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Abstract

We present a numerical method for finite horizon stochastic optimal control models. We derive a Stochastic Minimum Principle
(SMP) and then develop a numerical method based on the direct solution of the SMP. The method combines Monte Carlo
pathwise simulation and nonparametric interpolation methods. We present results from a standard LQC model, and a realistic
case study that captures the stochastic dynamics of intermittent power generation in the context of optimal economic dispatch
models.
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1 Introduction

Stochastic optimal control is a useful formalism for de-
veloping and analyzing models that have stochastic dy-
namics. Applications of stochastic optimal control in-
clude manufacturing systems, option pricing, portfolio
optimization, analysis of climate policies, biological and
medical applications, and energy systems modeling.

Realistic models do not admit closed form solutions.
As a result a large number of numerical methods have
been proposed to approximate their solution. Tradi-
tional numerical methods for stochastic optimal control
such as value iteration [2], policy iteration [2], and the
Markov Chain approximation method in [11] all rely on
a mesh. Typically, the mesh is obtained by discretizing
the state. This discretization gives rise to a mesh (or
a grid) and computation is performed on each point of
the mesh. For example, the exact implementation of
policy or value iteration requires the specification of a
lookup table (or mesh in the language of this paper).
Similarly, the Markov Chain approximation method
[11] requires the construction of a finite difference grid.
Computational complexity of classical stochastic opti-
mal control increases exponentially with the number of
state variables and they therefore suffer from the curse
of dimensionality. Alternative formulations using multi-
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stage stochastic programming, also depend on a mesh.
In the stochastic programming literature the mesh is
referred to as a scenario tree. The number of points on
the mesh, or the number of nodes in the scenario tree
grows exponentially with the number of time-periods.
In this case, stochastic programming algorithms suffer
from the curse of dimensionality due to the number of
time periods involved in realistic models. The problem
that motivated this paper (see Section 5.2) has both a
large state vector and a large number of time periods.
Therefore new methods are needed to address this class
of problems.

1.1 Overview of the proposed algorithm

The method proposed in this paper does not perform
any (structured) discretization in the state dimension.
Instead of discretizing the state dimension and perform-
ing computation on each point of the resulting mesh,
the proposed algorithm relies on a three step procedure.
Starting with an incumbent control law, the first step
consists of forward simulations. In the setting of this pa-
per, forward simulations are computationally inexpen-
sive. The second step consists of backward steps that ap-
proximately solve the adjoint equation associated with
the model and the incumbent control law. The difference
with the classical algorithms such as policy and value it-
eration is that those algorithms compute the value func-
tion or optimal control for each possible state. We only
visit “promising states”. These promising states are ob-
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tained during the forward simulation phase. The solu-
tion of the system of adjoints is approximate because we
only use points that were visited in the forward phase
to construct the approximation. The approximation is
constructed via a non-parametric method for scattered
data approximation. Finally, the third step uses the in-
formation gleaned from the forward and backward steps
to improve the incumbent control law. The algorithm is
described in detail in Section 4.

An exact resolution of the adjoints would require the
construction of a structured mesh. However, since the
proposed method is used to solve for the SMP associ-
ated with the model, only the adjoints along the optimal
path are needed. In other words, when the adjoint infor-
mation is used in conjunction with the optimality con-
ditions of the SMP, the exact resolution of the adjoints
is not necessary. An advantage of the proposed method
is that the adjoints can be interpreted as prices or hedg-
ing strategies[13]. A disadvantage of our approach is
that the forward paths need to be stored and searched
frequently. However, using appropriate data structures
(discussed in Section 4.3) the computational burden as-
sociated with this part of the algorithm appears to be
manageable even for high dimensional problems. For ex-
ample, in Section 5 we report on the solution of a 30 di-
mensional Linear Quadratic Control (LQC) model, and
compare our method with the closed form solution. We
also present numerical results from a power generator
scheduling case study. This application introduces some
complexities not present in the LQC model. In partic-
ular the case study shows the importance of the appro-
priate selection of basis functions used in the numerical
implementation, and the difficulty of correctly specify-
ing a global parametric class.

1.2 Contributions & Literature Review

This paper makes three contributions. The first is the de-
velopment of a Stochastic Minimum Principle (SMP) for
finite horizon stochastic optimal control models driven
by piecewise deterministic Markov Processes (Section
3). The second contribution is the development of the
adaptive pathwise algorithm (Section 4). Our final con-
tribution is to show that the proposed method can be
applied to realistic models (Section 5). We expand on
these contributions in the context of the existing litera-
ture below.

The algorithm proposed in this paper is applicable to a
class of stochastic processes known as piecewise deter-
ministic. The theoretical properties of these processes
have been extensively studied, see e.g. [7]. To enable
the development of the numerical method, we need to
make use of an appropriate Stochastic Minimum Princi-
ple (SMP). Our first contribution is the SMP described
in Section 3. A number of papers have developed SMPs
for similar models. However, a form of the SMP suitable

for numerical computation and appropriate for the ap-
plication discussed in this paper has not appeared else-
where. A similar SMP was developed in [17] but it as-
sumes that the Markov processes are governed by a con-
stant generator. Our SMP covers the finite horizon case,
and allows for the generator to be both time inhomoge-
neous and to depend on the controls. Optimality con-
ditions for the infinite horizon case have received more
attention, e.g. [9,22]. The proof of the SMP in the latter
work is based on the reduction of the problem to a de-
terministic infinite horizon problem. A minimum prin-
ciple is then used for the deterministic problem in or-
der to derive the necessary and sufficient conditions for
the original model. From the point of view of computa-
tion, the deterministic infinite horizon problem is not in
a form suitable for efficient numerical approximations.
Another contribution related to the SMP, is the time dis-
cretization result in Section 4.1. The result in Section 4.1
enables the numerical implementation of the algorithm
described in Section 4.2.

Our second contribution is the development of the three
step numerical algorithm described in Section 4. The fact
that our method does not construct a grid means that
it can potentially address high dimensional problems.
Many methods have been proposed to address the curse
of dimensionality in stochastic optimization. Methods
from the stochastic programming literature include de-
composition and aggregation methods (for a review see
[3,14]). The method proposed in this paper differs from
the numerical methods used in Stochastic Programming
in that (a) we deal with continuous time problems, (b)
we allow the possibility of the probability distribution of
the random variables to depend on the decisions, (c) our
method does not depend on convexity assumptions, and
(d) we never construct a mesh or a scenario tree. The
complexity of Stochastic Programming problems grows
exponentially with the number of time periods. As a re-
sult, stochastic programming models are used when only
a small number of decision periods is required. The power
system application that motivated this work has a large
number of time periods (288). A stochastic program for-
mulated with the coarsest possible scenario tree of two
realizations for each random variable cannot be solved
even with aggregation or decomposition algorithms.

We have already explained the differences of the pro-
posed method from the traditional methods of Dynamic
Programming (DP) such as value and policy iteration
algorithms in Section 1.1. However, there are similari-
ties between the proposed method and the algorithms
that belong to the Approximate Dynamic Programing
(ADP), Reinforcement Learning (RL) literature and the
specialized algorithms developed in the energy systems
area (see e.g. [10], [15], [18]). Most ADP algorithms
are concerned with approximating the value function.
For example Q–learning was originally proposed in the
context of value function approximation (see e.g. [16]).
There are, however, methods that are based on policy
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space space approximation. For example, the methods
based on perturbation and sensitivity analysis (including
the extension of TD and Q-learning algorithms) for pol-
icy space approximation described in [4]. The methods
described in [4] are developed in the context of infinite
horizon or average cost models, whereas we deal with fi-
nite horizon models. This important difference requires
the development of a different approximation method.
Infinite horizon or average cost models are not mean-
ingful for the power systems application that motivated
this work because these systems are not adequately de-
scribed by steady state dynamics (see Section 5).

Another important difference is that sensitivity and per-
turbation based methods described in [4] estimate the
sensitivity of the model to a set of parameters. For ex-
ample, one could expand the control as a series of basis
functions, and then use a perturbation method to find
the optimal weight for each element of the basis. The
approximation will be parametric, and convergence is
within the chosen parametric class. Recently a method
similar to the one described in this paper was proposed
in [5]. The method in [5] is concerned with the discrete
finite horizon case, whereas we deal with the continuous
case. Similarly to perturbation methods, the method in
[5] requires a global parametric interpolation to be used
for the controls and the adjoints. The method proposed
in this paper does not rely on a user specified choice of
the parametric class.

Finally, ADP, RL and to a large extent perturbation
methods are based on Stochastic Approximation (SA).
An advantage of algorithms based on SA is that the al-
gorithm avoids the explicit calculation of the conditional
expectations that appear in models of stochastic control.
Instead SA methods rely on sampling and smoothing
in order to estimate these conditional expectations [16].
However, the gradients used in SA methods are stochas-
tic and as a result these algorithms are extremely sen-
sitive to the selection of the step-size strategy. The pro-
posed algorithm also relies on a step-size strategy. How-
ever, because we use a Monte Carlo integration method
to compute gradients our algorithm exhibits less sensi-
tivity to the step-size strategy (the gradients are still
stochastic but the variance can be controlled). To make
this point clear consider the following static stochastic
optimization problem,

min
u

E[F (η, u)].

Where u is the control, and η is a random variable. Meth-
ods based on SA consist of iterations of the form,

uk+1 = uk − τ∇uF (η, u). (1)

Where k is the iteration number and τ is the step-size.
The algorithm proposed in this paper is more in the
spirit of,

uk+1 = uk − τE[∇uF (η, u)]. (2)

The quantity E[∇uF (η, u)] cannot be estimated exactly,
but a noisy estimate can be obtained via Monte Carlo
integration. Methods based on (2) are less sensitive to
the choice of step size but require more expensive itera-
tions. Methods based on (1) require less expensive itera-
tions, but are sensitive to the choice of step–size. More-
over when the problem is not static (as is the case in the
model we study in this paper) the computation of the
gradient ∇uF is considerably more complicated than in
the static case. The gradients in this paper are computed
by the adjoint calculations described in Section 4.2.

Finally, we study the numerical performance of the algo-
rithm to models of realistic size. It will be shown in Sec-
tion 5 that the proposed algorithm can be used to solve
problems with a large number of decision stages and a
large state space. First we apply the method to a Lin-
ear Quadratic Control (LQC) model, for which a closed
form solution is available. We then apply the algorithm
to a realistic power systems model.

2 Problem Statement & Notation

We use η(t) to denote a continuous time, discrete state
Markov process. This class of processes is also known
as piecewise deterministic [7]. The state space of the
Markov process will be denoted by M. The cardinality
ofM will be denoted by |M|. For the applications that
motivated this paper, such a finite state space will suf-
fice. The theory of piecewise deterministic processes is
relatively mature, and we adopt the well known frame-
work and terminology described in [7].

As is well known (see e.g. [23]), the probability transition
matrix of η satisfies the following equation,

dP (t, s)

dt
= P (t, s)Qt(xt, ut), P (s, s) = I|M|, (3)

where In denotes an identity matrix of dimension n. The
matrix Q is called the generator of η, and is allowed to
depend on time t, and on the state control pair (x, u).
The (i, j)th entry of this matrix is denoted by qij . We will
use Js to denote the objective function value at time s,

J0(x0, η0, u) ,E

[ T∫
0

e−ρtGt(xt, ηt, ut)dt

+ e−ρTΦ(xT ) | x(0) = x0, η(0) = η0

]
,

where u is some feasible control, x0 ∈ Rn and η0 ∈ M
are the initial conditions of x and η respectively. The
function Φ : Rn → R is the terminal condition. With
these definitions the full problem we consider in this
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paper is given below.

v0(x0, η0) = min
u∈U
J0(x0, η0, u)

dx

dt
= f(x, η, u), x(0) = x0, (P)

η(0) = η0, u ∈ At.

We make the following assumptions concerning the prob-
lem above: the feasible set U is a compact subset of Rm,
the functions f : Rn×M×U → Rn,G : Rn×M×U → R
and, Φ : Rn → R, are continuously differentiable in the
state variable, and with bounded derivatives. The setAt
is used to denote the set of Ft-adapted policies that are
piecewise continuous in time, and once continuously dif-
ferentiable with a bounded derivative in the state vari-
able.

The differential equation that drives the system in (P)
is stochastic with (right) jump discontinuities. In order
to be exact, one must define the class of functions that
can satisfy the system in (P). In this paper we will use
the framework in [12] (Section 2.2) to study the dynam-
ics of the system ((P) is also called a hybrid system in
the optimal control literature). The solution of the dif-
ferential equation in (P) is a cadlag function (i.e. right
continuous with left limits), and the solutions of the dif-
ferential equation are interpreted as Caratheodory solu-
tions. We will use the notation ψut (s, xs, ηs) to denote
the solution to the state equation of (P) at time t, with
the initial conditions (x(s) = xs, η(s) = ηs), and an ad-
missible control u. If η is fixed to θ, then the state equa-
tion of (P) is a deterministic differential equation, and

we denote its solution with ψ̂u,θt (s, xs).

3 A stochastic minimum principle

In this section we derive necessary and sufficient opti-
mality conditions for (P). We start by deriving a recur-
sive equation that the objective function value of (P),
must satisfy (Theorem 1). We will then use this recur-
sive equation to reformulate the problem as a standard
optimal control problem for which optimality conditions
are already known (see Theorem 2).

Theorem 1 The objective function of (P) satisfies the
equation,

J0(x0, η0, u) =

T∫
0

z(t)

(
Gt(ψ̂

u,η0
t , η0, ut)+

∑
η′ 6=η0

qη0η′(ψ̂
u,η0
t , ut)Jt(ψ̂u,η0t , η′, ut)

)
dt+ Φ(ψ̂u,η0T )z(T )

(4)

where z(t) = exp[−
t∫

0

ρ+ qη0(ψ̂u,η0k , uk)dk], and

qη0(y, u) , −qη0,η0(y, u) =
∑
η′ 6=η0

qη0η′(y, u).

PROOF. Let G̃t(x, η, u) = Gt(x, η, u)1{t<T}. Then for
any given feasible control u, we can rewrite the objective
function as follows,

J0(x0, η0, u) = E

[ ∞∫
0

e−ρsG̃s(xs, ηs, us)ds

+ e−ρTΦ(xT )

∣∣∣∣∣x(0) = x0, η(0) = η0

]
.

In the preceding equation let J 1
0 (x0, η0, u), J 2

0 (x0, η0, u)
denote the first, and second term respectively. Let τ be
the first jump time of η after time zero. Suppose that
η(0) = η0, then the probability that the first jump occurs
in time [t, t+ ∆t], is given by,

P[t < τ < t+∆t] = qη0(xt, ut)e
−
∫ t
0
qη0 (xs,us)ds∆t+o(∆t),

(5)
When s ∈ [0, τ) then the stochastic solutionψus (0, x0, η0)

coincides with the deterministic solution ψ̂u,η0s (0, x0).

Below we drop the dependence of ψ̂u,η0s (0, x0) on (x0, η0),

and use ψ̂us for brevity. Using the law of total expectation
and the Markov property, we can write J 1

0 as follows,

J 1
0 = E

[ τ∫
0

e−ρsG̃s(ψ̂
u
s , ηs, us)ds

+ e−ρτJ 1
τ (ψ̂uτ , ητ , uτ )

∣∣∣∣∣x(0) = x0, η(0) = η0

]
.

The expectation above is taken with respect to the prob-
ability of jumping at time τ to state ητ given that we
started at time 0 at state x(0) = x0 and η(0) = η0. This
expectation can be expanded using (5) as follows,

J 1
0 =

∞∫
0

qη(ψ̂ut , ut)e
−

t∫
0

qη(ψ̂us ,us)ds

×

 t∫
0

e−ρsĜ(ψ̂us , η0, us)ds+ It

 dt

(6)
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where,

It = e−ρt
∑
η′ 6=η0

qη0η′(ψ̂
u
t , ut)

qη0(ψ̂ut , ut)
J 1
t (ψ̂ut , η

′, ut).

Note that in the derivation of (6) we have used the fact
that the probability of jumping from η0 to state η′ given
that the process jumped at time τ is given by,

P(η(τ) = η′ | τ, η(0) = η0) = −qη0η
′(ψ̂uτ , uτ )

qη0(ψ̂uτ , uτ )

Integrating by parts the first term in (6) and using the

fact that G̃t = J 1
t = 0 for t > T , we obtain,

J 1
0 =

T∫
0

z(t)
(
Gt(ψ̂

u
t , η0, ut)

+
∑
η′ 6=η0

qη0η′(ψ̂
u
t , ut)J 1

t (ψ̂ut , η
′, ut)

)
dt.

where z(t) = exp[−ρt−
t∫

0

qη0(ψ̂us , us)ds]. A similar ar-

gument establishes the following expression forJ 2
0 (y, η0)

J 2
0 =Φ(ψ̂uT )z(T )

+
∑
η′ 6=η0

∫ T

0

z(t)qη0η′(ψ̂
u
t , ut)J 2

t (ψ̂ut , η
′, ut)dt

Adding the two expression for J 1
0 and J 2

0 we obtain the
required result in (4).

2

The Hamilton Jacobi Bellman equation associated with
(P) is given below. A rigorous proof can be found in
Appendix A.4 of [23].

ρvt(x, η) = min
u

{
Gt(x, η, u) +∇xv(x, η)>f(x, η, u)

}
+
∂vt
∂t

+
∑
η′ 6=η

qη′η(vt(x, η
′)− vt(x, η))

(7)

We use the shorthand notation u(t) = u(t, xt, ηt), and
λ(t) = λ(t, xt, ηt) to denote the control and adjoint re-
spectively. Explicit notation will be used when confu-
sion might arise. We end this section by showing how the
previous result is related to the necessary and sufficient
conditions for optimality for (P).

Theorem 2 A necessary and sufficient condition for a
control u∗ to be optimal for (P) is that there exist a
solution to the following backwards equation,

dλt
dt

= −∇xHt(ψ̂u
∗,η
T , η, u∗, λt) + (ρ+ qηη)λt

λT (x, η) = ∇xΦ(ψ̂u
∗,η
T ).

(8)

For any control adjoint pair (u, λ), the function Ht is
defined as follows,

Ht(x, η, u, λ) = Gt(x, η, u)+λ>f(x, η, u)−
∑
η′ 6=η

qηη′vt(x, η)

In addition u∗ must satisfy:

Ht(x, η, u∗, λ)−Ht(x, η, u, λ) ≤ 0 ∀u ∈ U. (9)

PROOF. It follows from Theorem 1 that (P) is equiv-
alent to

v0(x0, η0) = min
u∈U

{ >∫
0

z(t)

Gt(xt, ηt, ut) +
∑
η′ 6=η0

vt(x, η
′)

 dt

+ z(T )Φ(xT )

}
dx

dt
= f(x, η, u), x(0) = x0, η(0) = η0 (P̃)

Since (P̃) is a deterministic finite horizon problem the
result follows from the application of the deterministic
maximum principle on (P̃). 2

4 An Adaptive Pathwise Algorithm

In this section we show how the SMP derived in the pre-
vious section can be used to develop an efficient algo-
rithm. There are three key elements of the proposed algo-
rithm. The first is the time discretization scheme of the
continuous time problem in (P). Integrating the state
equation forward in time using a simple Euler scheme is
sufficient. However, more care needs to be taken when
integrating the adjoints backward. We describe our time
discretization scheme in Section 4.1. The second element
of our approach is the application of the minimum prin-
ciple. In order to apply the minimum principle we first
simulate forward in time the incumbent control. We call
this the forward simulation phase. We then proceed to
improve the incumbent policy by calculating the adjoint
process. This step amounts to the solution of a back-
wards stochastic differential equation (BSDE). We call
this the backward simulation phase. This is the most ex-
pensive part of the algorithm. The third, and final ele-
ment of our approach, is the scattered data interpolation
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algorithm. Although the algorithm is based on a Monte
Carlo simulation methodology, we still need a mesh, or
some sort of grid, in order to represent the incumbent
control and the adjoint process. If we used a traditional
grid (e.g. a finite difference grid) for this part of the algo-
rithm, our approach would not scale to problems of re-
alistic size. For this reason we use the method described
in Section 4.3 that does not require the construction of
a structured mesh.

4.1 Time discretization

Applying the Euler–Maruyama [24] scheme to the state
equation of (P) we obtain the following discrete time
dynamics.

xt+δt = f∆(xt, ut, ηt+δt) , xt+f(xt, ut, ηt+δt)δt. (10)

Note that xt+δt is, by definition, adapted to the filtration
generated at time t. A simple Euler scheme can not be
directly applied backwards in time because it will not
yield an Ft adapted adjoint process. However, we show
below how an Ft adapted process can be constructed
by a discrete time approximation and an expectation
that can be calculated with Monte Carlo simulation. An
expectation taken with respect to,

P∆(t, t+ δt) = exp

[∫ t+δt

t

Q(s, us)ds

]
.

is denoted by E∆[·], where exp[·] above denotes the ma-
trix exponential.

Theorem 3 Suppose that there exists a function λδ that
satisfies the following equation,

λδt (xt, ηt) = E∆

[
∇xG(xt, ηt+δt, ut)δt− ρδtλδt+δt(ηt+δt)

∇xf∆(xt, ut, ηt+δt)λ
δ
t+δt(ηt+δt)|xt, ηt

]
(11)

and the boundary condition, λδ(T ) = ∇Φ(xT ). Then as
δt→ 0, λδ is also a solution to (8).

PROOF. We proceed by breaking up (11) into the fol-
lowing three terms which we analyze in turn.

I1(t) =E∆[∇xG(xt, ηt+δt, ut)δt]

I2(t) =− λδt (ηt) + E∆[∇xf∆(xt, ut, ηt+δt)λ
δ
t+δt(ηt+δt)]

I3(t) =E∆[−ρδtλδt+δt(ηt+δt)]

If λδ is chosen to satisfy (11) then (I1 + I2 + I3)/δt = 0.
Next note that,

I1
δt

=
1

δt
[
∑
η′ 6=η

qηη′(ut)(∇xG(xt, η, ut)−∇xG(xt, η
′, ut))δt

2

+∇xG(xt, η, ut)δt] + o(δt)

I2(t)/δt can be expanded as follows,

I2
δt

=
1

δt
[−λδt (ηt) + E∆[(∇xf∆(xt, ut, ηt+δt)δt)λ

δ
t+δt(ηt+δt)]

=
1

δt

[
∇xf(x, ηt)λ

δ
t (ηt)δt+

dλδ(t, ηt)

dt
δt+∑

η′ 6=η

qηη′(ut)(λ
δ
t (η
′)− λδt (η))δt

]
+ o(δt).

Finally I3(t)/δt can be expanded as follows,

I3
δt

=
1

δt
[−ρδtλδt (ηt)+ρδt2

∑
η′ 6=η

qηη′(ut)(λ
δ
t (η
′)−λδt (η))

]
Collecting all the terms we conclude that as δt→ 0 then
λδt (ηt) satisfies (8). 2

The discretized adjoint process is equivalent to the ad-
joint process of the discrete time minimum principle (see
c.f. Theorem 1.23 in [19]).

4.2 Algorithm Decsciption: APA (Adaptive Pathwise
Algorithm)

Using the result from Theorem 3, the algorithm is speci-
fied below. We will refer to this algorithm as APA (Adap-
tive Pathwise Algorithm) in the numerical experiments
section. In the description of the algorithm below we use
the index “k” for the iteration counter, and “j” is used
to index different paths. For example ukj is shorthand for
the value of the incumbent control u(tj , xj , ηj) at itera-
tion k.

[Initialization]: Let tol be a user specified conver-
gence tolerance parameter. Set k ← 0, t ← 0 and let
uk(t, x, η) be arbitrary.
[Forward Simulation - k]: Simulate M sample paths
using the state transition equation and uk

xj(t+ ∆t) = xj(t) + f(xj(t), u
k
j , η

t+∆t
j )∆t

Let G∆ denote the set of sample paths generated dur-
ing the forward phase.
[Backward Simulation - k]: For each path j ∈ G∆

(1) Apply boundary condition.

λk(T )← ∇xΦ(xj(T )) (12)
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(2) Let tj ← T −∆t, and perform backward steps:

λk(tj)← E∆
[
∇xG(xj , η

t+∆t
j , ukj )∆t+

(∇xf∆(xj , u
k
j , η

t+∆t
j )− Iρ∆t)λ(tj + δt, ηt+∆t

j ) | xj , ηj
]

Dk(tj , ηj)← E∆
[
∇uG(xj , η

t+∆t
j , ukj )+

∇uf∆(xj , u
k
j , η

t+∆t
j )λ(tj + ∆t, ηt+∆t

j ) | xj , ηj
]

(3) Set t← t−∆t, and perform backward steps until
t = 0.
[Update Policy - k]

uk+1(t, xj , ηj)← ΠU [uk − κDk(tj)].

Where ΠU [·] denotes the projection on the set U .
[Convergence Test] Stop if,

max
j

|uk+1(0, xj , ηj)− uk(0, xj , ηj)|
|uk+1(0, xj , ηj)|

< tol

Otherwise set k ← k + 1 and go to Forward
simulation step.

In the [Forward Simulation] phase we discretize the
system as discussed in Section 4.1 (see (10)). After the
terminal time is reached (i.e. t = T ) we apply the ap-
propriate boundary condition to the adjoint equation
(see (12)). The algorithm then proceeds to solve the ad-
joint equation in the [Backward Simulation] phase.
The equation for λ in the Backward Phase is given by
(11) and is derived in Theorem 3. The equation for D
in the Backward Phase follows from (9). The [Backward
Simulation] phase terminates when t = 0. In the third
phase, [Update Policy], we use the information gleaned
from the Backward Phase to update the control. The
notation ΠU [·] denotes the projection on the set U , and
κ denotes the step-size. In our numerical results in Sec-
tion 5 we use a constant step-size. Note that because
we use a Monte Carlo integration method to compute
gradients, our algorithm exhibits less sensitivity to the
step-size strategy compared to stochastic approximation
algorithms.

In Step (2) of the Backward Phase, the adjoint λ and the
gradient D are not evaluated at all possible states (as in
e.g. policy iteration) but only at the states visited dur-
ing the forward phase. As a result when Monte Carlo is
used to estimate the expectations in Step (2), the algo-
rithm needs to estimate the value of the adjoint at states
that have not been visited during the forward phase.
This challenging problem is solved using the method de-
scribed next.

The derivative Dk(tj) is defined in Step (2) of the
[Backward Simulation] phase of the algorithm and

used in Step (3) [Update Policy - k] needs to be
motivated further. To this end, suppose that (λ∗, u∗)
is the optimal control/adjoint pair. Then using similar
arguments as in Theorem 4,

Jt(x, η, u∗) =E
[
G(x, ηt+δt, u

∗)δt+ (1− ρδt)(vt(x, ηt+δt)

+∇xV (x, ηt+δt)δx+
∂v

∂t
δt)|x, η

]
+ o(δt)

It follows that,

0 =∇uJt(x, η, u∗)

=E[∇u

(
G(x, ηt+δ, u)δt+ (1− ρδt)(vt(x, ηt+δt)

+∇xV (x, ηt+δt)δx+
∂v

∂t
δt)|x, η]}

)
+ o(δt)

Dividing by δt, and taking limits we obtain,

∇uJt(x, η, u∗) = E
[
∇uG(x, ηt+δ, u

∗)

+∇uf(x, ηt+δt, u
∗)λ∗(x, ηt+δt)|x, η

]
Note that many of the terms drop out since u∗ is assumed
to be optimal. Therefore the quantityD is the derivative
of J along the optimal path. Of course, u and λ are not
optimal. The basic idea behind the algorithm then is to
use the approximate information currently known about
u, and λ and compute D. Then the algorithm takes a
step along the direction suggested by D. The result is
to drive D to zero. Under the assumptions of this paper
whenD is zero then∇uJ = 0. Therefore, even ifD is not
the same as the gradient of J with respect to u, when
the algorithm converges (under convexity assumptions)
it should converge to an optimal solution. A complete
convergence proof of the algorithm is beyond the scope
of this paper.

4.3 Scattered Data Approximation

After the forward phase of the proposed algorithm
we have, at time T , a set of unstructured data
points G∆ = ∪jG∆

j . Where G∆
j represents the jth

path generated by the algorithm given by G∆
j =

{(x0
j , η

0
j , 0), . . . (xTj , η

T
j , T )}. In order to make the algo-

rithm implementable we need to solve two important
practical problems. The first is how to interpolate be-
tween the data sites in order to do the backwards sim-
ulation. The second issue is how to structure the data
generated from the MC steps so that the algorithm is
tractable.

For the interpolation problem we use a non-parametric
method called Moving Least Squares (MLS). This is a
standard method and we refer the interested reader to
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[8] for the details. The application of the MLS method
to this class of problems where little is known about the
functional form of the optimal control, and quite often
the optimal control is merely piecewise continuous is ex-
pedient because the choice of basis functions does not
play a crucial role in the quality of the approximation.
In the next section we show that even though we only
use linear interpolation, because of the local nature of
the weight functions, and the possibility to recompute
the weights we can interpolate non-linear functions ac-
curately. In order to ensure that the coefficients in the
MLS method can be computed efficiently we need to im-
plement the appropriate data structures for large sets of
unstructured data. We use kd-trees in order to solve this
problem (the use of kd-trees is standard in the area of
scattered data approximation [21]). The basic idea be-
hind kd-trees is to split the number of data sites into a
small number of subsets such that each subset contains
a comparable number of points. Once such a data struc-
ture is built, a range search (for example), only takes
O(logN) time.

5 Numerical Experiments

In this Section we discuss the numerical implementation
of the algorithm. The numerical experiments were run on
a standard desktop computer. We performedM = 10000
forward simulations for all the results reported below.
The step size κ is held constant to 0.01 for all the results
reported below. We used a a tolerance of 1% to check
for convergence (see Step 3 of the algorithm). In Section
5.1 we validate our implementation on the LQC model.
The solution of the LQC model is known in closed form.
The results obtained with the LQC model are useful
since they validate the proposed approach. For the LQC
model the control and adjoints are linear functions of the
state. For this reason, one of the main advantages of the
algorithm i.e. its non-parametric nature is not clear. In
order to illustrate the usefulness of the non-parametric
approach we also report results from a real application
in Section 5.2. Interesting applications have controls and
adjoints that are in general non-linear, therefore the re-
sults from Section 5.2 will be useful to other applications
as well.

5.1 Validation with the LQC model

The LQC model is well known, and we refer the inter-
ested reader to [2] for the problem specification and its
solution. We selected the coefficients of the model at ran-
dom, but we ensured that the system is stable. We used
a discretization parameter of ∆t of 0.005, for a horizon
T = [0, 1] (i.e. 200 time periods). In Figure 5.1 (n denotes
the dimensionality of the state vector, and m denotes
the dimensionality of the control vector) we show the
convergence of the algorithm for the controls. Note that
both the control and the adjoints are high dimensional

0 10 20 30 40 50 60
Iteration

0
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20

30

40

50

60

E
rr

o
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(%
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n=10, m=10
n=20, m=10
n=30, m=10 

Fig. 1. Convergence of the controls. We use n to denote
the dimensionality of the state vector, and m denotes the
dimensionality of the control vector. Error is measured as
‖uk(x0) − u∗(x0)‖/‖u∗(x0)‖, where x0 denotes the initial
point, and u∗(x0) is the optimal decision at the first time
period. Convergence of the value function and adjoint func-
tions behave in a similar manner.

Table 1
Solution times with 1% error tolerance

n m Iterations CPU Time (secs)

10 10 20 5.51

20 10 54 47.23

20 20 183 164.65

30 10 178 331.58

30 30 263 505.23

objects (n = 10, 20 and 30) but still the algorithm finds
the optimal solution in a reasonable amount of time. The
amount of time required to find the solution within 1%
is shown in Table 1.

5.2 Application to a Power Systems Case Study

In this section, we illustrate the application of the al-
gorithm to a more complex model, an economic dis-
patch model with high penetration of renewables. The
economic dispatch model is a standard power systems
model that is used for production scheduling between
different generators so that costs are minimized [6]. A
review of different issues concerning economic dispatch
can be found in [6]. We will focus on the case where the
generator mix contains a large amount of intermittent
wind generation. Traditionally economic dispatch mod-
els are deterministic. Even though some stochastic ex-
tensions have been proposed [20], most authors consider
a small number of time periods or a rolling horizon for-
mulation. Due to the computational complexity involved
with solving models with a short time step and a large
number of state variables, stochastic optimal control has
not been conventionally used in this area. In what fol-
lows we show that the algorithm described in this paper
can be effectively implemented for this application. As

8



this is a new algorithm, the size of the problem we con-
sider is moderate (six dimensional state space). Given
the solution times for the current model, larger systems
could be solved with the proposed method. In Section 6
we discuss the computational and mathematical exten-
sions required so that the method can be scaled up to
more realistic system sizes.

5.2.1 The model

We use xi(t) to denote the output from generator i, and
ui(t) to denote the change in output from generator i at
time t. We use d(t) to denote the deterministic part of
demand, and η0(t) specifies a stochastic disturbance in
demand. We use the Markov processes ηi(t), i = 1, . . . , n
taking values in [0, 1] to represent the stochastic avail-
ability of each generator i ≥ 1.

min
u
E
{ ∫ T

0

n∑
i=1

cix(t) + c+x+(t) + c−x−(t)dt
}

dxi
dt

= ui(t), (13a)

n∑
i=1

xi(t) + x+(t)− x−(t) = d(t) + η0(t), (13b)

−Ri ≤ ui(t) ≤ Ri (13c)

xi(t) + ui(t) ≥ 0, x+(t) ≥ 0, x−(t)) ≥ 0 (13d)

xi(t) ≤ x̄i (13e)

ui(t) ≤ (x̄i − xi)ηi(t) (13f)

The constraint in (13b) specifies that demand must equal
supply at all time periods. The positive variables x+,
and x− account for overproduction, and underproduc-
tion of electricity respectively. Both quantities are pe-
nalized in the objective by c+,−. This type of constraint
is not covered by the theory developed in Section 3.
In order to incorporate it into the algorithm, an exact
penalty function with exponential smoothing is used [1].
The bounds in (13c), (13d), (13e) enforce the ramping
limits for each generator, the minimum and maximum
output from each generator respectively. The objective
function minimizes the cost associated with meeting de-
mand. We use typical cost parameters from [6].

5.2.2 Solution of a deterministic model

When η is fixed to some constant then the model in
(13) is deterministic and can be solved with a linear pro-
gramming solver. In order to derive the linear program,
the objective function was discretized using a quadra-
ture rule (in our case a simple rectangle rule was used).
The state equation was discretized with a simple first
order Euler scheme. Note that in the deterministic case,
the optimal control is open loop, and that xt does not
depend on η. With these discrete time approximations
the model can be solved with a standard linear program-
ming solver. Setting η to some constant (η is allowed to

Table 2
Error

i |ūS
i − ūD

i |

1 0.26%

2 0.03%

3 0.15%

4 0.10%

5 0.02%

Table 3
CPU Time (in secs)

Algorithm Stochasticity Time

LP-Approx. – 84

APA – 201

APA Wind 1152

APA Wind & Dem. 1204

be time dependent), the algorithm proposed in this pa-
per can also be used to solve the deterministic version
of (13). The results tabulated in Table 2 show that the
average (averaged over time) difference between the con-
trol obtained between the two methods is very small. We
use ūSi (ūDi ) to denote the average stochastic (determin-
istic) policy for generator i. The solution times in Table
3 (top 2 entries) suggest that the algorithm is competi-
tive with the deterministic algorithm. In the determinis-
tic case the APA algorithm is initialized using a random
feasible point.

5.2.3 Interpolation with the MLS method

It is instructive to compare the MLS method with global
regression methods in the context of stochastic optimal
control. This test was performed on the one–dimensional
version of the deterministic version of (13). The reason
we made this test on such a small problem is that the
solution can be obtained in closed form. In Figure 5.2.3
we plot the optimal control, and the interpolated values
using the moving least square method described in sec-
tion 4.3, and a linear regression scheme using a 8th order
polynomial. In the MLS approximation we use a linear
basis. The global fit is shown in Figure 2(a). In order
to understand the differences better we plotted the dif-
ferences for a smaller range in Figure 2(b). The latter
figure illustrates the difficulty of using a global regres-
sion method in optimal control methods. The optimal
control in this case is linear in the state for the range
[6000, 9000] and constant when outside this range. The
control has this piecewise linear form due to the ramp-
ing constraints. The MLS scheme, even though a linear
basis is used, manages to deal with the nature of the
optimal control very well. On the other hand, a regres-
sion method is very accurate in some regions, but in
some regions it does very poorly. Due to the gradient de-
scent nature of the proposed algorithm, global regression
methods create numerical instabilities that force the al-
gorithm to oscillate and never converge. This is not just
a property of our algorithm but also for other algorithms
that rely on gradient information (e.g. Stochastic Ap-
proximation, Approximate Dynamic Programming algo-
rithms [16], sensitivity/perturbation methods [4] ). Thus
the non-parametric nature of the proposed method is
fundamental to the numerical performance of this class
of algorithms.
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Fig. 2. Comparison of Moving Least Squares (MLS) with
linear basis and global regression with 8th order polynomial.

5.2.4 Comparison of stochastic and deterministic solu-
tions

In our final test we compared the solutions obtained with
the deterministic and stochastic version of the model.
The results are shown in Figure 3. When the stochastic
model was run for this test, the only stochastic param-
eter was the availability of wind. Thus demand is de-
terministic in both models. Both models were used to
generate optimal policies. Then the two optimal poli-
cies were used during the forward phase of the algorithm
(no backward steps were performed since the algorithm
was used in simulation mode only). If for the determin-
istic optimal policy the amount of available power was
not enough to meet demand, the gas turbine generator
(i = 4) was used in order to meet the demand at every
time period. Finally the results at each time period were
averaged in order to obtain the graph in Figure 3.

It can be seen from these results that the stochastic and
deterministic model on average use the same amount
of wind energy. However, the stochastic model antici-
pates the unavailability of wind and as a result ramps
up the coal and CCGT generators sooner. Therefore in
the stochastic model we can address the fluctuations in
wind generation without resorting to the expensive gas
turbine generator. In the deterministic model wind out-
put was assumed to be a deterministic function of time.
However, when run in the “real” setting where wind
availability is stochastic, the coal and CCGT generators
cannot be ramped up fast enough and so the expensive
GT generator is used instead. The solution time for the
stochastic model is shown in the third row of Table 3. In
the final row of Table 3 we show the solution time when
both demand and wind are uncertain.

6 Conclusions

We introduced a new numerical method based on the
solution of a Stochastic Maximum Principle (SMP) and
showed how the SMP can be discretized in order to de-
rive an implementable algorithm. The proposed method
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Fig. 3. Comparison of the deterministic with the stochas-
tic model. The stochastic model ramps up coal and CCGT
units earlier and therefore makes less use expensive GT (Gas
Turbines).

does not perform any discretization in the state dimen-
sion, and does not perform computation at every possible
state. Instead it relies on an iterative forward/backward
scheme. We showed how nonparametric interpolation
methods can be used to estimate the value of the adjoint
at states that have not been visited. We validated the
proposed algorithm on a standard LQC model. We have
also shown that the method can be applied to a realis-
tic model from power systems. We have used a scattered
data interpolation technique in our algorithm. There are
many other approaches that could be explored, includ-
ing methods that interpolate derivatives. Finally, given
the pathwise nature of the algorithm, it will be straight-
forward to implement in parallel. Finding an efficient
way to perform the interpolation of the adjoints will be
a challenge. However given that interpolation relies on
neighborhood of points, this step can be done efficiently.
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