6,039 research outputs found

    A structure-preserving split finite element discretization of the split wave equations

    Get PDF
    We introduce a new finite element (FE) discretization framework applicable for covariant split equations. The introduction of additional differential forms (DF) that form pairs with the original ones permits the splitting of the equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star operator. Our discretization framework conserves this geometrical structure and provides for all DFs proper FE spaces such that the differential operators hold in strong form. We introduce lowest possible order discretizations of the split 1D wave equations, in which the discrete momentum and continuity equations follow by trivial projections onto piecewise constant FE spaces, omitting partial integrations. Approximating the Hodge-star by nontrivial Galerkin projections (GP), the two discrete metric equations follow by projections onto either the piecewise constant (GP0) or piecewise linear (GP1) space. Our framework gives us three schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the dispersion relation with the P1-P1 FE scheme that approximates both variables by piecewise linear spaces (P1). The split schemes that apply a mixture of GP1 and GP0 share the dispersion relation with the stable P1-P0 FE scheme that applies piecewise linear and piecewise constant (P0) spaces. However, the split schemes exhibit second order convergence for both quantities of interest. For the split scheme applying twice GP0, we are not aware of a corresponding standard formulation to compare with. Though it does not provide a satisfactory approximation of the dispersion relation as short waves are propagated much too fast, the discovery of the new scheme illustrates the potential of our discretization framework as a toolbox to study and find FE schemes by new combinations of FE spaces

    On discretely entropy conservative and entropy stable discontinuous Galerkin methods

    Full text link
    High order methods based on diagonal-norm summation by parts operators can be shown to satisfy a discrete conservation or dissipation of entropy for nonlinear systems of hyperbolic PDEs. These methods can also be interpreted as nodal discontinuous Galerkin methods with diagonal mass matrices. In this work, we describe how use flux differencing, quadrature-based projections, and SBP-like operators to construct discretely entropy conservative schemes for DG methods under more arbitrary choices of volume and surface quadrature rules. The resulting methods are semi-discretely entropy conservative or entropy stable with respect to the volume quadrature rule used. Numerical experiments confirm the stability and high order accuracy of the proposed methods for the compressible Euler equations in one and two dimensions

    Energy preserving model order reduction of the nonlinear Schr\"odinger equation

    Get PDF
    An energy preserving reduced order model is developed for two dimensional nonlinear Schr\"odinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orthogonal decomposition (POD) Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD). Preservation of the semi-discrete energy and mass are shown for the full order model (FOM) and for the ROM which ensures the long term stability of the solutions. Numerical simulations illustrate the preservation of the energy and mass in the reduced order model for the two dimensional NLSE with and without the external potential. The POD-DMD makes a remarkable improvement in computational speed-up over the POD-DEIM. Both methods approximate accurately the FOM, whereas POD-DEIM is more accurate than the POD-DMD

    Adaptive Energy Preserving Methods for Partial Differential Equations

    Full text link
    A method for constructing first integral preserving numerical schemes for time-dependent partial differential equations on non-uniform grids is presented. The method can be used with both finite difference and partition of unity approaches, thereby also including finite element approaches. The schemes are then extended to accommodate rr-, hh- and pp-adaptivity. The method is applied to the Korteweg-de Vries equation and the Sine-Gordon equation and results from numerical experiments are presented.Comment: 27 pages; some changes to notation and figure
    corecore