7,021 research outputs found

    Rhythmic Micro-Gestures: Discreet Interaction On-the-Go

    Get PDF
    We present rhythmic micro-gestures, micro-movements of the hand that are repeated in time with a rhythm. We present a user study that investigated how well users can perform rhythmic micro-gestures and if they can use them eyes-free with non-visual feedback. We found that users could successfully use our interaction technique (97% success rate across all gestures) with short interaction times, rating them as low difficulty as well. Simple audio cues that only convey the rhythm outperformed animations showing the hand movements, supporting rhythmic micro-gestures as an eyes-free input technique

    Technical pre-study for the ExMS project

    Get PDF
    This report aims to give an overview of software and hardware platforms available now or in the near future for building a prototype of an ExMS application (for an overview of the ExMS project, see Appendix). The report also gives an overview of the different technologies for building third-party mobile client software applications that are in use today. The report is composed of three sections. The first section is a general discussion on mobile client software and the different technologies that can be used to develop third-party mobile client software. The next section continues with a specific discussion on ExMS and answers the following questions: What is the general architecture of the ExMS application? What alternatives exist for implementing the ExMS prototype? The final section of the report is a recommendation of hardware and software platform for building the ExMS prototype

    Using image morphing for memory-efficient impostor rendering on GPU

    Get PDF
    Real-time rendering of large animated crowds consisting thousands of virtual humans is important for several applications including simulations, games and interactive walkthroughs; but cannot be performed using complex polygonal models at interactive frame rates. For that reason, several methods using large numbers of pre-computed image-based representations, which are called as impostors, have been proposed. These methods take the advantage of existing programmable graphics hardware to compensate the computational expense while maintaining the visual fidelity. Making the number of different virtual humans, which can be rendered in real-time, not restricted anymore by the required computational power but by the texture memory consumed for the variety and discretization of their animations. In this work, we proposed an alternative method that reduces the memory consumption by generating compelling intermediate textures using image-morphing techniques. In order to demonstrate the preserved perceptual quality of animations, where half of the key-frames were rendered using the proposed methodology, we have implemented the system using the graphical processing unit and obtained promising results at interactive frame rates

    Biometrics-as-a-Service: A Framework to Promote Innovative Biometric Recognition in the Cloud

    Full text link
    Biometric recognition, or simply biometrics, is the use of biological attributes such as face, fingerprints or iris in order to recognize an individual in an automated manner. A key application of biometrics is authentication; i.e., using said biological attributes to provide access by verifying the claimed identity of an individual. This paper presents a framework for Biometrics-as-a-Service (BaaS) that performs biometric matching operations in the cloud, while relying on simple and ubiquitous consumer devices such as smartphones. Further, the framework promotes innovation by providing interfaces for a plurality of software developers to upload their matching algorithms to the cloud. When a biometric authentication request is submitted, the system uses a criteria to automatically select an appropriate matching algorithm. Every time a particular algorithm is selected, the corresponding developer is rendered a micropayment. This creates an innovative and competitive ecosystem that benefits both software developers and the consumers. As a case study, we have implemented the following: (a) an ocular recognition system using a mobile web interface providing user access to a biometric authentication service, and (b) a Linux-based virtual machine environment used by software developers for algorithm development and submission

    Material Thermal Inputs of Iowa Materials for MEPDG, 2011

    Get PDF
    The thermal properties of concrete materials, such as coeffi cient of thermal expansion (CTE), thermal conductivity, and heat capacity, are required by the MEPDG program as the material inputs for pavement design. However, a limited amount of test data is available on the thermal properties of concrete in Iowa. The default values provided by the MEPDG program may not be suitable for Iowa concrete, since aggregate characteristics have signifi cant infl uence on concrete thermal properties

    PowerSpy: Location Tracking using Mobile Device Power Analysis

    Full text link
    Modern mobile platforms like Android enable applications to read aggregate power usage on the phone. This information is considered harmless and reading it requires no user permission or notification. We show that by simply reading the phone's aggregate power consumption over a period of a few minutes an application can learn information about the user's location. Aggregate phone power consumption data is extremely noisy due to the multitude of components and applications that simultaneously consume power. Nevertheless, by using machine learning algorithms we are able to successfully infer the phone's location. We discuss several ways in which this privacy leak can be remedied.Comment: Usenix Security 201

    Greenspecting Android virtual keyboards

    Get PDF
    During this still increasing mobile devices proliferation age, much of human-computer interaction involves text input, and the task of typing text is provided via virtual keyboards. In a mobile setting, energy consumption is a key concern for both hardware manufacturers and software developers. Virtual keyboards are software applications, and thus, inefficient applications have a negative impact on the overall energy consumption of the underlying device. Energy consumption analysis and optimization of mobile software is a recent and active area of research. Surprisingly, there is no study analyzing the energy efficiency of the most used software keyboards and evaluating the performance advantage of its features. In this paper, we studied the energy performance of five of the most used virtual keyboards in the Android ecosystem. We measure and analyze the energy consumption in different keyboard scenarios, namely with or without using word prediction. This work presents the results of two studies: one where we instructed the keyboards to simulate the writing of a predefined input text, and another where we performed an empirical study with real users writing the same text. Our studies show that there exist relevant performance differences among the most used keyboards of the considered ecosystem, and it is possible to save nearly 18% of energy by replacing the most used keyboard in Android by the most efficient one. We also showed that is possible to save both energy and time by disabling keyboard intrinsic features and that the use of word suggestions not always compensate for energy and time.- (undefined
    • …
    corecore