
♦ DC to t0020
♦ DC to toooo
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Initialisation

START:

AGAIN2

IGF
CLRA
OTA toi
PAGE to 7 to
CLRA
STA R3
STA R4
STA IS
STA PR
STA lAW
STA ITWI
STA ITW
STA BITS
STA LASTO
STA LASTI
STA FLAG
LDA NBF
STA : IBF
CLRA
STA W3
LCE too
LDA W3
ADD B3
RAX
STEW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
SKZ
JMPC AGAINl
CLRA
STA W4
LCE too
LDA W4
ADD B4
RAX
STEW
LDA W4
INCA
SUB L4

; initialise working variables

7 initialise Rx♦ buffer

7 initialise o / p  sample buffer

- 296 -



NEXTO:

NEXT2:

SKZP
ADD L4
STA W4
SKZ
JMPC AGAIN2
LCA *01
STA R4
LDA W3
ADD B3
RAX
LCA ♦ 10
BSET ♦E
STAW
LDA PR
ADD BR
RAX
LDA W3
STAW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
LCE ♦08
LDA W3
ADD B3
RAX
STEW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
LDA ITW
INCA
SUB NTW
SKZP
ADD NTW
STA ITW
SKZ
JMPC NEXT2
LDA PR
INCA
SUB LR
SKZP
ADD LR
STA PR

7 initialise Rx♦ buffer with 
7dummy signal
7Store amplitude in Rx buffer

7 Store W3 in delay buffer

7 Store epochs associated 
7 with previously stored amp,
7 Increment pointer

îTest for ' end of frame

7 Increment delay pointer
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SKZ
JMPC NEXTO
LCA ♦FF
STA A
LDA ACODE
RAX
LDEW
STE NA
INCA
RAX
LDEW
STE MBA
LDA TCODE
RAX
LDEW
STE NT
INCA
RAX
LDEW
STE MBT
CLRA
STA IBA
STA IBT
LDA ADCHAN
OTA ADMULT
LDA ADTRIG
OTA ADCTRL
LDA PBTRIG
OTA PBCTRL
ION
JMPC LOOP

fset size of Amp, diet

îset max tAmp bits 
fset size of Tes dict

set max, *Tes bits
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Interrupt Vector Table

♦ LOC ♦ OOFO
lONR
IÜNR
lONR
JMPC
lONR
lONR
lONR
JMPC
lONR
lONR
lONR
lONR
lONR
lONR
lONR
lONR

♦ FO
♦ FI 
♦F2 
ISRDA
♦ F4
♦ F5
♦ F6 
ISRRX 
♦F8 
♦F9 
♦FA 
♦FB 
♦FC 
♦FD 
♦FE 
♦FF

?ISR Î Digital-to-AnaloSue

rISR: Receiver
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r Digital-to- Analogue Interrupt Service Routine

i s r d a : STA DAVEA rsave volatile environment
STE DAVEE
STX DAVEX

T

DAii : LDA W4 rtest for empty sample buffer
SUB R4
SKZP
ADD L4
LCE *06
SKNZ

. JMPC ERROR
DA12: LDA R4 îfetch and output sample

ADD B4
RAX
LDAW
OTA DA1OUT

f

DA13: LDA R4 rincrement read pointer
INCA
SUB L4
SKZP
ADD L4
STA R4

f

DA14: INA ADIN rclear ADC interrupt
DA15: LDX DAVEX Tresore volatile environment

LDE DAVEE
LDA DAVEA
lONR IF3

- 300 -



Receiver Interrupt Service Routine

Synchronisation 
ISRRX:

RXll.:

RX21 :

RX22Î

RX23:

STA RXVEA
STE RXVEE
STX RXVEX
INA PBSTAT
CLRA
BSET *02
OTA *01
ION
LDA LAST2
LDE LASTI
SLE
STA LAST2
LDA LASTO
LDE LASTI
SLE
STA LASTO
INA PBIN
RAE
LDA LASTI
SLE
STA LASTI
LDA IBF
DECA
SKN
STA IBF
LDA IBF
SKZ
JMPC RX14
LDA LAST2
ERA FW0RD2
AND MASK2
SKZ
JMPC RX25
LDA LASTI
ERA FWORDl
AND MASKl
SKNZ
JMPC RX26
LDA LASTO
ERA FWORDO
AND MASKO
SKNZ
JMPC RX26

rsave volatile environment

rclear interrupt
rmask interrupts at this level

renable interrupts 
rupdate delay bits

rinput word from channel B

rupdate state of seauence buffer

rtest for full seauence buffer 
r Jump if delay not established

rtest against filler seauence
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RX24 :

RX25:

RX14:

LDA MBA
STA IBA
CLRA
STA IBT
STA BITS
STA ITWl
STA lAWl
LDA NBF
STA IBF
LDA FLAG
BSET . SYNC
BSET DICT
STA FLAG
JMPC RX14
LDA FLAG
BSKO SYNC
JMPC RX14
BSKZ DICT
JMPC RX30A
JMPC RX30T
lOF
CLRA
OTA *01
INA PBSTAT
LCE *15
BSKZ *A
JMPC ERROR
LDX RXVEX
LDE RXVEE
LDA RXVEA
IGNR *F7

îset amplitude count

îclear delay 

r synchronisation

rdisable interrupts 
funmask interrupts at this level
? check that for no further intern

; restore volatile environment
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Receiver Interrupt Service Routine

Amplitude decoding 
RX30A:

RX31A:

RX32A:

RX33A:

RX34A:

RX35A:

LDA BITS
LDE RXWD2
SLE
STA BITS
LDA MBA
SUB IBA
LCE *04
SKNZ
JMPC ERROR
LDA IBA
INCA
STA IBA
LDA ACODE
ADDC ♦ 1
ADD IBA
RAX
ADD MBA
RAE
LDA BITS
SUBW
SKN
JMPC RX14
REX
AD DU
STA lAl
CLRA
STA BITS
STA IBA
LDA W3
ADD B3
RAX
LDA lAl
BSET *E
STAW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
LDA W3
SUB R3

Îupdate binary value

rtest asainst maximum

test binary value

? write index to rx buffer

îset amplitude tas

Îincrement pointer

y test for overflow
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RX36A:

LCE
SKNZ
JMPC
LDA
INCA
SUB
SKZP
ADD
STA
SKZ
JMPC
LDA
BCLR
STA
JMPC

102
ERROR
lAWl
NAW
NAW
lAWl
RX14
FLAG
DICT
FLAG
RX14

ÿ increment word count
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Receiver Interrupt Service Routine

Tes Decoding 
RX30T:

RX31T:

RX32T:

RX33T:

RX34T:

RX35T:

LDA BITS
LDE RXWD2
SLE
STA BITS
LDA MBT
SUB IBT
LCE *05
SKNZ
JMPC ERROR
LDA IBT
INCA
STA IBT
LDA TCODE
ADDC *1
ADD IBT
RAX
ADD MBT
RAE
LDA BITS
SUBW
SKN
JMPC RX14
REX
ADDW
STA ITl
CLRA
STA BITS
STA IBT
LDA W3
ADD B3
RAX
LDA ITl
STAW
LDA W3
INCA
SUB L3
SKZP
ADD L3
STA W3
LDA W3
SUB R3
LCE *03

Îupdate binary value

Îtest against maximum

y test binary value

y store index in rx buffer

y increment pointer

y test for full rx buffer
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RX36T

SKNZ
JMPC ERROR
LDA ITWl
INCA
SUB NTW
SKZP
ADD NTW
STA ITWl
SKZ
JMPC RX14
LDA FLAG
BSET DICT
STA FLAG
JMPC RX14

y increment word count
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Main Synthesis Lo o p

LOOP :

SNll :

SNI 2 :

SN13:

:Ni4

LDA W4
SUB R4
SKZP
ADD L4
ADDC *1
SUB L4
SKNZ
JMPC LOOP
LDA IS
SKNZ
JMPC SN20

LDA DM
ADD IS
RAX
LDAW
OTA MX
LDA A
OTA MY
INA MXYLS
RAE
INA MXYMS
SLE
SLE
SLE
SLE
RAE
LDA W4
ADD B4
RAX
STEW
LDA W4
INCA
SUB L4
SKZP
ADD L4
STA W4
LDA IS
INCA
SUB NS
SKZP
ADD NS
STA IS
JMPC LOOP

ftest for full sample buffer

rtest for end of epoch

rfetch next synthetic sample

scale sample

f S t o r e  s a m p l e

Îincrement sample count
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End of Epoch Routine

SN20:

SN24:

LDA ITW
SKNZ
JMPC SN30
LDA R3
ADD B3
RAX
LDAW
LCE *12
BSKZ *E
JMPC ERROR
RAE
LDA R3
INCA
SUB L3
SKZP
ADD L3
STA R3
LDA TCODE
ADDC *2
ADD MBT
ADD MBT
ADDE
RAX
LDEW
STE NS
ADD NT
RAX
LDAW
ADD TCODE
STA DM
CLRA
STA IS
SUB A
STA A
LDA ITW
INCA
SUB NTW
SKZP
ADD NTW
STA ITW
JMPC SN12

y test for end of frame

y read next word

ytest tag

y increment pointer

y fetch next index

y reverse polarity

y increment Tes word count
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standard End of Frame Routine

SN30Î

SN31 :

SN32 :

SN34:

LDA PR
ADD BR
RAX
LDEW
LDA W3
SUB R3
SKZP
ADD L3
SUB NAW
SUB NTW
SKZP
STE R3
LDA PR
ADD BR
RAX
LDA R3
STAW
LDA PR
INCA
SUB LR :
SKZP
ADD LR
STA PR
LDA R3
ADD B3
RAX
LDAW
LCE ♦ 12
BSKO ♦E
JMPC ERROR
BCLR ♦E
STA lA
LDA R3
INCA
SUB L3
SKZP
ADD L3
STA R3
LDA ACODE
ADDC ♦ 2
ADD MBA
ADD MBA
ADD lA
RAX

?Load E red, with delay pointer

y t e s t  f o r  e m p t y  r x  b u f f e r

y Increment delay pointer

y f e t c h  a m p l i t u d e  i n d e x

y c h e c k  f o r  t a s  p r e s e n t

y i n c r e m e n t  p o i n t e r

y l o o k  U P  a m p l i t u d e
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LDAW
STA A
JMPC SN21
.END
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Appendix 2 

Variable length Codes

Variable length codes have been suggested as a means of reduc­

ing the delay associated with matching the TES source with a constant 

rate channel [37]. However, the codes suggested did not satisfy the 

prefix condition [98]. In response to the need, within the digital 

voice channel, for a method of constructing and implementing a more 

general class of binary variable length codes which satisfy the 

prefix condition and are easily decodable, the following method was 

developed by P.S. Cooper [52].

Let n]̂  denote the number of codewords of a given finite diction­

ary which are of length k (k is less than or equal to the maximum 

word length, K). If two codes with identical sets of n^’s are consid­

ered considered equivalent then a representative from each equiv­

alent class can be selected to enable the same efficient decoding 

algorithm to be used for all codes. Note that if a code (ni,n2 , 

... ,nĵ ) is uniquely decodable then there is an equivalent prefix 

condition code. The representative codes are constructed as follows:

(1) Draw a binary tree of depth K.

(2) Label nodes such that left branches correspond 

to 0 and right branches to 1.

(3) set k = 1.

(4) At level k, starting from the left allocate the 

first n^ nodes to codewords.

(5) Delete those branches emanating from the codewords

- 311 -



of step 4

(6) Increase k by 1 and repeat steps 4 and 5 until 

all the codewords have been allocated.

Figure A2.1 shows the construction of the code (0,1,3,4,4). 

There will always be enough nodes for this process to continue as 

long as the n;̂ 's satisfy the Kraft inequality.

K
In,.2”*̂ .LE. 1 
1 *

Constant length codes are included in this representation by

where there are n^sets of the form (0,0, ... ,n^) where there are n^ (.LE. 2 ) codes

of length K.

In terms of the binary values of the codewords it will be seen 

that they are arranged in numerical order and for codewords of the 

same length the binary values are consecutive. It is these two 

properties that make the codes easily decodable. Since all the 

decoder need do, having received k bits, is to compare the binary 

value of the received bits, R(k), with the maximum binary value, 

l2(k), for words of length k. If R(k) .GE. I2(k) then more 

bits are needed to decode the word. If R(k) .LT. I2(k) then 

R(k) - l2(k) + Ii(k) gives the position of the decoded word in 

the numerically ordered alphabet, where Ii(k) is the position of 

the highest codeword of length k. Reflection on the way in which

the codes were constructed yields the formula:

Il(R) = ni + n2 + ... + nk
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k-1 k-2
22(k) = 2 ni + 2 n2 + ... + nic

or recursively

I l ( k )  = I l  (k -1  ) +  %  , l l ( 0 )  = 0

l2(k) = 2.l2(k-l) + Ilk , lz(0) = 0

Since these two sums are functions of the n^'s, which are 

fixed, they need to be calculated once only and stored in suitable 

arrays. Table A2.1 shows these sums for the code of figure A2.1.
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I k ^k Il(k) IzCk) Codes 1

1 ' 1 0 0 0

1 2 1 1 1 00(0) 1

1 3 3 4 5 010(2),011(3),100(4) 1

1 4 4 8 14 1010(10),1011(11), 1 

1100(12),1101(13) 1

I 5 4 12 32 11100(28),11101(29), 1 

11110(30),11111(31) 1

Table A2.1 ; Summations for decoding the numerically

ordered prefix code (0,1,3,4,4).
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Appendix 3 

System Diagrams

To solve any problem computer programmers must perform a number 

of tasks in order to develop the required software for computation 

of that problem. These tasks are generally performed in a prescribed 

sequence and are listed below.

a) Problem Definition

b) Analysis and Flowcharting

c) Translation

d) Computation

In high level language programming flow charts are employed for 

documentation of a program and, in general, are very satisfactory. 

However, microprocessor programming is different from high level 

programming in that relatively small programmes are written for 

particular sets of hardware, and commonly in assembler language.

Conventional flow charts which utilise boxes and lines have a 

number of weaknesses as a working document for assembly language 

programming. In order to overcome these weaknesses, alternative 

forms of flow charting have been proposed [99]. These techniques, 

however, still do not always produce a clear and compact problem 

representation which allows one to readily assess the overall func­

tion of a program. This is especially so for real-time processing 

where a microprocessor has been programmed to simulate a custom 

designed digital system.
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In an attempt to overcome these problems and to produce a com­

pact representation of the programme, an alternative method of flow 

charting was developed by the author for the representation of pro­

grammes for real-time processing. This representation has been 

termed a SYSTEM DIAGRAM because it has the appearance of a circuit 

diagram instead of a conventional flow chart.

A set of standard symbols have been developed for the repre­

sentation of data conversion, storage, arithmetic and logical func­

tions which are software controlled or executed. The symbols are 

connected by either data buses or control lines or both. All data 

buses and stores may be allocated variable names which aids transla­

tion into assembly language. The system diagram may also be seg­

mented with each segment being labelled. This also aided translation 

into the assembler language and indicates the segments functional 

priority.

Unfortunately, the system diagrams do not convey information 

concerning the segments sequence timing and, in general, a short 

'cover note' is required to compensate for this deficiency. Table 

A3.1 lists the symbols which have been developed and utilised within 

this thesis.
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Appendix 4

Supplementary Notes for System Diagrams 

of Section 3.3

The Miproc 16F processor and peripherals were structured such 

that the analogue to digital converter was triggered from an exter­

nal clock. The 'end-of-conversion' signal being used to generate an 

interrupt to the processor.

The software was designed such that the processor "idled" until 

an interrupt occurred. The processor then serviced the INTERRUPT 

SERVICE ROUTINE (ISR).

The assembly code of the initial section of the Interrupt Service 

Routine (ISR) was identical for all the programmes. Once an interrupt 

had been generated, data was input from the Analogue to Digital 

Converter (ADC) and OFFSET subtracted, the result being stored in 

NEW. The value of OFFSET was set to eliminate the d.c. offset intro­

duced by the systems hardware. The value of RESULT was then output 

to the Digital-to-Analogue Converter (DAC).

The following descriptions continue on from where the previous 

paragraph ended.

EAMPOO (Figure 3.2)

A value for OLD was output from BUFF and compared with its 

previous value for zero-crossing detection. If this had occurred a

- 319 -



a new value for PEAKD was output from XBUFF. OLD was then divided 

by PEAKD, the result of which was multiplied by LEVEL and the 

resultant stored in RESULT.

The value of NEW was input into BUFF and compared with its 

previous value for zero-crossing detection. If a zero-crossing 

had occurred, the amplitude parameter being detected, PEAKN, was 

input to XBUFF, and PEAKN was initialised.

The inputs OFFSET and LEVEL were multiplexed, the control 

signal being the interrupt signal. The order of execution of the 

sub-sections within the ISR was:

1000—1

1100 1200ISR

12101110

EAMPIO (Figure 3.3)

This group of programmes were identical to the EAMPOO series 

except for the insertion of a threshold. When a value of PE A KO 

was output from XBUFF, it was compared with THRESH and if THRESH 

.GE. PEAKD, RESULT was set equal to zero.

The inputs OFFSET, LEVEL and THRESH were multiplexed, the 

control signal being the interrupt signal. The order of execution 

of the sub-sections within the ISR was:
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1010 12001100ISR-

12101110

EAMP20 (Figure 3.4)

A value for OLD was output from BUFF and compared with its 

previous value for zero-crossing detection. If a zero-crossing 

had occurred a new value for PEAKE was output from IBUFF and a 

counter incremented. If this was the Nth zero-crossing a value 

for PEAKN was output from NBUFF and the counter initialized.

OLD was divided by PEAKI, multiplied by PEAKN and the result­

ant stored in RESULT.

The value of NEW was input to BUFF, and compared with its 

previous value for zero-crossing detection. If a zero-crossing 

had occurred, the amplitude parameter of the epoch, MAXI, was 

input to IBUFF and a counter incremented. If this was the Nth 

zero-crossing, the amplitude parameter for the group of epochs, 

MAXN, was input to NBUFF and the counter initialized.

The order of execution of the sub-sections within ISR was:

ISR- 1000 1100
“ T1110

.1200
•1210
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EAMP30 (Figure 3.5)

A value for OLD was outut from BUFF and compared with its pre­

vious value for zero-crossing detection. If a zero-crossing had

occurred a new value for AMP was output from XBUFF, and the following 

conditions tested for and action taken.

if DAMP(n-l) .NE. 0 and AMP .GE. DAMP(n-i)

then DAMP(n) = DAMP(n-l) + STEP

otherwise = DAMP(n-l) - STEP

if DAMP(n-l) .EQ. 0 and AMP .GE. THRESH

then DAMP(n) = STEP

otherwise = 0

where DAMP(n-l) and DAMP(n) were the previous and current processed 

amplitude parameters, respectively.

OLD was divided by AMP, multiplied by DAMP and the resultant 

stored in RESULT.

The value of NEW was input to BUFF and compared with its pre­

vious value for zero-crossing detection. If a zero-crossing had 

been detected, the amplitude parameter for the epoch, MAX, was input 

to XBUFF.

The inputs OFFSET, THRESH and STEP were multiplexed, the control 

signal being the interrupt signal. The order of execution of the 

sub-sections within the ISR was;
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1000-1

1010 1100 1110ISR

11031101

1102

1110 1200-
\■*1210

EAMP50 (Figure 3.6)

À value for OLD was output from BUFF and compared with its

previous value for zero-crossing detection. If a zero-crossing 

had occurred, a new value for AMP was output from XBUFF, and the 

following conditions tested for and action taken.

If DAMP(n-l) .NE. 0, and AMP .LT. DAMP(n-l)

and iDAMP(n-l) + STEPL - AMP I .GE. iDAMP(n-l) + STE PH - AMP I

then DAMP(n) = DAMP(n-l) + STEPL

otherwise = DAMP(n-l) + STEPH

if DAMP(n-l) .NE. 0, and AMP .LE. DAMP(n-l)

and iDAMP(n-l) - STEPL - AMP I .LE. iDAMP(n-l) - STEPH - AMP I

then DAMP(n) = DAMP(n-l) - STEPL

otherwise = DAMP(n-l) - STEPH

if DAMP(n-l) =0, and AMP .LT. THRESH 

then DAMP(n) = 0

otherwise = STEPL

where DAMP(n-l) and DAMP(n) were the previous and current processed 

amplitude parameters, respectively. OLD was divided by AMP, multi­

plied by DAMP and the resultant stored in RESULT. The value of
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NEW was input to BUFF and compared with its previous value for 

zero-crossing detection. If a zero-crossing had been detected, 

the amplitude parameter for the epoch, MAX, was input to XBUFF.

The inputs OFFSET, THRESH, STEPL and STEPH were multiplexed, 

the control signal being the interrupt signal. The order of exe­

cution of the sub-sections within the ISR was:

,1000-I

1010-

■4-11101100ISR'

1020-

1101 1102

t030-i

1103

4-1110---- 4-1200
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Appendix 5 

Walsh Functions

A5.1 Introduction

It is the purpose of this appendix to introduce Walsh functions 

[100] which form a complete orthogonal set of rectangular waves. 

Orthogonal means that if any two functions were multiplied together 

and integrated over the interval (sum the values) the resultant is 

zero unless the two functions were the same. Walsh functions are 

generally classified into three groups. These groups differ from 

one another in that the ’order’ in which individual functions appear 

are different. The three types of order are :

(1) Sequency or Walsh ordering

(2) Paley or Dyadic ordering

(3) Normal or Hadamard ordering

In what follows, we define sequency and Raderaacher functions 

and develop the Walsh functions based on Rademacher functions. Gray 

code and Hadamard matrices. Section A5.5 presents the Fortran sub­

routine implemented in the investigations reported in chapter 6.

A5.2 Sequency

The term frequency is applied to a set of sinusoidal (periodic) 

functions whose zero-crossings are uniformly spaced over an interval. 

The generalisation of frequency is achieved by defining ’generalised
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frequency’ as one half the average number of zero-crossings per unit 

time [89]. Harmuth [101] introduced the term sequency to describe 

generalised frequency and applied it to distinguish functions whose 

zero-crossings are not uniformly spaced over an interval and which 

are not necessarily periodic. Analogous to frequency, which is 

expressed in Hertz or cycles per second, sequency is expressed in 

terms of Zero-Crossings per Second, generally abbreviated to "Zps"«

A5.3 Rademacher Functions

Rademacher functions are an incomplete set of orthogonal func­

tions which were developed in 1922 [102] . The Rademacher function 

of index n, denoted by R(n,t), is a train of rectangular pulses with 

2^”  ̂zero-crossings over a normalised time base, that is 0 .LE. 

t .LE. 1, taking the values +1 and -1. An exception is R(0,t) which 

is a step function. The Rademacher functions may be generated using 

the following recursive relation:

R(n,t) = R(l,2"~’-t) (A5.1)

with R(0,t) = 1

1, 0 .LT. t .LE. 0.5
and R(l,t) =

-1, 0.5 .LT. t .LE. 1

The first six Rademacher functions are given in figure A5.1
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A5.4 Walsh Functions

The incomplete set of Rademacher functions were completed by 

Walsh [100] in 1923 to form the complete orthonormal set of rec­

tangular functions, taking only two amplitude values +1 and -1, now 

known as Walsh functions.

(i) Sequency or Walsh Ordering

This is the ordering which was originally employed by Walsh 

[100] . We denote the set of walsh functions belonging to this set 

by:

= Wal^(n,t) , n = 0,1,2, ... ,N-1 (A5.2)

where N = 2™ , m = 1,2,3, ...

The subscript "w" denotes Walsh ordering, n denotes the n-th 

member of and t is the independant variable.

To calculate Wal^(n,t)

(a) Write n in binary

(b) Convert n to Gray code

(c) Multiply together all Rademacher functions whose 

subscripts correspond to the position of the 1-bits

in the Gray code number. They align as shown below:

Codeword g^, ,g2»Sl*

Rademacher R^, ... ,R2,Ri.

Using the above, the first eight Walsh functions have been

- 327 -



calculated and are shown in figure A5.2(a). Inspection of this

diagram reveal that the sequency of a Walsh function is greater than 

or equal to that of the preceding Walsh function and has exactly 

one more zero-crossing. Hence the alternate name "Sequency ordering".

Sampling of the Walsh functions of Figure A5.2(a) at eight equi­

distant points results in an (8x8) matrix, figure A5.2(b). Such 

matrices are denoted by H^(N), N = 2^, since they may be achieved 

by re-ordering the rows of a class of matrices called Hadamard

matrices.

(ii) Paley or Dyadic Ordering

This type of ordering was introduced by Paley [104]. In Paley's 

definition of Walsh functions, their sequencies are arranged in Gray

code where the Gray code is the natural way of ordering binary vec­

tors in dyadic space. Hence the alternate name "Dyadic Ordering". 

This set of Walsh functions are denoted by:

Sp = Walp(n,t) , n = 0,1,2, ... ,N-1

Where the subscript "p" denotes Paley ordering. The set Sp 

is related to the Walsh ordered set, S^, by the relation;

Walp(n,t) = Wal^(g[n],t) (A5.3)

Where g[n] represents the Gray-to-Binary conversion of n. The 

first eight Paley ordered functions are given in figure A5.3(a). 

Sampling the functions of figure A5.3(a), at eight equi-distant 

points, we achieve the (8x8) matrix of figure A5.3(b). Once more
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this matrix may be derived by re-arranging the rows of the (8x8)

Hadamard matrix. The matrices associated with the Paley ordered 

Walsh functions are denoted by Hp(N), N = 2^.

(iii) Natural or Hadamard Ordering

This set of Walsh functions are denoted by:

Sh = Wal^(n,t) , n = 0,1,2, ... ,N-1

Where the subscript "h" denotes Hadamard ordering. The func­

tions of Syi are related to the Walsh functions by the relation:

Walh(n,t) = Whlw(g[|n|],t) (A5.4)

Where In| is achieved by the bit reversal of n 

and g[|n|] is the Gray-to-Binary conversion of |n|.

Figure A5.4(a) gives the first eight Hadamard ordered Walsh functions. 

Sampling these functions results in the (8x8) Hadamard matrix of

figure A5.4(b). In general an (Nxn) matrix H^(N), N = 2^, would 

be obtained. Hadamard matrices may also be generated recursively 

from:

Hh(l) = 1

and Hh(2m) =

Hh(m) H^(m)

H^(m) -Hh(m)

m = 1,2, ... (A5.5)

Hh(l) * Hh(m) (A5.6)

Where the symbol • denotes the Kronecker product.
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The Hadamard matrix is both symmetrical and orthogonal ie. 

Hh(N).Hb(N) = N.I(N) where I(N) is an (NxN) identity matrix.

Hadamard matrices in the form of equation A5.5 are considered to be 

in "natural" form [82], hence the name natural ordering.

A5.5 Transformation Subroutine

There are several algorithms of varying complexity and memory 

requirements for computing the discrete Walsh or Hadamard Transform 

[86,104-106]. The subroutine utilised for the computation of the 

Fast Walsh Transform is given in Listing A5.1 and that employed for 

the Fast Hadamard Transform is given in Listing A5.2.
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Figure A5.2 : Sequency Ordered Walsh Functions

(a) Continuous, N = 8 .

(b) Discrete, M = 8.
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Figure A5-3 : Paley Ordered Walsh Functions

(a) Continuous, N = 8.

(b) Discrete, N = 8.
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Figure A5.4 : Hadamard Ordered Walsh Functions

(a) Continuous, N = 8.

(b) Discrete, N = 8.

(7.1)
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Appendix 6

Physical Significance of Discarding Walsh 

Transform Coefficients

A6.1 Hadamard Ordered Coefficients

Any process which involves transforming to the Walsh domain 

using a Hadamard Ordered Walsh Transformation may be represented as 

follows:

where

Hh(N) 
—1 

Hh (N)
P(N)

-1
X  = H^ (N).P(N).H^(N).x (A6.1)

is a column vector containing the original data 

is the forward Hadamard Transform matrix, 

is the inverse Hadamard Transform matrix, 

is the process operator, which for undistorted 

transformation is an (N>N) unity matrix, and 

therefore usually omitted.

is a column vector containing the new data.

The elements of P(N) can thus be dictated to define operations within 

the transform domain. In the following sections we shall examine 

two structures of P(N) and their physical significance on the result­

ing data.

(i) Discarding the last N/2 coefficients of an N point 

transform, where N = 2̂ ,̂ n = 1,2,3, ...
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Let m = N/2

Km)
then P(N)

Where P(N) has been partitioned into (m>to) matrices and
—1

I(m) is an identity matrix. Since (N), P(N) and H^CN) are of the

same order they may be combined into a single matrix. The inverse 

Hadamard Ordered Walsh Transform is defined as [83];

-1
Hh (N) = 1  Hh(n)

N

and from the recursive relationship (appendix 5, equation A5.5) it 

is known that;

therefore

-1
Hh (N).P(N).Hh(N) =

1 Hh(N) Hh(N) 1 

1
1
I Hh(N)

1
-  Hh(N) 1

1 Hh(m) Hh(m) 1 I(m) £  I I Hh(m) 

1 1 1

Hh(m) 1

1 Hh(m) - Hh(m)

1 1 1 
1 II
1 0 Oil Hh(m) ” Hh(m) 1

1 Hh(m).Hh(m) 

I
Hh(m).Hh(m) I

I
1
1 Hh(m).Hh(m)

1
1

Hh(m).Hh(m) I
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However Hh(m) .Hh(m) = m.I(m)

—1
thus Hh (N).P(N).Hh(N) = £

2

I(m) I(m)

I(m) I(m)

eg for N = 4

-1
Hh (N).P(N).Hh(N) = l_

I 1 0 1 0 I
£  1 0 1 0 1 I
2 I 1 0 1 0 I

I 0 1 0 1 I

The physical significances of this matrix are:

(a) The column vector of N new data samples is comprised 

of the the first N/2 new samples and their repeat.

(b) The N/2 new data samples may be calculated thus

Xn = X*(n+N/2)
Xn + x (iH-n /2) 

2
for n = 1,2; ... ,N/2

and (c) From (b) above, it is obvious that N may be any even value 

greater than 2 and not necessarily a power of 2.

(ii) Discarding alternate coefficients of an N point transform.

In this case P(N) will have alternate I ’s and O's along the 

leading diagonal and all other elements will be zero.
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eg. for N = 4

P(4)
I 1 0 0 0

= 1 0  1 0  0 
I 0 0 1 0
I 0 0 0 1

—1
Due to the structure of P(N), the matrices (N), P(N) and H^CN)

cannot be combined, and simply represented, using identity matrices.
—1

Therefore (N) and H^CN) are represented below by their elements, 

Hij, for the case of N = 4.

_1 I l l l l l l l  O O O l l l l l l I
Hh (4).P(4).Hh(4) = £  I 1 -1 1 -1 I I  0 0 0 0 I I  1 -1 1 -1 I

4 I 1 1 -1 -1 II 0 0 1 0 I I 1 1 -1 -1 I
I 1 -1 -1 1 I I 0 0 0 0 II 1 -1 -1 1 I

I 1 1 0 0 I
£  I 1 1 0 0 I
2 I 0 0 1 1 I

I 0 0 1 1 I

The physical significances of the resulting matrix are:

(a) The column vector, of N new data samples, is comprised of 

N/2 new samples, each of which is immediately followed 

by itself repeated.

(b) The N/2 new data samples may be calculated thus

* * Xn + Xn+i
x^ = ^n+1 ”   for n = 1,3, ... ,N-1

2

(c) From (b) above, it is obvious that N can be any even value 

greater than 2 and not necessarily a power of 2.
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A6.2 Walsh Ordered Coefficients

Any process involving transformations into the Walsh domain 

and employing a Walsh Ordered Walsh Transformation, may be repre­

sented as follows:

* -1X = (N).P(N).H^(N) (A6.2)

where H^(N) : is the forward Walsh Transform
—1

(N) : is the inverse Walsh Transform

and the remainder are as stated in the previous section (A6.1)

(i) Discarding the last N/2 coefficients of an N point 

transform, where N = 2^, n = 1,2,3, ...

By inserting the appropriate elements into the matrices of 

equation A6.2 it can be shown that this process is equivalent to the 

discarding of alternate coefficients of a Hadamard Ordered Walsh 

Transform (section A6.1(ii)).

(ii) Discarding alternate coefficients of an N point transform

—1
It can be shown that H^ (N) .P(N) .H^(N), for N = 4,reduces to

I 1 0 0 1 I
£  I 0 1 1 0 I
2 I 0 1 1 0 I

I 1 0 0 1 I

The physical significances of this matrix are:

- 338 -



(a) The column vector of N new data samples is comprised of

N/2 new data samples in the first N/2 rows, the remaining

N/2 rows are a mirror image of the first N/2

(b) The N/2 new data samples may be calculated thus

* * +  * m - l
X = ^N+l-n ” -----------  f n = 1,2, ... ,N/2

2

(c) From (b) it is noted that N may be any even value .GE. 2

and not necessarily a power of 2.

(d) If N = 2, we achieve the same result as for discarding

alternate Hadamard ordered coefficients (section A6.1(ii)).

A6.3 Paley Ordered Coefficients

Any process, which involves transformation into the Walsh do­

main employing a Paley Ordered Walsh Transformation may be repre­

sented as follows:

* -1
X = H_ (N).P(N).H„(N) (A6.3)—  K P

where Hp(N) : is the forward Paley Transform 
—1

Hp (N) : is the inverse Paley Transform

and the remainder are as stated in the previous section (A6.1)

(i) Discarding the last N/2 coefficients of an N point 

transform, where N = 2^, n = 1,2,3, ...

It can be proven that this process is equivalent to the 

discarding of alternate Hadamard ordered coefficients.
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(ii) Discarding alternate coefficients of an N point transform

By inserting the (N>^) elements into the matrices of equa­

tion A6.3 it can be demonstrated that this process is equivalent to 

the discarding of the last N/2 coefficients of an N point Hadamard 

Ordered Walsh Transform.

A6.4 Dominant Coefficient Technique

In sections A6.1, A6.2 and A6.3 the resultant column vector of 

a Walsh Transformation has been predicted in terms of the input 

vector, after elimination of either alternate coefficients or the 

last N/2 coefficients before the inverse transform was performed. A 

technique employed by a number of researchers for achieving data 

reductions is that of Dominant Coefficient Retention [85,86,88]. An 

attempt to predict the resultant column vector for this technique 

has not been conducted since it is dependent on the sequency compon­

ents embedded in the input data. Although the components affected 

cannot be predicted, it can be stated that, the output column vector 

would be the same irrespective of which Walsh transform was employed 

ie. Walsh, Paley or Hadamard. This is because the three transforms 

only differ in their sequency ordering and this would not have any 

effect on the resulting column vector.
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Appendix 7

Speech Intelligiblity and Preference Assesment 

A7.1 Introduction

Speech quality may be viewed as the totality of a communcica- 

tion channels characteristics or the combination of the different 

attributes of speech which must be preserved to give the average 

listener a high quality voice signal. Speech quality can be said 

to be describeable in terms of four psychoacoustic attributes : 

intelligibility, preference, loudness and speaker recognition.

In the investigations reported in this thesis intelligibility 

and preference were considered the main attributes of speech to be 

considered for the evaluation of speech systems and loudness was 

considered a physical factor and speaker recognition was considered 

a psychological factor.

Except for intelligibility and preference, quantitative defin­

itions of the physical and psychological factors have been imposs­

ible to obtain, with the result that an accurate definition of speech 

quality depends upon interpretation. It was for this reason that 

the IEEE subcommittee on subjective speech quality measurement

[107] concluded "that a single method of subjective measurement of 

speech quality could not be recommended".
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(i) Intelligibility

Intelligibility is a measure of the ability of a communica­

tion system to convey spoken information to an average listener. 

Although intelligibility measurements are well established the 

intelligibility scores achieved are not absolute quantities but 

are functions of:

- the listener

- speakers

- procedures

- the test material employed

Generally, intelligibility measurements evaluate systems in the 

gross sense, the number of words correct for a given test [108]. 

However, there have been measures developed directed towards* the 

analysis of the system in terms of the factors contributing to 

intelligibility. The Diagnostic Rhyme Test (DRT) [109] is directed 

towards diagnostic testing of phonemic errors in the listeners 

response.

(ii) Preference

Preference can be thought of as an expression of the degree 

that one speech signal is preferred to another one, irrespective of 

the particular reasons of the listeners for their decisions. Pref­

erence answers the question : "how well does an average listener 

like a particular speech test signal as a source of information ?".

- 342 -



This question may be answered in two ways. Firstly by comparing 

the speech test signal consecutively with a variable speech refer­

ence signal (Isopreference test [107]) or secondly by rating his 

average attitude towards the signal alone (Direct Comparison Test, 

DOT).

The direct comparison of two speech signals is the most basic 

method for making preference decisions. However, it is the most 

direct approach to answering the question "which one of the two 

signals A and B is quantitatively better ?". This method does not 

yield a single absolute value.

In the following sections we shall briefly review the perform­

ance evaluating techniques employed during these investigations.

A7.2 Diagnostic Rhyme Test (DRT)

The Diagnostic Rhyme Test (DRT), developed by Voier [109] 

and simplified by Wong and Markel [110], is a special purpose 

intelligibility test that determines intelligibility and diagnoses 

what sounds the voice system does not transmit properly.

The DRT is a two choice test of consonant discriminability, 

which yields a gross measure of speech intelligibility and addi­

tional scores relating to the performance of the speaker, listener 

or system under test.

The reduced version of the DRT [110] utilises a collection 

of 96 words (46 rhyming pairs selected such that the initial conson­
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ants of each pair differ in terms of a single phonemic attribute). 

One member of the rhyming pair acts as a stimulus and the listener's 

task is to indicate which member of the word pair was spoken. A 

correct choice indicates that the listener has, in effect, discrim­

inated the state of one of six perceptual attributes of English 

consonant phonemes. In the event of being unable to identify, the 
listeners are requested to make a guess.

During a test each word pair is presented twice at random. 

On the second presentation the order of the rhyming pair is rever­

sed, so that both words of the pair occur at a particular position, 

ie. as the first or second word once during the test.

Depending on the word pair involved, each stimuli serves to 

test the discriminability of one of the following six perceptual 

phonemic attributes;

- Voicing

- Nasality

- Sustention

- Sibilation

- Graveness

- Compactness

Table A7.1(a) indicates the features of speech for which each 

attribute is tested for discriminability. The word pairs employed 

are given in Table A7.1(b). In the Table, the positive state (eg. 

voiced) of each feature is represented in the left member of each 

pair; the negative state (eg. unvoiced) is represented in the right
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member of each pair.

The results of the listeners responses are then presented as 

a gross percentage score for the discriminability of each of these 

attributes. Separate scores for the discriminability of each state 

of each attrbute may be obtained by appropriate analysis of the 

listeners reponses.

All percentage scores are calculated as follows to take into 

account the effects of chance:

R - W
D =  — 100%

T

where D 

R 

W

and T

is percent correct discriminations 

is the number of correct responses 

is the number of incorrect responses 

is the total number of responses.

A specimen of the scoring sheet employed in these tests is given in 

Table A7.2

The single word stimuli were recorded in an acoustically 

quiet room using a Sony microphone (ECM 170) and Sony cassette 

recorder (TC 158 cs).

The listening test sessions were conducted in a Tandberg 

language laboratory (156-B) which consisted of 20 double-walled 

listening booths. Listening was performed using Amplivox (Astro- 

lite) headphones.
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A7.3 Direct Comparison Test (DCT)

The Direct Comparison Test (DCT) [57] of two signals is the 

most basic method of preference judgement. This method, however, 

does not yield a single absolute value of preference but merely 

indicates whether one of the two signals presented is preferable to 

the other.

In many cases this is the most convenient method of evaluat­

ing speech quality and provides a reasonable indication of the

order of preference of a given set of speech signals.

The listeners are presented with two signals processed under

different conditions and are required to indicate under which 

condition they would prefer to make a long conversation. In the 

event of the listeners not being able to make a choice, they are 

requested to indicate this as well so that none of the comparisons 

are left without a decision.

Each pair of signals are presented twice during a test and 

at the second presentation the recording order is reversed to 

eliminate any local effects. The two signals to be compared are 

presented consecutively and the pairs of signals are presented 

randomly, separated by three second intervals.

The tests were performed in an acoustically quiet room. The 

stimuli being persented to the listener via a JVC cassette recorder 

(CD1635 Mk II), Sony Amplifier (TA-70) and Sony Headphones (DR-9).
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Subjective Listening Tests

You will hear a sequence of pairs of sentences and you should state 
which one (if any) of the pair you find more acceptable. So as to familiaries 
you with the procedure a practice pair is provided. Indicate your preference 
by placing a tick in the appropriate column adjacent to the pair you are 
listening to, e.g.

Pair 
No.

Codeword Sentence
1

Sentence
2

5 Tango Indicates preference of 
Sentence 1

If there is NO PREFERENCE please tick BOTH columns. The codeword gives an 
indication of the content of the sentence pair. This is to assist you in 
keeping track and marking the appropriate row.

Pair Codeword Sentence Sentence
No. 1 2

Practice
Pair

Tango

1 Tango

2 Tango

3 Oscar

4 Tango

5 Oscar

6 Oscar

7 Tango

8 Tango

9 Oscar

10 Tango

11 Oscar

12 Oscar

13 Tango

14 Tango

Table A7.3 : Specimen of the DCT scoring sheet
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Appendix 8 

Speech Material

The speech material employed for the informal subjective app­

raisals of the speech synthesised by the various coders in this 

thesis are listed below. The utterances were supplied by Dr. J. N. 

Holmes formerly of the Joint Speech Research Unit, GCHQ, Cheltenham.

1: Male : A bird in the hand is worth two in the bush.

2 : Male : An apple a day keeps the doctor away

3: Male : Hello operator, operator.

Female ; Yes, what can I do for you ?

Male : I'd like to make a telephone call to Ballem 

in England.

Female : Did you say Wallem in England ?

Male : No, I said Ballem in England.

Female : What part of England is that ?

Male ; It's close to Newcastle.

Female : Have you got the area code ?

Male : No I'm affraid not. I want Ballem 64125.

Female : Is it a personnai call ?

Male : Yes, I'd like to speak to Mr Charles Bottleneck 

or to his wife.
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