145 research outputs found

    A Review of Sensor Technologies for Perception in Automated Driving

    Get PDF
    After more than 20 years of research, ADAS are common in modern vehicles available in the market. Automated Driving systems, still in research phase and limited in their capabilities, are starting early commercial tests in public roads. These systems rely on the information provided by on-board sensors, which allow to describe the state of the vehicle, its environment and other actors. Selection and arrangement of sensors represent a key factor in the design of the system. This survey reviews existing, novel and upcoming sensor technologies, applied to common perception tasks for ADAS and Automated Driving. They are put in context making a historical review of the most relevant demonstrations on Automated Driving, focused on their sensing setup. Finally, the article presents a snapshot of the future challenges for sensing technologies and perception, finishing with an overview of the commercial initiatives and manufacturers alliances that will show future market trends in sensors technologies for Automated Vehicles.This work has been partly supported by ECSEL Project ENABLE- S3 (with grant agreement number 692455-2), by the Spanish Government through CICYT projects (TRA2015- 63708-R and TRA2016-78886-C3-1-R)

    Machine Vision: Approaches and Limitations

    Get PDF

    When Dijkstra meets vanishing point: a stereo vision approach for road detection

    Get PDF
    International audienceIn this paper, we propose a vanishing-point constrained Dijkstra road model for road detection in a stereo-vision paradigm. First, the stereo-camera is used to generate the u-and v-disparity maps of road image, from which the horizon can be extracted. With the horizon and ground region constraints, we can robustly locate the vanishing point of road region. Second, a weighted graph is constructed using all pixels of the image, and the detected vanishing point is treated as the source node of the graph. By computing a vanishing-point constrained Dijkstra minimum-cost map, where both disparity and gradient of gray image are used to calculate cost between two neighbor pixels, the problem of detecting road borders in image is transformed into that of finding two shortest paths that originate from the vanishing point to two pixels in the last row of image. The proposed approach has been implemented and tested over 2600 grayscale images of different road scenes in the KITTI dataset. The experimental results demonstrate that this training-free approach can detect horizon, vanishing point and road regions very accurately and robustly. It can achieve promising performance

    Applications of Computer Vision Technologies of Automated Crack Detection and Quantification for the Inspection of Civil Infrastructure Systems

    Get PDF
    Many components of existing civil infrastructure systems, such as road pavement, bridges, and buildings, are suffered from rapid aging, which require enormous nation\u27s resources from federal and state agencies to inspect and maintain them. Crack is one of important material and structural defects, which must be inspected not only for good maintenance of civil infrastructure with a high quality of safety and serviceability, but also for the opportunity to provide early warning against failure. Conventional human visual inspection is still considered as the primary inspection method. However, it is well established that human visual inspection is subjective and often inaccurate. In order to improve current manual visual inspection for crack detection and evaluation of civil infrastructure, this study explores the application of computer vision techniques as a non-destructive evaluation and testing (NDE&T) method for automated crack detection and quantification for different civil infrastructures. In this study, computer vision-based algorithms were developed and evaluated to deal with different situations of field inspection that inspectors could face with in crack detection and quantification. The depth, the distance between camera and object, is a necessary extrinsic parameter that has to be measured to quantify crack size since other parameters, such as focal length, resolution, and camera sensor size are intrinsic, which are usually known by camera manufacturers. Thus, computer vision techniques were evaluated with different crack inspection applications with constant and variable depths. For the fixed-depth applications, computer vision techniques were applied to two field studies, including 1) automated crack detection and quantification for road pavement using the Laser Road Imaging System (LRIS), and 2) automated crack detection on bridge cables surfaces, using a cable inspection robot. For the various-depth applications, two field studies were conducted, including 3) automated crack recognition and width measurement of concrete bridges\u27 cracks using a high-magnification telescopic lens, and 4) automated crack quantification and depth estimation using wearable glasses with stereovision cameras. From the realistic field applications of computer vision techniques, a novel self-adaptive image-processing algorithm was developed using a series of morphological transformations to connect fragmented crack pixels in digital images. The crack-defragmentation algorithm was evaluated with road pavement images. The results showed that the accuracy of automated crack detection, associated with artificial neural network classifier, was significantly improved by reducing both false positive and false negative. Using up to six crack features, including area, length, orientation, texture, intensity, and wheel-path location, crack detection accuracy was evaluated to find the optimal sets of crack features. Lab and field test results of different inspection applications show that proposed compute vision-based crack detection and quantification algorithms can detect and quantify cracks from different structures\u27 surface and depth. Some guidelines of applying computer vision techniques are also suggested for each crack inspection application

    Data fusion architecture for intelligent vehicles

    Get PDF
    Traffic accidents are an important socio-economic problem. Every year, the cost in human lives and the economic consequences are inestimable. During the latest years, efforts to reduce or mitigate this problem have lead to a reduction in casualties. But, the death toll in road accidents is still a problem, which means that there is still much work to be done. Recent advances in information technology have lead to more complex applications, which have the ability to help or even substitute the driver in case of hazardous situations, allowing more secure and efficient driving. But these complex systems require more trustable and accurate sensing technology that allows detecting and identifying the surrounding environment as well as identifying the different objects and users. However, the sensing technology available nowadays is insufficient itself, and thus combining the different available technologies is mandatory in order to fulfill the exigent requirements of safety road applications. In this way, the limitations of every system are overcome. More dependable and reliable information can be thus obtained. These kinds of applications are called Data Fusion (DF) applications. The present document tries to provide a solution for the Data Fusion problem in the Intelligent Transport System (ITS) field by providing a set of techniques and algorithms that allow the combination of information from different sensors. By combining these sensors the basic performances of the classical approaches in ITS can be enhanced, satisfying the demands of safety applications. The works presented are related with two researching fields. Intelligent Transport System is the researching field where this thesis was established. ITS tries to use the recent advances in Information Technology to increase the security and efficiency of the transport systems. Data Fusion techniques, on the other hand, try to give solution to the process related with the combination of information from different sources, enhancing the basic capacities of the systems and adding trustability to the inferences. This work attempts to use the Data Fusion algorithms and techniques to provide solution to classic ITS applications. The sensors used in the present application include a laser scanner and computer vision. First is a well known sensor, widely used, and during more recent years have started to be applied in different ITS applications, showing advanced performance mainly related to its trustability. Second is a recent sensor in automotive applications widely used in all recent ITS advances in the last decade. Thanks to computer vision road security applications (e.g. traffic sign detection, driver monitoring, lane detection, pedestrian detection, etc.) advancements are becoming possible. The present thesis tries to solve the environment reconstruction problem, identifying users of the roads (i.e. pedestrians and vehicles) by the use of Data Fusion techniques. The solution delivers a complete level based solution to the Data Fusion problem. It provides different tools for detecting as well as estimates the degree of danger that involve any detection. Presented algorithms represents a step forward in the ITS world, providing novel Data Fusion based algorithms that allow the detection and estimation of movement of pedestrians and vehicles in a robust and trustable way. To perform such a demanding task other information sources were needed: GPS, inertial systems and context information. Finally, it is important to remark that in the frame of the present thesis, the lack of detection and identification techniques based in radar laser resulted in the need to research and provide more innovative approaches, based in the use of laser scanner, able to detect and identify the different actors involved in the road environment. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Los accidentes de tráfico son un grave problema social y económico, cada año el coste tanto en vidas humanas como económico es incontable, por lo que cualquier acción que conlleve la reducción o eliminación de esta lacra es importante. Durante los últimos años se han hecho avances para mitigar el número de accidentes y reducir sus consecuencias. Estos esfuerzos han dado sus frutos, reduciendo el número de accidentes y sus víctimas. Sin embargo el número de heridos y muertos en accidentes de este tipo es aún muy alto, por lo que no hay que rebajar los esfuerzos encaminados a hacer desaparecer tan importante problema. Los recientes avances en tecnologías de la información han permitido la creación de sistemas de ayuda a la conducción cada vez más complejos, capaces de ayudar e incluso sustituir al conductor, permitiendo una conducción más segura y eficiente. Pero estos complejos sistemas requieren de los sensores más fiables, capaces de permitir reconstruir el entorno, identificar los distintos objetos que se encuentran en él e identificar los potenciales peligros. Los sensores disponibles en la actualidad han demostrado ser insuficientes para tan ardua tarea, debido a los enormes requerimientos que conlleva una aplicación de seguridad en carretera. Por lo tanto, combinar los diferentes sensores disponibles se antoja necesario para llegar a los niveles de eficiencia y confianza que requieren este tipo de aplicaciones. De esta forma, las limitaciones de cada sensor pueden ser superadas, gracias al uso combinado de los diferentes sensores, cada uno de ellos proporcionando información que complementa la obtenida por otros sistemas. Este tipo de aplicaciones se denomina aplicaciones de Fusión Sensorial. El presente trabajo busca aportar soluciones en el entorno de los vehículos inteligentes, mediante técnicas de fusión sensorial, a clásicos problemas relacionados con la seguridad vial. Se buscará combinar diferentes sensores y otras fuentes de información, para obtener un sistema fiable, capaz de satisfacer las exigentes demandas de este tipo de aplicaciones. Los estudios realizados y algoritmos propuestos están enmarcados en dos campos de investigación bien conocidos y populares. Los Sistemas Inteligentes de Transporte (ITS- por sus siglas en ingles- Intelligent Transportation Systems), marco en el que se centra la presente tesis, que engloba las diferentes tecnologías que durante los últimos años han permitido dotar a los sistemas de transporte de mejoras que aumentan la seguridad y eficiencia de los sistemas de transporte tradicionales, gracias a las novedades en el campo de las tecnologías de la información. Por otro lado las técnicas de Fusión Sensorial (DF -por sus siglas en ingles- Data Fusión) engloban las diferentes técnicas y procesos necesarios para combinar diferentes fuentes de información, permitiendo mejorar las prestaciones y dando fiabilidad a los sistemas finales. La presente tesis buscará el empleo de las técnicas de Fusión Sensorial para dar solución a problemas relacionados con Sistemas Inteligentes de Transporte. Los sensores escogidos para esta aplicación son un escáner láser y visión por computador. El primero es un sensor ampliamente conocido, que durante los últimos años ha comenzado a emplearse en el mundo de los ITS con unos excelentes resultados. El segundo de este conjunto de sensores es uno de los sistemas más empleados durante los últimos años, para dotar de cada vez más complejos y versátiles aplicaciones en el mundo de los ITS. Gracias a la visión por computador, aplicaciones tan necesarias para la seguridad como detección de señales de tráfico, líneas de la carreta, peatones, etcétera, que hace unos años parecía ciencia ficción, están cada vez más cerca. La aplicación que se presenta pretende dar solución al problema de reconstrucción de entornos viales, identificando a los principales usuarios de la carretera (vehículos y peatones) mediante técnicas de Fusión Sensorial. La solución implementada busca dar una completa solución a todos los niveles del proceso de fusión sensorial, proveyendo de las diferentes herramientas, no solo para detectar los otros usuarios, sino para dar una estimación del peligro que cada una de estas detecciones implica. Para lograr este propósito, además de los sensores ya comentados han sido necesarias otras fuentes de información, como sensores GPS, inerciales e información contextual. Los algoritmos presentados pretenden ser un importante paso adelante en el mundo de los Sistemas Inteligentes de Transporte, proporcionando novedosos algoritmos basados en tecnologías de Fusión Sensorial que permitirán detectar y estimar el movimiento de los peatones y vehículos de forma fiable y robusta. Finalmente hay que remarcar que en el marco de la presente tesis, la falta de sistemas de detección e identificación de obstáculos basados en radar láser provocó la necesidad de implementar novedosos algoritmos que detectasen e identificasen, en la medida de lo posible y pese a las limitaciones de la tecnología, los diferentes obstáculos que se pueden encontrar en la carretera basándose en este sensor

    IVVI 2.0: An intelligent vehicle based on computational perception

    Get PDF
    This paper presents the IVVI 2.0 a smart research platform to foster intelligent systems in vehicles. Computational perception in intelligent transportation systems applications has advantages, such as huge data from vehicle environment, among others, so computer vision systems and laser scanners are the main devices that accomplish this task. Both have been integrated in our intelligent vehicle to develop cutting-edge applications to cope with perception difficulties, data processing algorithms, expert knowledge, and decision-making. The long-term in-vehicle applications, that are presented in this paper, outperform the most significant and fundamental technical limitations, such as, robustness in the face of changing environmental conditions. Our intelligent vehicle operates outdoors with pedestrians and others vehicles, and outperforms illumination variation, i.e.: shadows, low lighting conditions, night vision, among others. So, our applications ensure the suitable robustness and safety in case of a large variety of lighting conditions and complex perception tasks. Some of these complex tasks are overcome by the improvement of other devices, such as, inertial measurement units or differential global positioning systems, or perception architectures that accomplish sensor fusion processes in an efficient and safe manner. Both extra devices and architectures enhance the accuracy of computational perception and outreach the properties of each device separately.This work was supported by the Spanish Government through the CICYT projects (GRANT TRA2010 20225 C03 01) and (GRANT TRA 2011 29454 C03 02)

    Mobile Robot Navigation

    Get PDF

    CONCEPTS FOR DEVELOPMENT OF SHUTTLE CAR AUTONOMOUS DOCKING WITH CONTINUOUS MINER USING 3-D DEPTH CAMERA

    Get PDF
    In recent years, a great deal of work has been conducted in automating mining equipment with the goals of increasing worker health and safety and increasing mine productivity. Automating vehicles such as load-haul-dumps been successful even in underground environments where the use of global positioning systems are unavailable. This thesis addresses automating the operation of a shuttle car, specifically focusing on positioning the shuttle car under the continuous miner coal-discharge conveyor during cutting and loading operations. This task requires recognition of the target and precise control of the tramming operation because a specific orientation and distance from the coal discharge conveyor is needed to avoid coal spillage. The proposed approach uses a stereo depth camera mounted on a small-scale mockup of a shuttle car. Machine learning algorithms are applied to the camera output to identify the continuous miner coal-discharge conveyor and segment the scene into various regions such as roof, ribs, and personnel. This information is used to plan the shuttle car path to the continuous miner coal-discharge conveyor. These methods are currently applied on 1/6th scale continuous miner and shuttle car in an appropriately scaled mock mine

    TOWARDS SUSTAINABLE AUTONOMOUS VEHICLES

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore