2,026 research outputs found

    A Consensus-ADMM Approach for Strategic Generation Investment in Electricity Markets

    Get PDF
    This paper addresses a multi-stage generation investment problem for a strategic (price-maker) power producer in electricity markets. This problem is exposed to different sources of uncertainty, including short-term operational (e.g., rivals' offering strategies) and long-term macro (e.g., demand growth) uncertainties. This problem is formulated as a stochastic bilevel optimization problem, which eventually recasts as a large-scale stochastic mixed-integer linear programming (MILP) problem with limited computational tractability. To cope with computational issues, we propose a consensus version of alternating direction method of multipliers (ADMM), which decomposes the original problem by both short- and long-term scenarios. Although the convergence of ADMM to the global solution cannot be generally guaranteed for MILP problems, we introduce two bounds on the optimal solution, allowing for the evaluation of the solution quality over iterations. Our numerical findings show that there is a trade-off between computational time and solution quality

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft

    Modular Supply Network Optimization of Renewable Ammonia and Methanol Co-production

    Get PDF
    To reduce the use of fossil fuels and other carbonaceous fuels, renewable energy sources such as solar, wind, geothermal energy have been suggested to be promising alternative energy that guarantee sustainable and clean environment. However, the availability of renewable energy has been limited due to its dependence on weather and geographical location. This challenge is intended to be solved by the utilization of the renewable energy in the production of chemical energy carriers. Hydrogen has been proposed as a potential renewable energy carrier, however, its chemical instability and high liquefaction energy makes researchers seek for other alternative energy carriers. Ammonia and methanol can serve as promising alternative energy carriers due to their chemical stability at room temperature, low liquefaction energy, high energy value. The co-production of these high energy dense energy carriers offers economic and environmental advantages since their synthesis involve the direct utilization of CO2 and common unit operations. This problem report aims to review the optimization of the co-production of methanol and ammonia from renewable energy. Form this review, research challenges and opportunities are identified in the following areas: (i) optimization of methanol and ammonia co-production under renewable and demand uncertainty, (ii) impacts of the modular exponent on the feasibility of co-production of ammonia and methanol, and (iii) development of modern computational tools for systems-based analysis

    A Two-Level Approach to Large Mixed-Integer Programs with Application to Cogeneration in Energy-Efficient Buildings

    Full text link
    We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model (coarsened with respect to variables) and a coarse model (coarsened with respect to both variables and constraints). We coarsen binary variables by selecting a small number of pre-specified daily on/off profiles. We aggregate constraints by partitioning them into groups and summing over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence provides an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. The coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis

    Get PDF
    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty in future policy limiting emissions, society faces the following question: What should the electricity mix we build in the next decade look like? We can continue to focus on conventional generation or invest in low-carbon technologies. There is no obvious answer without explicitly considering the risks created by uncertainty. // This research investigates socially optimal near-term electricity investment decisions under uncertainty in future policy. It employs a novel framework that models decision-making under uncertainty with learning in an economy-wide setting that can measure social welfare impacts. Specifically, a computable general equilibrium (CGE) model of the U.S. is formulated as a two-stage stochastic dynamic program focused on decisions in the electric power sector. // In modeling decision-making under uncertainty, an optimal electricity investment hedging strategy is identified. Given the experimental design, the optimal hedging strategy reduces the expected policy costs by over 50% compared to a strategy derived using the expected value for the uncertain parameter; and by 12-400% compared to strategies developed under a perfect foresight or myopic framework. This research also shows that uncertainty has a cost, beyond the cost of meeting a policy. Results show that uncertainty about the future policy increases the expected cost of policy by over 45%. If political consensus can be reached and the climate science uncertainties resolved, setting clear, long-term policies can minimize expected policy costs. // Ultimately, this work demonstrates that near-term investments in low-carbon technologies should be greater than what would be justified to meet near-term goals alone. Near-term low-carbon investments can lower the expected cost of future policy by developing a less carbon-intensive electricity mix, spreading the burden of emissions reductions over time, and helping to overcome technology expansion rate constraints—all of which provide future flexibility in meeting a policy. The additional near-term cost of low-carbon investments is justified by the future flexibility that such investments create. The value of this flexibility is only explicitly considered in the context of decision-making under uncertainty.The authors gratefully acknowledge the financial support for this work provided by the U.S. Department of Energy, Office of Science under grants DE-PS02-09ER09-26, DE-FG02-94ER61937, DE-FG02-08ER64597, DE-FG02-93ER61677, DE-SC0003906, DE-SC0007114, XEU-0-9920-01; the U.S. Environmental Protection Agency under grants XA-83240101, PI-83412601-0, RD-83427901-0, XA-83505101-0, XA-83600001-1, and subcontract UTA12-000624; and a consortium of government, industrial and foundation sponsors
    • …
    corecore