139,967 research outputs found

    Teams organization and performance analysis in autonomous human-robot teams

    Get PDF
    This paper proposes a theory of human control of robot teams based on considering how people coordinate across different task allocations. Our current work focuses on domains such as foraging in which robots perform largely independent tasks. The present study addresses the interaction between automation and organization of human teams in controlling large robot teams performing an Urban Search and Rescue (USAR) task. We identify three subtasks: perceptual search-visual search for victims, assistance-teleoperation to assist robot, and navigation-path planning and coordination. For the studies reported here, navigation was selected for automation because it involves weak dependencies among robots making it more complex and because it was shown in an earlier experiment to be the most difficult. This paper reports an extended analysis of the two conditions from a larger four condition study. In these two "shared pool" conditions Twenty four simulated robots were controlled by teams of 2 participants. Sixty paid participants (30 teams) were recruited to perform the shared pool tasks in which participants shared control of the 24 UGVs and viewed the same screens. Groups in the manual control condition issued waypoints to navigate their robots. In the autonomy condition robots generated their own waypoints using distributed path planning. We identify three self-organizing team strategies in the shared pool condition: joint control operators share full authority over robots, mixed control in which one operator takes primary control while the other acts as an assistant, and split control in which operators divide the robots with each controlling a sub-team. Automating path planning improved system performance. Effects of team organization favored operator teams who shared authority for the pool of robots. © 2010 ACM

    Determinants and outcomes of motivation in health professions education: a systematic review based on self-determination theory

    Get PDF
    Purpose: This study aimed at conducting a systematic review in health professions education of determinants, mediators and outcomes of students’ motivation to engage in academic activities based on the self-determination theory’s perspective. Methods: A search was conducted across databases (MEDLINE, CINHAL, EMBASE, PsycINFO, and ERIC databases), hand-search of relevant journals, grey literature, and published research profile of key authors. Quantitative and qualitative studies were included if they reported research in health professions education focused on determinants, mediators, and/or outcomes of motivation from the self-determination and if meeting the quality criteria. Results: A total of 17 studies met the inclusion and quality criteria. Articles retrieved came from diverse locations and mainly from medical education and to a lesser extent from psychology and dental education. Intrapersonal (gender and personality traits) and interpersonal determinants (academic conditions and lifestyle, qualitative method of selection, feedback, and an autonomy supportive learning climate) have been reported to have a positive influence on students’ motivation to engage in academic activities. No studies were found that tested mediation effects between determinants and students’ motivation. In turn, students’ self-determined motivation has been found to be positively associated with different cognitive, affective, and behavioural outcomes. Conclusion: This study has found that generally, motivation could be enhanced by changes in the educational environment and by an early detection of students’ characteristics. Doing so may support future health practitioners’ self-determined motivation and positively influence how they process information and their emotions and how they approach their learning activities

    Autonomous Capabilities for Small Unmanned Aerial Systems Conducting Radiological Response: Findings from a High-fidelity Discovery Experiment

    Get PDF
    This article presents a preliminary work domain theory and identifies autonomous vehicle, navigational, and mission capabilities and challenges for small unmanned aerial systems (SUASs) responding to a radiological disaster. Radiological events are representative of applications that involve flying at low altitudes and close proximities to structures. To more formally understand the guidance and control demands, the environment in which the SUAS has to function, and the expected missions, tasks, and strategies to respond to an incident, a discovery experiment was performed in 2013. The experiment placed a radiological source emitting at 10 times background radiation in the simulated collapse of a multistory hospital. Two SUASs, an AirRobot 100B and a Leptron Avenger, were inserted with subject matter experts into the response, providing high operational fidelity. The SUASs were expected by the responders to fly at altitudes between 0.3 and 30 m, and hover at 1.5 m from urban structures. The proximity to a building introduced a decrease in GPS satellite coverage, challenging existing vehicle autonomy. Five new navigational capabilities were identified: scan, obstacle avoidance, contour following, environment-aware return to home, andreturn to highest reading. Furthermore, the data-to-decision process could be improved with autonomous data digestion and visualization capabilities. This article is expected to contribute to a better understanding of autonomy in a SUAS, serve as a requirement document for advanced autonomy, and illustrate how discovery experimentation serves as a design tool for autonomous vehicles

    Computer-based materials: a study of learner autonomy and strategies

    Get PDF
    This paper reports on a study which examines the extent to which specified cognitive, social, and metacognitive strategies, are used by language students when working with computer-based materials (CBMs), in self-study contexts outside of the language classroom; particularly in a self-access centre (SAC). Data were collected using questionnaires, interviews and snap-shot observations from English as a Foreign Language (EFL) students enrolled on a summer course at a British Higher Education Institution (HEI). The data identify the frequency with which students use a SAC and the value they attach to computers for language learning. The data then examine the types of strategies students use and the extent to which learner autonomy is being fostered. The vast majority of participants were found to have positive attitudes towards computer-based material (CBMs) and language learning despite frequent use of L1, furthermore they were found to use cognitive strategies and to apply metacognitive awareness in their use of such CBMs. Students believed CBMs assisted with learning and demonstrated conscious applications of a range of strategies while learning in an electronic environment. However, the study also found that less than half the students used social strategies in the target language and this raises a number of issues

    Meaning, autonomy, symbolic causality, and free will

    Get PDF
    As physical entities that translate symbols into physical actions, computers offer insights into the nature of meaning and agency. • Physical symbol systems, generically known as agents, link abstractions to material actions. The meaning of a symbol is defined as the physical actions an agent takes when the symbol is encountered. • An agent has autonomy when it has the power to select actions based on internal decision processes. Autonomy offers a partial escape from constraints imposed by direct physical influences such as gravity and the transfer of momentum. Swimming upstream is an example. • Symbols are names that can designate other entities. It appears difficult to explain the use of names and symbols in terms of more primitive functionality. The ability to use names and symbols, i.e., symbol grounding, may be a fundamental cognitive building block. • The standard understanding of causality—wiggling X results in Y wiggling—applies to both physical causes (e.g., one billiard ball hitting another) and symbolic causes (e.g., a traffic light changing color). Because symbols are abstract, they cannot produce direct physical effects. For a symbol to be a cause requires that the affected entity determine its own response. This is called autonomous causality. • This analysis of meaning and autonomy offers new perspectives on free will
    • …
    corecore