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RESUMEN 

Los accidentes de tráfico son un grave problema social y económico, cada año el coste 

tanto en vidas humanas como económico es incontable, por lo que cualquier acción que 

conlleve la reducción o eliminación de esta lacra es importante. Durante los últimos años se 

han hecho avances para mitigar el número de accidentes y reducir sus consecuencias. Estos 

esfuerzos han dado sus frutos, reduciendo el número de accidentes y sus víctimas. Sin 

embargo el número de heridos y muertos en accidentes de este tipo es aún muy alto, por lo 

que no hay que rebajar los esfuerzos encaminados a hacer desaparecer tan importante 

problema. 

Los recientes avances en tecnologías de la información han permitido la creación de 

sistemas de ayuda a la conducción cada vez más complejos, capaces de ayudar e incluso 

sustituir al conductor, permitiendo una conducción más segura y eficiente. Pero estos 

complejos sistemas requieren de los sensores más fiables, capaces de permitir reconstruir el 

entorno, identificar los distintos objetos que se encuentran en él e identificar los potenciales 

peligros. Los sensores disponibles en la actualidad han demostrado ser insuficientes para tan 

ardua tarea, debido a los enormes requerimientos que conlleva una aplicación de seguridad en 

carretera. Por lo tanto, combinar los diferentes sensores disponibles se antoja necesario para 

llegar a los niveles de eficiencia y confianza que requieren este tipo de aplicaciones. De esta 

forma, las limitaciones de cada sensor pueden ser superadas, gracias al uso combinado de los 

diferentes sensores, cada uno de ellos proporcionando información que complementa la 

obtenida por otros sistemas. Este tipo de aplicaciones se denomina aplicaciones de Fusión 

Sensorial. 

El presente trabajo busca aportar soluciones en el entorno de los vehículos inteligentes, 

mediante técnicas de fusión sensorial, a clásicos problemas relacionados con la seguridad vial. 

Se buscará combinar diferentes sensores y otras fuentes de información, para obtener un 

sistema fiable, capaz de satisfacer las exigentes demandas de este tipo de aplicaciones. 

Los estudios realizados y algoritmos propuestos están enmarcados en dos campos de 

investigación bien conocidos y populares. Los Sistemas Inteligentes de Transporte (ITS- por sus 

siglas en ingles- Intelligent Transportation Systems), marco en el que se centra la presente 

tesis, que engloba las diferentes tecnologías que durante los últimos años han permitido dotar 
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a los sistemas de transporte de mejoras que aumentan la seguridad y eficiencia de los sistemas 

de transporte tradicionales, gracias a las novedades en el campo de las tecnologías de la 

información. Por otro lado las técnicas de Fusión Sensorial (DF -por sus siglas en ingles- Data 

Fusión) engloban las diferentes técnicas y procesos necesarios para combinar diferentes 

fuentes de información, permitiendo mejorar las prestaciones y dando fiabilidad a los sistemas 

finales. La presente tesis buscará el empleo de las técnicas de Fusión Sensorial para dar 

solución a problemas relacionados con Sistemas Inteligentes de Transporte. 

Los sensores escogidos para esta aplicación son un escáner láser y visión por computador. 

El primero es un sensor ampliamente conocido, que durante los últimos años ha comenzado a 

emplearse en el mundo de los ITS con unos excelentes resultados. El segundo de este conjunto 

de sensores es uno de los sistemas más empleados durante los últimos años, para dotar de 

cada vez más complejos y versátiles aplicaciones en el mundo de los ITS. Gracias a la visión por 

computador, aplicaciones tan necesarias para la seguridad como detección de señales de 

tráfico, líneas de la carreta, peatones, etcétera, que hace unos años parecía ciencia ficción, 

están cada vez más cerca.  

La aplicación que se presenta pretende dar solución al problema de reconstrucción de 

entornos viales, identificando a los principales usuarios de la carretera (vehículos y peatones) 

mediante técnicas de Fusión Sensorial. La solución implementada busca dar una completa 

solución a todos los niveles del proceso de fusión sensorial, proveyendo de las diferentes 

herramientas, no solo para detectar los otros usuarios, sino para dar una estimación del 

peligro que cada una de estas detecciones implica. Para lograr este propósito, además de los 

sensores ya comentados han sido necesarias otras fuentes de información, como sensores 

GPS, inerciales e información contextual. 

Los algoritmos presentados pretenden ser un importante paso adelante en el mundo de los 

Sistemas Inteligentes de Transporte, proporcionando novedosos algoritmos basados en 

tecnologías de Fusión Sensorial que permitirán detectar y estimar el movimiento de los 

peatones y vehículos de forma fiable y robusta. 

Finalmente hay que remarcar que en el marco de la presente tesis, la falta de sistemas de 

detección e identificación de obstáculos basados en radar láser provocó la necesidad de 

implementar novedosos algoritmos que detectasen e identificasen, en la medida de lo posible 

y pese a las limitaciones de la tecnología, los diferentes obstáculos que se pueden encontrar 

en la carretera basándose en este sensor. 
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ABSTRACT 

Traffic accidents are an important socio-economic problem. Every year, the cost in human 

lives and the economic consequences are inestimable. During the latest years, efforts to 

reduce or mitigate this problem have lead to a reduction in casualties. But, the death toll in 

road accidents is still a problem, which means that there is still much work to be done.   

Recent advances in information technology have lead to more complex applications, which 

have the ability to help or even substitute the driver in case of hazardous situations, allowing 

more secure and efficient driving. But these complex systems require more trustable and 

accurate sensing technology that allows detecting and identifying the surrounding 

environment as well as identifying the different objects and users. However, the sensing 

technology available nowadays is insufficient itself, and thus combining the different available 

technologies is mandatory in order to fulfill the exigent requirements of safety road 

applications. In this way, the limitations of every system are overcome. More dependable and 

reliable information can be thus obtained. These kinds of applications are called Data Fusion 

(DF) applications. 

The present document tries to provide a solution for the Data Fusion problem in the 

Intelligent Transport System (ITS) field by providing a set of techniques and algorithms that 

allow the combination of information from different sensors. By combining these sensors the 

basic performances of the classical approaches in ITS can be enhanced, satisfying the demands 

of safety applications. 

The works presented are related with two researching fields. Intelligent Transport System is 

the researching field where this thesis was established. ITS tries to use the recent advances in 

Information Technology to increase the security and efficiency of the transport systems. Data 

Fusion techniques, on the other hand, try to give solution to the process related with the 

combination of information from different sources, enhancing the basic capacities of the 

systems and adding trustability to the inferences. This work attempts to use the Data Fusion 

algorithms and techniques to provide solution to classic ITS applications. 

The sensors used in the present application include a laser scanner and computer vision. 

First is a well known sensor, widely used, and during more recent years have started to be 

applied in different ITS applications, showing advanced performance mainly related to its 
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trustability. Second is a recent sensor in automotive applications widely used in all recent ITS 

advances in the last decade. Thanks to computer vision road security applications (e.g. traffic 

sign detection, driver monitoring, lane detection, pedestrian detection, etc.) advancements are 

becoming possible. 

The present thesis tries to solve the environment reconstruction problem, identifying users 

of the roads (i.e. pedestrians and vehicles) by the use of Data Fusion techniques. The solution 

delivers a complete level based solution to the Data Fusion problem. It provides different tools 

for detecting as well as estimates the degree of danger that involve any detection. Presented 

algorithms represents a step forward in the ITS world, providing novel Data Fusion based 

algorithms that allow the detection and estimation of movement of pedestrians and vehicles in 

a robust and trustable way. To perform such a demanding task other information sources were 

needed: GPS, inertial systems and context information. 

Finally, it is important to remark that in the frame of the present thesis, the lack of 

detection and identification techniques based in radar laser resulted in the need to research 

and provide more innovative approaches, based in the use of laser scanner, able to detect and 

identify the different actors involved in the road environment. 
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CHAPTER 1.  
INTRODUCTION 

In the second decade of the 21st century driving is assumed to be a common factor in 

everyday life. Working, holidays, socializing are activities that exist in everyone’s life, and most 

of these actions require road mobility. Mobility is essential in all developed countries for both 

economical and social reasons. Thus, any road related problem has an important impact in a 

citizens’ life. Traffic congestions, road accidents, oil prizes, etc. are some of the common 

problems every road user has to deal with. They represent a problem that affects everyone’s 

life, whether economic or personal. 

Among all the problems that are related with transportation, traffic accidents are the most 

dramatic since they deal with human lives. The efforts during more recent years, such as an 

increase in the security measures in roads and vehicles or the enhancement of traffic laws to 

decrease drivers’ misbehaviors, have lead to reduced death tolls in road accidents. The 

International Traffic Safety Data and Analysis Group (IRTAD) on its annual report in 2010 [1] 

expressed that the safety of roads in the member groups increased, reducing the death tolls. In 

2009 the United States reached its lowest fatality rate of the last 50 years (Table 1). Although 

the report remarks the fact that the recent global economical crisis may have lead to a 

decrease in the volume of road traffic, hence decreasing the traffic accidents, the reduction of 

the number of accidents is higher than expected. It also informs that the death average during 

the last decade has considerably decreased, presenting a decreasing rate higher than the three 

preceding decades. In the European union, according to European Information Society [2], 

each year more than 1.3 million road accidents occur in which over 41 thousand people die. 

Thus, even though the efforts are helping to mitigate this number, there is still a considerable 

amount of work to be done. 

The new information and communication technologies developed in the last decade allow 

the creation of more complex and reliable safety applications. These new applications are able 

to reduce the number of accidents and deaths in the road by both preventing them and 

abating the harm caused by accidents.  
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Table 1. Road Fatalities in countries inscribed in The International Traffic Safety Data and Analysis Group (IRTAD) 
[1]. 

Most of traffic accidents are related to human error. Carelessness and erroneous decisions 

by the driver are the two main factors that cause traffic accidents. These kinds of errors, 

related with human nature, are impossible to be eliminated, although efforts can be made to 

decrease them. Recent researches in Intelligent Vehicles have focused on using advances in 
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information technologies to prevent these errors. Advance Driver Assistance Systems (ADAS) 

try to warn the driver and preventing driver in case of hazardous situations.   

Sensor trustability is one of the main issues when dealing with road Safety applications. 

ADAS requires the most reliable set of sensors to fulfill the requirements of such demanding 

applications. Thus, to accomplish such a difficult task, the combination of different information 

sources is mandatory to overcome the limitations of each sensor independently. 

1.1 Fusion  

Road Safety applications require the most reliable sensor systems. During recent years, the 

advances in information technology have lead to more complex road safety applications, which 

are able to cope with a high variety of situations. But a single sensor is not enough to provide 

reliable results necessary to fulfill the demanding requirements that these applications need. 

Here is where Data Fusion (DF) presents a key point in road safety applications.  Recent 

research in Intelligent Transport Systems (ITS) research field tries to overcome the limitations 

of the sensors by combining them. Also contextual information has a key role for robust safety 

applications to provide reliable detection and complete situation assessment.  

The present thesis aim is to prove that DF techniques can deliver more robust and reliable 

road safety applications, by combining the capacities of different sensors. The sensors used are 

laser scanner, computer vision, and inertial system. The application also takes advantage of 

contextual information, which is a very recent issue in the Data Fusion researching field. In this 

way, all levels of the fusion process are fulfilled. Contextual information can be helpful for both 

increasing the accuracy of each sensor independently and providing new information sources 

to improve the performance of the Fusion process. The contextual information definition and 

its relevance in the fusion process are provided in chapter 2. 

 Three sensors were used in the scope of the present thesis to prove the above 

assumptions: 

1- Laser scanner. Recent researches have focused on the use of this well-known sensor in 

automotive applications. Its robustness and reliability have been proved in different tests and 

contests (e.g. DARPA Grand and Urban Challenge). 

2- Computer vision. This is a common sensor in ITS researches and nowadays can be 

found in commercial systems for automotive applications. 



1. INTRODUCTION 

Fernando García Fernández 4 
 

3- Inertial sensor. This is an improved GPS with inertial correction that allows the user to 

accurately measure and estimate not only GPS position and velocity, but also euler angles, 

acceleration, etcetera. Furthermore, this sensor system allows obtaining contextual 

information about vehicle state (i.e. velocity, euler angles and angular speed) that is added to a 

prior knowledge of the nature of the matter. 

1.2 Proposal  

As mentioned before, the present thesis assumes that DF procedures can help to enhance 

the possibility of classic ADAS systems, which usually are based in single sensor approaches. In 

this paper, taking advantage of the knowledge of the Intelligent System Lab [3], and its 

platform IVVI ( Intelligent Vehicle based in Visual Information ) 2.0 (Figure 1.1), these 

assumptions will be proved by implementing and testing algorithms that complete the classical 

approaches for road environment detection and classification. Part of the present work is 

common among ITS community: visual based approaches that try to deal with ADAS common 

problems, such as vehicle detection and pedestrian detection. Therefore, by adding new 

sensors available in the platform, such as laser scanner and inertial system, the capabilities of 

the detection and classification algorithms are enhanced, providing more reliable and robust 

algorithms able to fulfill the strong demands of these applications. 

  

Figure 1.1. Test platform IVVI 2.0. 
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The work presented focuses on the detections and protection of the typical road users, as 

in pedestrians and other vehicles (Figure 1.2). The danger estimation that involves these 

detections will be estimated, thus providing a complete solution to road safety applications 

based in Data Fusion theory. Therefore, the present work provides a novel approach to 

enhance the classic pedestrian and vehicle detection systems with Data Fusion and Contextual 

Information, providing a complete tool to detect and classify the different road users and 

estimate the danger that are involved in these detections.  

 

Figure 1.2. Detection examples for vehicle (right) and pedestrian (left). Blue boxes represent laser based 
pedestrian detection, yellow boxes laser vehicle detection, in red the visual based detections. 

Several phases were accomplished in the present thesis: 

 First, research in the laser scanned based road environment reconstruction was necessary, 

in order to provide additional information source able to detect and classify road obstacles. 

Laser scanner is frequently used in recent automotive applications thanks to the reliability of 

its detections. But the different approaches lack reliable classification algorithms due to the 

limited information provided by these sensors. Hence, an innovative algorithm needed to be 

provided to complete the detections given by the cameras capable of detecting the obstacles 

in the environment and providing a classification of them.  

The algorithms used for vision-based detection are well known and several possibilities are 

available. The approaches used in the present work, although these algorithms are state of the 

art algorithms that represents the latest advances in the field, they don’t represent novel 

approaches. Therefore, the explanation of the algorithms used is limited to the basic 

procedures, sources and references in case of further information required are provided. 

The next stage dealt with classic Multiple Target Tracking (MTT) and fusion problems i.e. 

data association and tracking. In this part of the thesis, several approaches were developed 

and tested to give a complete solution with all of the different configurations possible.  
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 Finally, in order to provide complete fusion architecture, interactions of the detections 

were studied, estimating the danger involving the detections. This way the system fulfills all 

levels that involve DF procedures. In this stage, context information was used to complete the 

sensors information. Context information is a recent issue in DF that tries to enhance the 

information given by the sensors with some a prior knowledge of the problem.  

Tests were performed in the scope of the present thesis to substantiate the performances 

of the algorithms as well as to provide conclusions regarding them, which are detailed in the 

last chapters. 

In the next chapter, before providing details of the proposal, a complete description of the 

Data Fusion and Intelligent Transport System state of the art is given. First, Data Fusion 

introduction is mandatory to give context to the scope of the solution. The basic concepts of 

the Data Fusion researching field are provided. Second, Intelligent Transport Systems state of 

the art description with the different available sensors and algorithms is mandatory to provide 

to the reader an overall outlook of the technologies available. This information is to be 

regarded in the presented information fusion approach allowing to identify the contributions 

of the present work. 
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CHAPTER 2.  
STATE OF THE ART 

2.1 Introduction 

Advances in Intelligent Transport Systems have lead to more complex and challenging 

applications, which deal with a great variety of situations. Such demanding tasks are 

impossible to accomplish by a single sensor, thus fusion of different sensor technologies has 

become mandatory to fulfill these requirements.  

Latest advances related with ITS have proved that laser scanner is one of the key sensors 

when dealing with the most demanding automotive applications, as it was in DARPA World 

and Urban Challenge [4] and Google autonomous vehicle (Figure 2.1). But laser scanner is not 

the only sensor that is necessary to accomplish such demanding applications. Other sensors 

already in use in road applications have to be used (i.e. short and long distance radars, 

computer vision, sonar sensors, etc.) to complete the information provided. Each one of these 

sensors have different limitations inherent to their technology such as limitations in reliability 

of information, weather sensitivity, lighting conditions, and distance. In order to overcome the 

limitations of the different sensors, fusion has to be performed to combine the different 

sources of information. Current vehicles already incorporate new and useful Advance Driver 

Assistance Systems, but the next step is the cooperation among them to provide a full ADAS 

application capable of dealing with the most demanding situations. Here is where fusion has 

an important role. The aim of this thesis is to provide an architecture for Data Fusion in road 

environments, enabling the detection and classification of the different obstacles involved in 

road scenarios, by the use of laser scanner and computer vision technologies. 

Before going deeper into the thesis, it is necessary to give a review of the various 

researching lines and works that different researchers are following all over the world and to 

provide a theoretical context to the present work. Present thesis deals with two scientific 

fields: 

 Intelligent Transport System , represented by the Intelligent Transport System Society 

(ITS Society) with two main conferences every year, IEEE Intelligent vehicle Symposium 
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(IV) and IEEE International Conference on Intelligent Transportation Systems (TSC), and 

two main journals, IEEE Transactions on Intelligent Transportation Systems and IEEE 

Intelligent Transportation Systems Magazine.  

 Data Fusion. Data Fusion technologies and algorithms research are mainly 

represented by the nonprofit organization dedicated to advancing the knowledge, 

theory, and applications of information fusion: International Society of Information 

Fusion (ISIF). Its main forums are the annual International Conference on Information 

Fusion and journals including Journal of Advances in Information Fusion (JAIF) and 

Information Fusion. 

 

Figure 2.1. Google autonomous vehicle. 

In the current chapter, a brief introduction to Data Fusion is given, including the key points 

necessary in each data fusion application, to help understand the working line presented in 

the thesis. Later, a more specific view of Data Fusion focused on road applications is 

presented, introducing the most remarkable works involving Data Fusion and Intelligent 

Transport System. Finally, the different sensing technologies for automotive applications are 

presented, with the available configurations of each one. This way the reader can have all the 

necessary background to understand the scope of the present work and the contributions that 

it provides.  

At the end of the chapter some conclusions are given, summarizing the present situation of 

data fusion in Intelligent Transport System. Also, some answers are offered, which are the next 
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steps to be performed in the related topics, focusing on the problems that the present thesis 

attempts to solve and the contributions that it intends to provide. 

2.2 Data Fusion 

The Data Fusion modern concept dates from the period between World Wars I and II. It is a 

concept adopted by the United States Department of Defense (DoD) with the aim of improving 

Command and Control (C2) decision-making. The intention was to create technology and 

scientific base that could help in C2 tasks by adding information from several sources. From 

that time, Data Fusion has been one of the key elements in defense and intelligence 

researches. Fusion has become ubiquitous in more recent decades. Now it has a key role in 

more than defense issues, thanks to advances in information technology. Data Fusion is no 

longer a term associated only with military and intelligence applications. In recent times, Data 

Fusion is a key element in many everyday applications. Robotics, vehicles, industry, and 

communications are some examples of fields where data fusion has a key role nowadays. 

One of the main problems related with Data Fusion is the ambiguity of the terminology. 

Usually, the basic concept of Data Fusion itself is hard to define and has a wide field of action. 

As a consequence of this, several definitions of Data Fusion have been given as well as several 

models for Data Fusion procedures. The United States DoD created the Joint Directors of 

Laboratories (JDL) Data Fusion Group in mid 80s with the aim of improving communications 

among military researchers and system developers. The JDL tried to create a common model 

for data Fusion processing as well as a new lexicon. Over the years these definitions and 

models, despite much criticism, has become the basis of the Data Fusion. In this section, 

different models and definitions are going to be described, focusing on JDL model, which 

currently is the basis of most Data Fusion procedures.   

2.2.1 Data Fusion Definition 

Data Fusion (DF) is sometimes referred to as sensor fusion. JDL defined DF in the 80s as: 

“A process dealing with the association, correlation, and combination of data and 

information from single and multiple sources to achieve refined position and identity estimates, 

and complete and timely assessments of situations and threats, and their significance. The 

process is characterized by continuous refinements of its estimates and assessments, and the 

evaluation of the need for additional sources, or modification of the process itself, to achieve 

improved results.” [5]. 
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Authors have often pointed out that the definition is very restrictive. Consequently, several 

other definitions have been proposed. [5] Hall and Llinas give a wider definition, describing DF 

as the set of techniques and procedures that “seeks to combine information from multiple 

sources to achieve inferences that cannot be obtained from a single sensor or source, or wise 

quantity exceeds that of an inference drawn from any single source”.  

A similar definition is given [6] by A. Steinberg and C. Bowman: “Data fusion is the process 

of combining data or information to estimate or predict entity states”. As it can be discerned 

new definitions, much less restrictive, tend to give Data Fusion an open dimension, allowing it 

to be used in any discipline. 

2.2.2 Architectures 

Different models and architectures are defined. The variety of definitions and models are 

usually set due to the open definition of the Data Fusion and the wide varieties of situations 

possible to use Data Fusion processes. In this section, some common divisions among the 

architectures will be presented.  

a) Division according to the abstraction level 

 Data Fusion architectures are typically divided according to the abstraction level in 

which the fusion is performed. The simplicity and utility of this division makes it one of the 

broadest: 

 Low level fusion is usually referred as direct fusion. It combines unprocessed 

information from different sources to create a more complex set of data to be 

processed.  

Low level fusion procedures can be directly applied when both sensors are 

measuring the same physical phenomena (e.g. two images of the same targets). 

Classic estimators such as Kalman Filters (KF) are very common for raw data fusion. 

 Medium level or feature level fusion is utilized when each system separately 

performs a preprocessing level where some information is extracted, and 

inference is provided accordingly. Each system provides a feature vector that is 

combined to give a higher-level estimation. This estimation is typically performed 

by machine learning algorithms such as Neural Networks, State Vector Machines, 

etc.  
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 High level or decision level fusion is a procedure that combines the decisions 

performed regarding a given target or inference using the information of a single 

sensor.  Thus, the information or final decision is performed, taking into account 

each subsystem’s decisions and its trustability. Typically, these approaches are 

based on basic voting schemes, decision trees, Bayesian inferences, etc. 

 

Figure 2.2. Low level Fusion processing diagram. Fusion is performed from the raw data creating a new set of 
more complex information to be processed. 

 

Figure 2.3. Medium Level approach diagram, preprocessing is performed for each sensor and a combined feature 
set of data is used combining features from all the sensors. 
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Figure 2.4. High level approaches perform an inference for each sensor and combines them according to the 
certainty degree of each one. 

The use of any of these approaches is connected with nature of the data fusion procedure. 

Each of them have some advantages and disadvantages that must be considered when making 

a choice: 

 Low-level procedures are complex and abstract. The new set of data created is 

intended to give more complex information; it may lead to more accurate 

estimations but with high effort costs, mainly related with data alignment. Thus, it 

is assumed that low-level fusion adds more information as well as more complexity 

to the system. Since these systems are completely dependent on the sensors used, 

adding new sensors to the system requires a complete revision of the procedure 

creating the worst possible choice when a scalable system is needed. 

 Feature level fusion has the advantage of being in an intermediate level, allowing 

the systems to have extra information as a result of the different sources and 

maintaining a medium level of complexity. The use of different features from 

various sensors allows the system to take advantage of the possibilities that each 

sensor can provide independently. On the other hand, the training processes, 

usually found in these approaches, make the addition of new sensors to the 

system a difficult task since it must to be trained using the features of the new 

sensors.  
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 High-level fusion requires less complexity since it is based in different pre-

established subsystems. The mission of the fusion process here is to add reliability 

and certainty to the detections and estimations, given by the different subsystems, 

through combining the final information provided by each subsystem. This way, 

high-level fusion is easy to implement even though it lacks most of the advantages 

of the information fusion since the information is only fused al the end of the 

process. On the other hand, scalability is easy. A new sensor would add more 

confidence and certainty to the detections in an immediate way, generally without 

adding complexity. 

b) Centralized vs. decentralized Data Fusion  

Mobility is a key factor in modern applications thanks to the advances in communications 

and information technologies. These new challenges require different topologies, according to 

the way in which communications are performed. These applications are divided in nodes, 

each one of them is formed by one or more sensors, connected to other nodes and with a 

processing unit. These architectures are basically divided according to where the DF is 

performed: 

 Centralized Systems are those systems where each node sends all information to a 

central node where fusion is performed. This way the central node has all of the 

information from different sensors, which means that Fusion can be accomplished 

with more certainty.  

 Decentralized Fusion schemes are those schemes where each node performs 

fusion locally, with the information from the local node and, sometimes, from the 

adjacent nodes. There is no central node that performs global fusion. Nodes do not 

have information of the global topology. These schemes easily enable the 

scalability of the systems since a new node can be easily added or removed. On 

the other hand the lack of global information suggests that the real fusion 

procedure is usually not as effective as centralized schemes.  

Some authors tend to associate these two topology schemes for Data Fusion with the 

previously presented Data Fusion differentiation, according to the abstraction level where 

fusion is performed. This is due to the fact that decentralized Data Fusion usually involves high-

level Fusion since each subsystem performs a decision independently. Low-level as well as 
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medium-level fusion schemes require unique estimator, thus it is usually associated with 

centralized schemes.  

2.2.3 Data Fusion Models 

a) The JDL model  

It is commonly remarked that one of the main barriers in the technological transfer in data 

fusion is the lack of unified terminology. In order to overcome this limitation JDL created a 

model in 1985 (Figure 2.5) that intended to give a common frame that every data fusion 

application should share. The model attempted to be very general, given the multiple types of 

applications and fields where DF can be used.  

 

Figure 2.5. JDL Model defined in 1985. 

The model is divided in 2 layers and 4 sub-processes. As explained in [5], the 4 sub-

processes are as follows: 

Level 1 processing (Object Refinement) is aimed at combining sensor data in order to obtain 

the most reliable and accurate estimate of an entity’s position, velocity, attributes, and 

identity; 

Level 2 processing (Situation Refinement) dynamically attempts to develop a description of 

current relationships among entities and events in the context of their environment; 
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Level 3 processing (Threat Refinement) projects the current situation into the future to 

draw inferences about enemy threats, friend and foe vulnerabilities, and opportunities for 

operations; 

Level 4 processing (Process Refinement) is a meta-process that monitors the overall data 

fusion process to assess and improve real-time system performance. 

In 1999, Bowman and White [6] provided a revision of the model (Figure 2.6) and level 

redefinitions in order to provide more useful categorization of the different types of problems, 

generally solved by different techniques, while at the same time trying to maintain a degree of 

consistency. 

 

Figure 2.6 The new definition of the JDL model, given in [6] and [5]. 

• Level 0 — Sub-Object Data Assessment: estimation and prediction of signal- or object-

observable states on the basis of pixel/signal-level data association and characterization. 

• Level 1 — Object Assessment: estimation and prediction of entity states on the basis of 

inferences from observations. 

• Level 2 — Situation Assessment: estimation and prediction of entity states on the basis of 

inferred relations among entities. 
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• Level 3 — Impact Assessment: estimation and prediction of effects on situations of 

planned or estimated/predicted actions by the participants (e.g., assessing susceptibilities and 

vulnerabilities to estimated/predicted threat actions, given one’s own planned actions). 

• Level 4 — Process Refinement (an element of Resource Management): adaptive data 

acquisition and processing to support mission objectives. 

b) Other models  

JDL was designed to be a functional model. It is intended to be a set of definitions of the 

functions that could compromise any data fusion system. It has sometimes been 

misinterpreted as a process model, meaning that developers should follow the levels in strict 

order.  Also, tactical military definitions are sometimes hard to be applied to some fields.  

There are other drawbacks commonly associated with the JDL model: 

 The abstraction of the model makes it difficult to appropriately interpret the levels for 

real DF applications.  

 Because it is a data or information centered model, it can be difficult to extend or 

reuse applications built with this model [7]. 

 It does not depict the processes to follow or perform the data fusion, since it is a 

functional model. 

All these issues cause a creation of different, more process-oriented, models that specify 

the steps to follow in the Data Fusion applications. 

The Waterfall Fusion model [8] and [9]  is a process-oriented model, mainly focused in the 

lower levels, as seen in Figure 2.7. The model depicts the process to follow and perform the 

DF, and it can be easily associated with JDL. Although this model is more process-oriented than 

JDL, it is very similar given that the correspondence between both models is easy to find. Thus, 

this model suffers most of the drawbacks of the JDL. Its major limitation is the lack of 

feedback. It is also limited by communication between levels. 
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Figure 2.7 Waterfall model [9] 

Boyd proposed a cycle containing four stages ([10] and [11]), representing the classic 

decision support mechanism for information operation, that is also widely used for business 

decision-support. Since decision-support systems are coupled with fusion systems [11], this 

model has also been used in DF. The Boyd model represents a closed loop of stages that are 

very useful, allowing a general overview of the general tasks of the system. But, the vision that 

it depicts is rather general and the structure is not helpful when trying to identify the steps 

that the fusion procedure should follow and perform.  

 

Figure 2.8. Boyd Model. 

Bedworth and O’Brien analyzed different models, and used their strengths and weaknesses 

to create a new model that overcomes the limitations of all the previous presented models 

[12], called the Omnibus model (Figure 2.9). The model is based on a cycle structure, as the 
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Boyd model, but this model is more detailed and process-oriented. The aim is to be recursively 

used in the same application in two different levels of abstraction. First, it is used to 

characterize and structure the overall system. Second, the same structures are used to model 

the single subtasks of the proposed system. The separation of the DF into different tasks is 

very sophisticated and makes Omnibus a widely spread model. The main drawback of the 

model is the lack of modularity that allows systems to be horizontally separated in different 

processed nodes, which could be tested and used by different applications. Advances in 

network and information technologies that require this modularity make it inconvenient when 

developing DF applications using this model. 

 

Figure 2.9. Omnibus model [12] 

Thomopolulos proposed a different model [13], not strictly connected with military 

applications. The work was focused in the field of robotics. His model proposed a generic 

architecture and analytical framework to address DF in three data processing levels: signal 

level, level of evidence and level of dynamics. 

Besides the model, Thomopoulos architecture also depicts the way in which function has to 

be performed in each level. Signal level fusion has to be performed using correlation and 

learning. Evidence level fusion uses statistical models to infer locally the information. And 

finally Dynamics level performs data fusion by either centralized or decentralized fashion, 

assuming that the mathematical model is known. 
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Figure 2.10. Thomopoulos architecture. 

This model is very useful for horizontal modularity, since it can be divided in modules that 

are easily tested and reused by other applications. The main drawback is the robotic-

application oriented that makes its generalization difficult.   

2.2.4 Data Architecture and Models Conclusions 

Data Fusion is a wide concept that makes generalizations difficult. DF is a concept that is 

becoming omnipresent in many engineering applications due to advances in Information 

Technologies. Hence, the definition of a model that generalizes the concepts is a tough task. 

JDL model is the most commonly used model, since it was one of the first definitions of 

Information Fusion, and the subsequent actualizations of the model helped to adapt the old 

fashion military-oriented fusion terminology to the recent applications. 

Since the JDL model as well as its terminology is widely accepted in DF community, the 

present thesis follows this model. Processes and Tasks that follow and perform DF will be 

presented in next section of the chapter. In [5] and [14] D.Hall and J. Llinas give a deeper 

explanation of the processes using the JDL terminology. 

The military oriented DF vision given by the JDL model is very easy to adapt to the field of 

this thesis. Road Security applications, as military applications, are oriented to threat 

detection, risk identification and decision-making. From a road safety point of view, this target 

terminology is related with the pedestrians, vehicles, and other objects that may compromise 

the safety of road users. Risk identification can be easily associated with the danger involved in 

these detections, according to the movement of the vehicle where the detection is performed. 
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Finally, decision-making is connected with the actions performed to avoid dangerous 

situations, or in case of imminent danger, which actions should be performed to mitigate the 

damages or injuries that this situation may produce (e.g. avoid or mitigate pedestrian injuries). 

2.2.5 Fata Fusion Processes and Tasks 

D. Hall and J. Llinas in [5] and [14] provide a content table that depicts the following 

processes and tasks associated with JDL levels (Table 2). 

 

Table 2. Processes and task to follow associated to the different fusion levels. Source [5] and [14]. 

Data Fusion in road safety technologies is a recent issue that tries to enhance the detection 

capacity of the available sensors by combining several sensor technologies. As will be detailed 

in the next section of this chapter, these researches are state of the art and focus mainly on 

the detection and classification of the various objects that may be found in a road 

environment.  Thus, the processes that are generally detailed in Intelligent Transport System, 

which use Data Fusion for detection purposes, are mainly addressed in levels 0 and 1. In 
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particular, this thesis is intended to create fusion architecture for vehicle and pedestrian 

detection, thus the main processes detailed are the located in the mentioned levels. Although 

to provide a complete Fusion application, multilevel solution will be provided at chapter 3. 

Providing solution for processes addressed in Fusion levels 2 and 3, and providing key 

elements to solve level 4. Accordingly, for the present approach, MTT with DF approach is 

intended, processes focused mainly on solving levels 0 and 1.The tasks related with these 

levels are: 

 Data Alignment. Sensors do not usually share a common coordinate system; it means 

different coordinate axis, as well as, different units and transitions. These units have to 

be reordered to a common frame that both sensors must share in order to combine 

the information provided by them. Section 4.2 details the different possibilities and 

options that can be used for this problem, detailing the solution for the present 

approach. 

 Data/object correlation. Older detections have to be associated with new detections 

in order to keep track of them and to provide information to upper layers about the 

behavior of the targets. Also, detections from different sensors and subsystems have 

to be associated. Sections 5.2 and 5.3 illustrate the different solutions available in MTT 

and the solutions used in this thesis for Data Fusion in road environments. 

 Position/movement estimation.  Estimation techniques are used to predict the 

movement of targets in future detections. This prediction can be used for future 

associations or to help upper levels to estimate the behavior of the targets. Estimation 

methods are detailed in section 5.1.  

 Object/identity estimation. Final decisions about the detections are provided, and, 

usually, a confidence level about the estimation is also provided. Chapter 5 details 

track management. 

The first is a key element of DF applications. The following three processes are not only 

typical processes of DF, but these processes are usually included in MTT applications. Chapter 

5 deals with the different procedures related with MTT techniques, applied to the DF problem 

of the present approach. Deeper explanations of the utilized MTT procedures are given in [11] 

and  [12]. 
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2.2.6 Data Fusion in Automotive Applications 

Different approaches in the Intelligent Transport System related with Data Fusion are 

generally divided according to the abstraction level. As previously mentioned, this division is 

sometimes differentiated among three levels (low, medium, and high) or 

centralized/decentralized schemes. In the present approach, three-abstraction level 

differentiation is applied, although it can be easily extrapolated to the 

centralized/decentralized scheme differentiation. 

a) Low-level fusion 

Low-level approaches try to create a new set of information from different sources. In this 

topic, stereo system is a well-known fusion system that uses low-level fusion since it receives 

information from two different cameras and fuses them to create a new set of information 

that includes depth information (Figure 2.11). This new set of information is called disparity 

map. In [17] and [18] stereovision is used to perform pedestrian detection over this new set of 

information, while computer vision based pattern matching methods are employed to give a 

final decision, such as active contours or probabilistic models. 

 

Figure 2.11. Pedestrian ROI detection using disparity map. (a) stereo system used.(b) image of one of the sensors. 
(c) binarized image. (d) disparity map. (e) close obstacle detection. (f) Bounding boxes representing the 

pedestrians. This image was taken from [18]. 

b) Medium-level 

In medium-level approaches, some pre-processing is performed for each sensor to create a 

set of features for each one. These sets are combined to create a combined set that is utilized 
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to perform the obstacle detection and classification (Figure 2.12). In [19] and [20], features are 

extracted for each sensor independently and a new data set is created, and authors present 

different approaches whether combining or not the different features of the different sensors 

comparing results. The final classification is performed by five different methods: Naïve Bayes, 

GMMC, NN, FLDA, and SVM.  

 

Figure 2.12. Image and laser scanner data set representation, from [19] . 

c) High-level fusion 

High-level fusion approaches perform detections and classifications for each sensor 

independently, and a final stage combines the detections according to the certainty of the 

detections and sensors accuracy. [21] uses Adaboost vision based pedestrian detection and 

Gaussian Mixture Model classifier (GMM) for laser scanner based pedestrian detections. 

Finally, a Bayesian decisor is used to combine detections of both subsystems. In [22], 

pedestrians are detected by a laser scanner using multi-dimensional features, which describes 

the geometric properties of the detections and Histograms of Oriented Gradients (HOG) 

features and Support Vector Machine (SVM) for pedestrian detection using computer vision. 

Final fusion is performed by a Bayesian modeling approach; similar approach is presented in 

[20], among some other medium level approaches. In [23], track to track fusion of obstacles, 

with no obstacle classification, is performed, using laser scanner, vision, and long and short 

range radars. 
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Figure 2.13. High level fusion based pedestrian detection in [22]. 

d) Other approaches 

Other Data Fusion approaches, among Intelligent Vehicles research, use data from a laser 

scanner to detect regions of interest (ROI) in images, and computer vision to classify among 

different obstacles that are included in these ROIs. In [24] (Figure 2.14), raw images with SVM 

machine learning method is utilized. [25] uses Convolutional Neural Networks. [26] uses HOG 

features and SVM classification approach. Finally, [27] uses Invariant features and SVM to 

perform the vision-based pedestrian detections. These approaches take advantage of the 

trustability of the laser scanner for obstacle detection, however, fusion is limited to speed up 

the process by detecting robust ROIs. Consequently, the information added by the fusion 

process is limited and can hardly be considered real Data Fusion.  

Some fusion approaches take advantage of the properties from various sensors in a 

different way, which does not fit with any of the previously presented configurations: 

[28] combines information from a stereovision camera and a laser scanner. First, the 

application uses stereovision information to locate the road.  Then it uses this information to 

remove those obstacles that are irrelevant for the application (i.e. outside the road). Finally, It 

constructes a set of obstacles using the information from both sensors. Tracking is performed 

using a Kalman Filter approach (Figure 2.15). 
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Figure 2.14. vehicle detection based on laser scanner ROI detection and SVM vision based classification [24].   

 

Figure 2.15. Cooperative fusion between vision and laser scanner detection in real road situation, from [28]. 

[29] uses information from laser scanner to search particular zones of the environment 

where pedestrians could be located and visibility is reduced, such as the space between two 

vehicles, and performs detections using vision approach (Figure 2.16). 

[30] uses laser scanner and radar approach for obstacle detection and tracking as well as a 

camera to show the results. Obstacle classification only differentiates among moving and non-

moving obstacles through computing Mahalanobis among the clusters given by the laser 

scanner (Figure 2.17). 
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Figure 2.16. Pedestrian correctly found in danger zones from [29] . 

 

Figure 2.17. Three sensor detections given by the software interface in [30]. 

Some authors also presented grid-based fusion. Fusion is performed dividing the detection 

space in a grid space, fusing the information based on the sensor’s accuracy and detection’s 

certainty. [23] and [31] (Figure 2.18).  
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Figure 2.18. Grid based detection and tracking in [31]. 

2.3 Sensing Technologies in Intelligent Vehicles  

The previous section relates the importance of Fusion to provide reliable detections, thus 

able to fulfill the safety requirements that any road application would need. Now that the 

importance of the Data Fusion and the key points of the Data Fusion problem are known, the 

next section will discuss the set of sensors available to use in Intelligent Transport Systems 

applications. A complete study of the different sensing technologies was mandatory before 

selecting the correct sensors to be used for the approach presented in this work.  

Laser scanner, computer vision, and radar are the most common sensors in Intelligent 

Transport System technologies. Each one of them presents some advantages and 

disadvantages as well as different configurations.  

2.3.1 Lidar Environment Detection 

Laser scanner technology is a well-known sensor in robotics research. The most recent 

events based on driver technologies, such as DARPA Grand and Urban Challenge ( [32], [33], 

[34], [35] and [36]), have demonstrated that laser scanners are trustable and versatile sensors. 

They are capable for use with modern ADAS applications [37], [38] and [39]. The main 

drawback of laser scanners is the lack of information that makes obstacle identification an 

easier task. As already remarked, the use of a laser scanner in road environments is a recent 

advance, thus, research is focused on this technology to enhance the performances of the road 

applications. Taking this into account, the first steps on this thesis were taken in the research 
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and develop of a tool that allows detecting and identifying the different obstacles that are 

found in road environments using laser scanner. In this section, different applications that use 

laser scanners with this purpose are presented. Chapter 4 supplies a detailed explanation of 

the algorithms utilized to detect and identify the different obstacles using a single layer laser 

scanner.  

Laser scanner applications in road environments cover different requirements for safety 

purposes. Laser scanner can be used to map the surrounding scenario or can even be useful 

for Simultaneous Localization And Mapping (SLAM) applications [40], [41], [42], [43], [44], [45] 

and [46]. 

Mapping applications can be performed both in 2D or 3D, depending on the sensors and 

their capabilities. 3D reconstruction has a problem of dealing with a high amount of data. This 

leads to laborious tasks with highly computational costs, mainly when algorithms are based on 

pattern matching [47] and [48]. Occupation grids can cope better with these costs, but they 

are free space oriented, thus having more problems with obstacle classification [49] and [50].  

Model based laser scanner classification uses a model to arrange the segments founded by 

the sensor. [51] classifies clouds of points according to certain constraints between points. 

Lately, it uses Kalman Filter to predict their movements. [52], [53], [54] and [55] classify 

segments according to an historic record of the movement from different obstacles and those 

obstacles’ behaviors. [56] integrates the patterns detected over time to give an estimation of 

the real shape of the obstacle; it also performs the detections according to obstacle and 

certain constraints. [40] uses the Localization algorithm to improve the detection and 

classification based on pattern matching. Finally, [57] performs pattern classification according 

to the morphology and occlusion. Next it uses a voting scheme; classification is improved along 

time, therefore giving an estimation of the certainly of the classification. 

In other works, classification is performed according to feature’s vectors. [58] uses 

reflectivity and size of the objects to create the feature’s vector. [59] uses these features to 

create a voting scheme with a weight associated to each feature, to classify the obstacles. [60] 

uses the features to create a probability density function for each class, which is used in a 

Bayesian filter to determine the type of the obstacle. [61] creates the features vector using size 

information from the laser detection and video data. 

Once the obstacle is detected, a tracking stage helps to avoid false positives, keeping the 

detection among time, and improving the accuracy of the system. Kalman Filters are usually 
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used as in [62] and [63], while other tracking schemes can be used as particle filters as with 

[64] or others [65], [66], [67], [68] and [15]. 

One of the problems related to laser scanner detection and classification is occlusion due to 

unforeseen obstacles in the road. Laser Scanners beam is a ray that can be easily occluded by 

any other obstacle within road environments, especially in 2D laser scanner where information 

is limited to a single detection. [57] and [69] try to solve this problem. 

2.3.2 Vision Environment Detection 

Computer vision algorithms try to identify known patterns in digital images. During the last 

decade, advances in the processing power of computers made it possible to create more 

complex and robust algorithms able to infer the variety of objects that can be found in images.  

The present section presents different algorithms available for computer vision detection 

and classification in road environments. Efforts in providing new algorithms for computer 

vision in ITS are numerous. This thesis presents only the most relevant algorithms presented 

and tested in recent years.  

Computer vision techniques can be divided according to the acquisition device used e.g. 

single camera, stereo-cameras, and infra-red cameras. The processes necessary to perform 

object detection and classification are usually the same (Figure 2.19), changing the techniques 

used according to the information provided by the device and the object to identify. 

 

Figure 2.19. Processes of computer vision detection and classification algorithms. 
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The common processes to follow are depicted in Figure 2.19 and are detailed in next 

section: 

a) Data acquisition 

The Data Acquisition process is the procedure of acquiring the image from the device. The 

various devices available acquire different information. Therefore, further processes are 

determined by this step, according to the information retrieved from the camera and 

represented in the image. Several devices can be found: 

Mono cameras  

The advantages of a mono camera, compared to other devices, are the simplicity of the 

approach and the low cost. These advantages help the existence of numerous algorithms, 

which use a mono camera that can be easily extrapolated to the specific problem of road 

safety. Within this category, several options are available (b/w, color, etc.). 

Stereo-cameras 

With two cameras located at known intervals, it is possible to add depth to the information. 

Depth information is provided by detecting the difference in the pixels of the images of both 

devices. This difference is represented in the disparity map, which represents the disparity of 

the pixels for the same feature between the two images. With this new information, more 

robust algorithms can be developed. The extremely high computational cost required by this 

process for this new information is a drawback. New approaches try to add the recent parallel 

programming algorithms to the classic stereovision based vehicle and pedestrian detection 

algorithms. This parallel processing helps to perform the detections in real time. It is important 

to remark that all these applications consist of safety application where real time is a key issue 

[70]. 

Some approaches enhance the capabilities of these stereovision based algorithms by 

adding more cameras that provide different fields of vision. [71] presents an original 

configuration of stereo system with three cameras; the system selects according to the region 

in the image to cover which is the best pair of cameras to use. Figure 2.20 shows the different 

sensing devices used by vislab in the DARPA Urban Challenge In [71], including the trinocular 

system. 
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Figure 2.20. Sensing technologies used by Vislab, laboratory of Parma (Italy), during the Urban Challenge in 2007, 
with several configurations of cameras, including the novel trinocular system. Left the overall field of view, right 

the images of the truck with the sensing devices highlighted [71].   

Infrared cameras 

Night vision is a common issue when dealing with Intelligent Transport System since the 

absence of light makes driving at night more difficult. These situations make Advance Driver 

Assistance Systems very useful. 

Classic computer cameras use the visible spectrum to capture images. Infrared cameras 

perform detection in the infrared spectrum, which allows them to perform detections, even in 

situations with no light available. Far Infra Red (FIR) cameras are common among ITS works 

because these cameras detect heat. Thus, for pedestrian detection, as well as other vehicle 

detection, the heating information is very useful for detection in the absence of light. 

There are some drawbacks in this technology. In the case of FIR, when the temperature of 

the background is similar to the obstacle’s temperature cameras (daylight situations), it is 

impossible to differentiate them. Moreover, the absence of color limits some of the 

capabilities of the cameras. 

Some approaches also use a stereovision system based on FIR images, so the information 

provided by the FIR cameras is enhanced with depth information [72]. 

b) Region of Interest detection 

After data acquisition, it is important to reduce the parts of the image where the 

classification algorithm is performed. As it was previously remarked, computer vision is a task 
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that requires a high computational cost; therefore, it is important to reduce the region of the 

image where the classification algorithm is applied.  

Region of interest detection consists of identifying the parts of the image where obstacles 

are more likely to be found. The algorithms are based on the nature of the device or on fast 

and simple algorithms that do not consume resources. Accordingly, they can quickly reduce 

the amount of data to search. 

Region of interest is also important to reduce false positives. For example, in Fusion 

procedures, some authors use the reliability of the laser scanner to create a region of interest. 

In this way, parts of the image where obstacles are impossible to be found are eliminated from 

the algorithm. Hence, checking only regions where there is an obstacle reduces false positives.  

The Region of interest detection is closely related with the device used: 

Mono camera: 

In mono camera approaches, region of interest detection is a difficult task; no special 

feature of the acquisition device can be used to help create these Regions of Interest.  

Some authors proposed vertical symmetry, which can be quickly and easily calculated, to 

create these regions. This takes advantage of the vertical symmetry of the pedestrians’ and 

vehicles’ shapes. Consequently, only those regions in the image that have a high vertical 

symmetry are used in the classification stage [73]. 

Other approaches used the movement detection, such as subtraction of consecutive 

images, to detect those parts of the image where there are changes. These approaches, 

although fast and robust, have limitations, including the fact that non-moving objects are 

discarded in this stage[74]. 

Stereovision: 

Stereovision approaches provide depth, which can be used to detect obstacles as well as to 

sort obstacles with similar shapes to pedestrians [75]. After calculating the disparity map and 

detecting the obstacles in the image, it is possible to use this disparity map to detect vertical 

symmetry, as it is used in monocular approaches, but with higher reliability, as explained in 

[18]. 

Far Infra Red 
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In FIR Cameras, ROI detection approaches usually take advantage of the temperature 

difference between the interest obstacles and the environment, like a pedestrian’s body 

temperature difference from the background. Thus, thanks to the special behavior of the 

device, it is possible to detect these regions in an efficient way [76]. 

 

Figure 2.21. ROI detection using temperature with fir image [76]. 

c) Classification and verification 

 The final stage consists of the verification that the algorithm has identified the search 

obstacle. In computer vision, classification is typically performed by two different approaches: 

machine learning algorithms or pattern recognition. The first requires a stage of processing 

information from the image, creating feature vectors that represent the information given by 

the image. This way the image is simplified, reducing the amount of data to process and 

allowing the system to focus on relevant information. Second approaches try to match the 

obstacles in the image with models that represent the obstacles.  

Machine Learning 

The machine learning method’s goal is to automatically learn to recognize complex patterns 

and make intelligent decisions based on training data used to “set up” the system and the 

input data. The set of all possible solutions is too large to be covered by the set of solutions 

used to train the algorithms, causing difficulties. As a result, selecting the applied training set 

to teach the system to “learn” how to infer the results is vital and should be accomplished with 

special care. Classical algorithms used for vision based detection in road environments are: 

Decision Tree learning algorithms, such as Adaboost, are typical for face detection. In [77], 

Adaboost approach was used to detect the driver’s face, analyzing the driver’s behavior and 

the physical conditions, to create a warning in the event of carelessness, such as inattention or 

drowsiness. This Adaboost scheme for face detection was proposed by [78] and combined with 
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Haar-Like features to perform facial detection. Haar-Like features have also been used to 

detect vehicles in [79] and pedestrians in [79] and [80]. Deeper Explanation of Haar-Like 

features is given in chapter 4. It is the method used in the present approach for visual based 

vehicle detection.  

Neural Networks (NN) is a method that is based in the biological neural networks function. 

These NN are based on interconnected neurons. They are used to represent nonlinear 

statistical data, modeling complex relations between inputs and outputs, patterns in data, or 

to capture the statistical structure of an unknown joint probabilistic distribution between 

observed variables. NN have been used to perform pedestrian detection in [81] and have 

utilized stereo cameras in [25]. NN have also been employed in traffic sign detection 

approaches [82]. 

Support Vector Machines (SVM) is one of the most common machine learning algorithms in 

recent approaches. SVM construct a hyper-plane in a high or an infinite-dimensional space, 

which can be used for classification, regression, or other tasks. They are a set of supervised 

learning algorithms used for classification and regression. The SVM algorithms automatically 

create a decisor that labels a given input according to the training set that was provided. SVM 

is used with HOG features to perform pedestrian detection in the most common approach in 

the ITS community [83]. Further explanation of this approach is given in chapter 4. 

It is important in any machine learning approach to choose the appropriate features to 

perform an accurate classification. 

Pattern recognition 

Pattern based detections consist of the correlation between the region of interest and a 

given pattern. The algorithms to perform this correlation are numerous (e.g. normalized 

correlation and model based).  

In [84], geometric models are used, checking if the given ROI fits the constraints that 

represent the vehicle. In [85] and [86], probability templates are used. These probabilistic 

models, where each pixel’s intensity represents the frequency of discovery of the pixel in a 

pedestrian detection, are created by a learning algorithm that uses several test images with 

pedestrians (Figure 2.22). In [86], different models are created according the pose of the legs 

of the pedestrians. Subsequently, the authors can infer and track the pedestrian movement.  
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Figure 2.22. Models of the pedestrians created in the approach [86]. (a) Is the general model, (b) the model for 
closed legs, (c) almost closed, (d) almost open and (e) open. 

2.3.3 Other Sensing Technologies 

Among the sensors used for automotive application, several sensors can provide different 

information useful for Intelligent Transport System.  

Commercial Systems based on radar application are already available, as with Stop and Go 

and cruise control systems. But the scope of these applications is limited because radars 

require a highly reflective surface for detecting, thus non-metallic objects like pedestrians and 

cyclists are difficult to be detected by radar.  

Other sensors used in commercial applications include ultrasound sensors and infrared 

sensors. The scope of these sensors is very limited. In the case of ultrasound sensors, once the 

vehicle reaches a certain velocity the sensors malfunction due to high air pressure. In addition, 

the sensor’s field of view is limited to only a few meters. Automotive applications use infrared 

sensors to detect involuntary line crossing, among other applications. Although all these 

sensors have a limited scope, the low cost and the reliability of them make them very useful in 

specific situations, such as parking maneuvers and line crossing detection.  

2.3.4 Context Information 

Context information is a modern concept in Data Fusion scientific field.  

One definition of context information in Data Fusion field can be found in [87]: 

“Contextual Information is that information that can be said to “surround” a situation of 

interest in the world.  It is information that aids in understanding the (estimated) situation and 

also aids in reacting to the situation, if a reaction is required.” 

Although ITS applications have never used the concept of context information, it is 

important to take into account the prior knowledge of the application’s nature in any Fusion 
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application. This includes information about the detectable objects, physical information, 

behavior, etc., as well as about the environment, e.g. road safety regulation, driver response 

time, and more. All this information is useful to perform an accurate detection and also to 

infer the danger that is involved in all of these detections. 

2.4 Conclusion 

The state of the art chapter was aimed as an introduction to DF and ITS worlds. First, it was 

a classical researching field that has just entered into a newer world of ITS, creating a whole 

researching field thanks to the necessity of accurate and reliable sensing technologies. Second, 

it portrayed a recent concept that links modern information technologies with transport 

technologies, helping to improve the efficiency and safety of the classical transport systems. 

The chapter proposed an overview of the two fields, qualifying the reader with a proper 

context to understand the contributions of the present thesis and the background where it is 

situated. 

As DF is a innovative method in the ITS field (in the scope of the present thesis), the first 

part of the chapter focused on introducing the reader the DF world, providing the basic 

knowledge and processes needed to follow in any DF application. Later, the second part of the 

chapter introduced cutting edge sensing technologies for Intelligent Vehicles. An Explanation 

of the most popular algorithms that make use of these technologies was provided.  

All these advances represent important steps forward in the field of ITS in providing a 

reliable tool able to assist the driver by preventing dangerous situations. However, these 

applications all have limitations due to the nature of the sensors used. This thesis represents a 

step forward by merging two of the most cutting edge technologies in the ITS field. Through 

this fusion, the problems inherent in each technology can be overcome.  

The proposal provides novel approaches that enhance the capacities of the basic vision 

algorithms already available. First, it must be stated that at the beginning of the work, the 

laser scanner technology was starting to be applied to road applications. Thus, the first part of 

the proposal consisted of creating novel and reliable laser scanner based algorithms that could 

help to improve the reliability of the vision-based algorithms. Later, the fusion procedures 

attempted to combine the capacities of both sensors to provide better performances. Again, it 

must be related that the visual approaches used in the present thesis are the most reliable 

approaches of those presented. HOG feature based pedestrian detection represents the most 

reliable approach among the wide variety of works available in the ITS world. Finally, Haar-like 
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vehicle detection is a robust and fast approach that provides reliable vehicle detection with 

low requirements. Furthermore, the use of the original concept of context information helps 

to provide a complete fusion application that fulfills the requirements of classical Data Fusion 

approaches. 

 

  



2. STATE OF THE ART 

Fernando García Fernández 38 
 

  



 

Fernando García Fernández 39 
 

CHAPTER 3.  
GENERAL DESCRIPTION 

As previously explained, the present thesis proposes an innovative system that combines 

different information sources (i.e. laser scanner, computer vision, inertial system and context 

information) to provide a reliable system, capable of providing road environment detection 

and classification. This detection is focused on the most vulnerable road users i.e. pedestrians 

and other vehicles. The proposal also tries to solve a typical problem when dealing with traffic 

safety applications: the danger associated with the detections.  

In the present chapter, the overall description of the proposal is given, including data 

sources, data flows, and the processes that involve the fusion process (Figure 3.1).  

 

Figure 3.1. Overall System diagram with the corresponding fusion levels implementation. 
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Figure 3.1 summarizes the overall system and indicates the processes that are necessary to 

fulfill all levels of the fusion procedure. As shown by the figure, there are four well-

differentiated data sources. Two sensors perform target identification and classification; these 

sensors are the laser scanner and the computer camera. Context Data and intertial system 

complete the information, adding contextual information allowing Data Fusion at all levels.  

3.1 The Platform 

 Intelligent Vehicle based on Visual Information (Figure 3.2), or IVVI 2.0, is the second 

research platform for the implementation of laser technology and computer based systems, 

with the goal of building ADASs. The purpose of the IVVI platform is to test perception 

algorithms under real conditions. Different sensing capabilities are being researched, such as 

road lanes, pedestrians, vehicles and traffic signs. They can be taken as inputs for some ADASs 

like Lane Keeping System, Adaptive Cruise Control, Pedestrian Protector, and Traffic Sign 

Recognition. 

 

Figure 3.2. Test Platform IVVI 2.0 with the laser scanner mounted in the front bumper. 

In the scope of the IVVI 2.0 project, several technologies have been researched and 

developed, and some of them are already available in the platform. The different sensing 

devices already available for testing and developing the different sensing technologies are 

depicted in Figure 3.3.  

(a) A color camera, pointing to the inside of the vehicle, used to monitor the driver, 

warning in case of misbehavior or somnolence.  
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(b) A small monitor embedded in the dashboard of the vehicle, which allows checking 

the results of the different algorithms in real time.  

(c) Laser scanner, used in present work.  

(d) A far infrared camera that allows detection in absence of light. 

(e) A color camera, pointing to the exterior, used for traffic sign detection and 

classification. 

(f) Bumblebee stereo system, used for obstacle detection and classification.  

(g) GPS-inertial device that is used to acquire information about movement of the 

vehicle. 

 

Figure 3.3. Sensor devices installed in IVVI 2.0 

These devices allow research and development of different algorithms intended for use in 

ADAS applications. But to process such demanding applications, several processing units are 

necessary. Figure 3.4 shows some of the available processing units.  

(a) Wi-Fi router installed in the bumper of the vehicle, which allows network connection 

within the computers and with an exterior network through wireless Internet 

connection.  
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(b) Different PDAs and Smartphones are connected to the processing units to allow 

direct contact with occupants.  

(c) Batteries, inverters, and a backup system supply different devices with power.  

(d) Computers are installed in the vehicle’s trunk. These computers are continuously 

being updated to have the most effective processing capacity. 

(e) Can-Bus readers allow the vehicle’s status to be monitored. 

 

Figure 3.4. Processing units and other devices installed in the platform IVVI 2.0. 

Some examples of the technologies researched and developed using the IVVI 2.0 platform 

are depicted in Figure 3.5: 

(a) Pedestrian detection[88],  

(b) Driver monitoring [77] under daylight. 

(c) Driver monitoring [77] in night conditions.  

(d) Lane detection and classification system [89] 

(e) Traffic sign recognition [82]  
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(f) Stereovision based obstacle detection and ego-motion [90] 

(g)  Fusion procedures, using laser scanner and vision, system presented in this work. 

 

Figure 3.5.Technologies being developed and researched in the platform IVVI 2.0. 

3.2 Data Sources 

Four different data sources are used in the present approach: laser scanner, computer 

vision, inertial sensor, and context information.  

3.2.1 Laser Scanner 

The laser scanner model put in operation was a LMS 291 S-05 from SICK. The laser scanner 

configuration was 100° of field of view, a maximum distance of 82 meters, and an angular 

resolution of 0.25°. There is a detailed description of the system and its configuration is given 

in chapter 4.  

The laser scanner employed provides detections based in time of flight operating mode, 

conveying the distance to the closest obstacles for a given angle. This way, after a full rotation, 

a 2D reconstruction of the environment is possible (Figure 3.6). 
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Figure 3.6. Laser scanner environment reconstruction example. Distances from 5,10, 15 and 20 are highlighted in 
yellow, as well as some bounding boxes with relevant obstacles. 

3.2.2 Computer Vision 

Computer vision is a common tool in the most recent advances in road safety applications. 

This thesis uses the most recent advances in visual processing applications for road safety, 

such as Haar Cascade Classifier [78] or HOG descriptor [83]. 

 

Figure 3.7. HOG Feature based pedestrian Detection (Left).  Haar cascade Classifier based Vehicle detection 
(Rigth). 

3.2.3 Inertial Sensor 

MTi-G [91] is a compact and low-weight measurement unit for control and navigation of 

(un)manned systems and other objects. It is an inertial system aided by GPS. The size and 

weight of the system make it very flexible tool. It is provided with several working scenarios 

that adapt the unit to aerospace, automotive or general applications. Additionally, MTi-G 
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provides inertial and barometric enhanced 3D position and velocity data at a higher update 

rate than possible with a typical GPS receiver. 

 

Figure 3.8. MTI-G GPS aided inertial measurement. 

MTI-G proved to be a very useful tool for the present application by providing typical GPS 

information such as velocity and position. This online information was valuable for estimating 

danger. Besides, Euler angles and angular velocities provided were important for laser scanner 

detection, as detailed in chapter 4. 

3.2.4 Context Information 

In present proposal context information was added to complete the understanding of the 

interactions of the detections with the test platform. This helped estimate the danger involved 

with detections. In the proposal, the situations where context fusion proved to be useful were 

the following: 

 Physical constraints This is used for low-level detection. By applying some 

constraints to the low level detections false positives were avoided. These include 

pedestrian sizes, vehicles size, etc. 

 Reaction times. The time that any driver needs to respond to a stimulus is 

especially important when trying to calculate the response time for the driver in 

danger situations. 

 Braking distance. The braking distance is the distance that it is needed to 

completely stop the vehicle. This is one of the most important distances when 
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dealing with road safety applications, since it represents the space where it is 

impossible to avoid any collision by stopping the vehicle. 

 Safety distances. This is the distance between vehicles travelling on the road. It is 

important in safety applications because this distance assures a safe driving. 

The relevance of the provided contextual information will be referred to in various chapters 

of the proposal. 

3.3 Fusion Levels 

From the Data Fusion researching field point of view, this thesis attempts to solve the 

problem of road environment detection and classification. Formulating the limits and scope of 

the different levels of data fusion are significant. This section illustrates a solution to the 

problem-oriented levels of data infusion. It also provides a detailed explanation of the 

processes utilized to solve the problems related to the different levels involved in Data Fusion, 

as based mainly in the scheme of Figure 3.1. Later, the document also presents a detailed 

explanation of the different processes exposed.   

3.3.1 Level 0 (Sub – Object Refinement)  

These processes involve methods to estimate the existence of targets and the features of 

interest related to them. In this case, the level is related to the detection of obstacles either by 

laser scanner or by camera. Later, level 1 processes should classify these obstacles according to 

the information available. 

In order to reduce false positives and to provide reliable detections, the laser scanner was 

considered the main sensor for this purpose. This was accomplished because the reliability of 

the laser scanner was established in the process of providing distances to all the non-occluded 

obstacles with high certainty.  Consequently, in order to provide reliable detections, laser 

scanner was used to detect obstacles in the surroundings for both, laser scanner detections 

and visual based detections. The process used was a clustering process that merges detection 

points according to the distance between them. These obstacles represent the Regions Of 

Interest (ROIs) that both sensors later classify. 

In order to provide accurate positions of the obstacles detections in the laser scanner, data 

alignment is mandatory. Data alignment coordinates, specified by the laser scanner, will be 

transferred, first to the camera coordinate system to provide the regions of interest in the 
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image, and later to the vehicle coordinate system. The processes followed to perform this data 

alignment will be described in chapter 4. 

After data alignment, the vision zones, where the algorithms perform the obstacles 

classification, are created according to the sizes of the investigated obstacles and the 

algorithm to use, such as when looking for vehicles obstacles with size similar to a vehicle are 

selected. These zones are called Regions of Interest (ROIs) and are represented by bounding 

boxes. 

 

Figure 3.9. Bounding boxes for vehicle detection created after laser scanned obstacle detection. 

3.3.2 Level 1 (Object Refinement)  

In this level, the location, parameterization and identification of the obstacles are 

preformed. In the present proposal, these processes are performed first by each system 

independently, and then both detections are combined to create and manage the detections’ 

tracks obtained from the detections from both sensors. Thus, the aforementioned ROIs are 

checked by both subsystems, taking into account the information obtained by each sensor, 

which obtain different classifications. As both regions of interest are acquired from the same 

set of obstacles detected by the laser scanner, the inter-sensor association is inherent for the 

algorithm. 

Laser Based Detection uses the exceptional behavior of the laser scanner and the 

robustness of the system to classify among different kind of obstacles. Limited information and 

some common errors due to strong pitching movements, dust, etc., make this classification 
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difficult, and here is when the classifications provided by the camera could help to avoid 

mistakes. 

Vision Based Detection. For the present proposal two kinds of obstacles were taken into 

account: vehicles and single pedestrians. These two road users represent the most important 

users of the roads, and several vision approaches have been created to detect them. As 

previously mentioned, the algorithms used for these detections are the most well-known and 

proved algorithms that have presented the best results for the detection of each kind of 

obstacle.  

Finally, the fusion procedure should deal with the detections of each sensor creating Fused 

Tracks, which provide better performance than the sensors independently. These processes 

involve track management (creation, deletion and update), tracking procedures and data 

association.  

3.3.3 Level 2 & 3 (Situation and Threat Refinement)  

Previous levels focused on road users’ detection and classification, as well as the tracking 

the given detections. Levels 2 and 3 deal with safety issues. In level 2, interactions between 

detections and the test platform are studied. Finally, in level 3, the thread level that any of the 

detections involves is analyzed.   

In order to give an estimation of the danger involved in any detection, important 

information is added to the lower level information of the targets. First, information relative to 

the vehicle where the detections are performed is mandatory to help the system evaluate 

interactions amongst the different users of the roads. Furthermore, traffic safety information 

is necessary to estimate the danger level involved in all interactions. Contextual information 

has an important role in evaluating the situation of the detections and interactions among 

them. Traffic accident reconstruction mathematics and other constraints, such as driver 

reaction times and pedestrian’s sizes, are among the contextual information taken into 

account to define the security involved in detections. Different defined distances evaluate the 

danger of detections: 

 Response distance. The distance the vehicle covers in the time that the driver 

needs to respond to a stimulus and perform a maneuver.  

 Braking distance. The distance the vehicle would cover before completely stopping. 
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 Safety distance. The distance that should be maintained with the preceding vehicle 

to ensure safety. 

Full fusion procedure is obtained, providing solutions for all the fusion levels. Chapter 5 

provides detailed mathematics used to calculate these distances. 

3.3.4 Level 4 (Process Refinement) 

Information of the detections performed by the different subsystems is included in low-

level detection, such as vehicle or pedestrian sizes, velocities, etc. This information is used to 

enhance the low-level detection in the subsequent scans.  

This level 4 solution does not represent a sophisticated process refinement solution, rather 

it is useful to improve future detections performed by the lowest level, implementing all fusion 

levels. 

3.4 Proposal Phases 

The phases for a complete Data Fusion safety application will be detailed in this thesis. The 

proposal will have to deal with all the levels of fusion applications. These phases are based on 

classic Multiple Target Tracking applications phases, adding danger estimation. The phases 

include the following:  

 Obstacle detection 

 Multiple Target Tracking 

 Danger Estimation 

 Test and conclusions 

The subsequent chapters detail the different processes followed to accomplish these tasks.  

3.4.1 Obstacle Detection 

In this section, the description of the algorithms utilized for obstacle detection and 

classification are provided, focusing on laser scanner algorithms. Laser scanner algorithms 

used in the proposal are innovative methods that represent an important contribution to the 

pedestrian detection algorithms available in the ITS research field. Conversely, vision based 

algorithms represent state of the art pedestrian detection, even though they are not original 

contributions to the field. As a result, explanations of these approaches will be minor. 
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Figure 3.10. Laser Scanner based pedestrian detection example. 

3.4.2  Multiple Target Tracking 

Different methods used for Multiple Target Tracking (MTT) are detailed in chapter 5. These 

methods deal with fusion of information from both sensors and also with tracking and data 

association.  

Several configurations were tried combining the different possibilities available in multiple 

target tracking and adapting them to pedestrian detection with data fusion. Tracking 

procedures used include: 

 Kalman Filtering 

 Unscented Kalman Filtering 

 Particle Filter 

Data association plays an important role in Multiple Target Tracking. Several approaches 

are provided, focusing on the implementation of the fusion system, thus providing a complete 

and extensive comparison of the different possible configurations. The Association methods 

used were: 

 Nearest Neighbors (NN) 

 Multiple Hypothesis Tracker (MHT) 



DATA FUSION ARCHITECTURE FOR INTELLIGENT VEHICLES 

Fernando García Fernández 51 
 

 Joint Probabilistic Data Association (JPDA) 

Finally, chapter 5 deals with other problems related with the MTT, such as distance 

definition, gating, track logic (creation, deletion and update of tracks), etc.  

3.4.3 Danger Estimation 

Although the main purpose of this thesis is not to provide an accurate danger estimation of 

the detections, all Data Fusion applications have to deal with situation assessment and threat 

estimation. For the present proposal danger, estimation was created both for vehicles and 

pedestrians. As previously mentioned, context information is crucial at this point. A detailed 

explanation of the different distances and constrains relevant for danger estimation are given 

in chapter 5. The present work provides a novel approach able to enhance the classic 

pedestrian detection systems with contextual information. The result is a complete Data 

Fusion tool that detects and classifies the different road users and estimates the danger that is 

involved in these detections, providing a solution to all fusion levels. 

The actions to perform in case of a dangerous situation are out of the scope of the present 

work. It is not the purpose of the present thesis for the vehicle to perform emergency stops, 

avoiding maneuvers, triggering and alarm, etc. Thus, no further information concerning the 

necessary actions to avoid a detected danger will be provided.  

3.4.4 Test and Conclusions 

Several tests were performed to check the viability of the different approaches introduced 

in the present thesis. The different algorithms were checked both in controlled environments 

and real conditions. Chapter 6 depicts the different tests performed and presents the results. 

Chapter 7 provides some conclusions obtained from the different approaches proposed in the 

present thesis, providing a general overview of the contributions of the thesis including the 

future steps to follow. 
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CHAPTER 4.  
OBSTACLE DETECTION 
AND CLASSIFICATION 

In this chapter, low-level detection and classification are detailed. First, the chapter 

presents the algorithms used to detect and classify different obstacles found in the road by the 

laser scanner. Later, data alignment is detailed, explaining the process followed to synchronize 

the detection of both subsystems. Finally, visual classification algorithms used to classify 

pedestrians and vehicles based in computer vision are explained.  

4.1 Laser Scanner Obstacle Detection and 

Classification 

The main disadvantage with the laser scanner is the relatively small amount of information 

provided. However, it is sufficient to provide a first estimation of the obstacle’s detected 

shape, and it even provides classification results that later visual approaches will attempt to 

confirm.  

The algorithm is composed of two stages (Figure 4.1). In low-level stage, the data is 

received and a low-level identification is performed. In the higher-level stage, the data is 

integrated over a specific time period, resulting in a higher classification level. This integration 

is performed by correlating obstacles in subsequent scans. 

4.1.1 Stage 1. Low Level Detection 

Low-level detection is composed of four subsystems, each performing a different task that 

depends on the results from the previous stage. 
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Figure 4.1. Laser Scanner based road environment reconstruction scheme.  

a) Movement compensation 

The data received by the laser is corrected according to the movement of the vehicle. This 

is done to avoid misdetection due to time differences between the spots that are part of the 

scan. 

Errors due to strong pitching movements are avoided using the inertial system. Pitch 

movement is checked. When there is a strong pitching movement, laser scanner detection is 

disabled to avoid misdetections and errors. In the next section, data alignment is detailed, 

providing an explanation of the errors that pitching movements and mistakes in the calibration 

process can cause. 

Euler angles detected by the inertial system are used to correct the displacement of the 

measurements caused by the movement of the vehicle. Equation (1) depicts the compensation 

with the rotation and translation matrixes needed to correct this movement. This way the 

points are referenced to the position of the last point received (Figure 4.2 (a)).  
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where   ,    and    corresponds to the increment of the auler angles roll, pitch and yaw 

respectively for a given period of time    . Coordinates (x,y,z) and (x0,y0,z0) are the Cartesian 

coordinates of a given point after and before respectively to the vehicle movement 

compensation. R is the rotation matrix, Tv the translation matrix according to the velocity of 

the vehicle, T0 the translation matrix according to the position of the laser and the inertial 

sensor.    is the velocity of the car, Ti the time between the given point and the first one in a 

given scan. Finally, (xt,yt,zt) is the distance from the laser scanner coordinate system to the 

inertial measurement system. 

 

Figure 4.2. Vehicle movement compensation and data alignment. Figure a shows the detection points, in blue 
before the vehicle movement compensation and in red the compensated. Figure b shows the shape 

reconstructed after the movement compensation. Figure c shows the final alignment of the laser scanner data 
and the image. 

The clouds of points are clustered using Euclidean distance and a threshold that is distance 

dependant (equation (2)).  
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               (2) 

were th0 is the threshold base and K is a proportional constant which is multiplied by the 

distance. 

Therefore, for a given point p(xi,yi) it may be treated as belonging to a segment Sj if it satisfies: 

                                                     (3) 

The algorithm checks for all of the points, if the case arises where a point is not included 

within a segment, a new segment is then created. After all the points have been verified, the 

algorithm searches for segments containing only one point, these are then removed as they 

are considered false detection points.  

In Figure 4.3 an example of segment creation is presented. Here segment A is created, but 

after the verification process, where only one point is found, this point is removed from the 

final segments. 

 

Figure 4.3. Segment creation example based in the distance among detections. 

b) Polyline creation 

Once the segments are created, the points contained within each segment are merged 

using lines known as polylines. These lines are merged together according to the distance 

between the points included. The first and last points are merged using a line. For each point 

contained within this segment, the distance to the line is computed, and if it is higher than a 

given threshold, two new lines are created merging these three points. This process is 

repeated for every point within these new lines. 

An example of polyline creation is shown in Figure 4.4. As                         two 

new lines are created,      (p1,p3) and      (p3,p4). This process is repeated for p4. Finally, 
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the resulting form of the polylines is shown. The Point p5 has a smaller distance than the 

threshold, thus, this point is considered to be a spare point. The final result of obstacle 

reconstruction is shown in Figure 4.2(b).  

 

Figure 4.4.Polyline creation example. 

c) Low level classification 

Low-level classification is performed with the information provided by the previously 

described stage. Here obstacles can be differentiated: 

a)  Little obstacles 

These are regarded as obstacles in which size is not compatible with that of a vehicle, 

buildings or any other large obstacles that are commonly found in the road environment. 

Typically, these kinds of obstacles can be pedestrians, lampposts, milestones, trees, traffic 

sings, and other small obstacles that can be found in road environments. With pedestrians, a 

further algorithm will attempt to determine, by comparing the resulting polyline with a 

pattern, if the obstacle is a pedestrian or not. 

b) Road limits 

Two different possibilities exist for these obstacles. These two classifications are performed 

according to the following procedures: 

Big obstacles. If an obstacle bigger than a given threshold th is found, it is considered as a 

candidate for a road limit. The position is checked, and if it is located parallel to the trajectory 

of the car, it is finally labeled as a road limit. 
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Other road limits detection. In the first stage, little obstacles are found and labeled. After 

this first classification, two histograms of little obstacles, which represent the frequency of 

little obstacles along the x and y axis of the road, are created. If the frequency for a given axis 

is sufficient, it may be considered that the obstacles found on the road borders can be 

considered as road limits. If a curve is detected using yaw angle measurements, this detection 

is disregarded, as road limits are not parallel or perpendicular to the movement of the car. This 

method, although straightforward, is demonstrated as being fast and reliable for road border 

obstacle detection in the majority of scenarios. 

 

Figure 4.5. Road border detection based in little obstacle histograms. When the histogram is greater than a given 
value road borders are detected. 

c) Possible vehicles 

The pattern provided by moving obstacles can be differentiated and used to perform 

vehicle obstacle classification. These obstacles can be detected using the special behavior of 

laser scanners. In the case of the model used in this approach with a configuration of 0.25° 

resolution, it performs 4 independent scans which provide 4 sets of spots with a 1° resolution. 

Each scan is separated 0.25° with respect to the previous one (Figure 4.6). Thus, after 4 scans, 

the laser scanner returns a complete set of spots separated by 0.25°. When a moving obstacle 

is found, the four scans performed by the laser scanner for a single detection appear with a 

variation that is proportional to the speed and direction of the detected object and the test 

vehicle.  
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Once this particular pattern with a serrated shape is found, the velocity of the vehicle can 

be calculated by measuring the distance between two consecutive points (Figure 4.7) 

(equations (4) to (7)).  

 

Figure 4.6. Laser behavior for a complete scan. 

 

Figure 4.7. Moving vehicle pattern. 
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where T is the rotation period which is T = 13msecs. Since there are 4 scans, three different 

speeds can be measured in order to provide a more reliable measurement. 
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where t =13 msegs and v is in m/s.  

False positives can be avoided through detecting impossible velocities using these values 

represented above. 

d) Pedestrians 

A pedestrian classification is performed in two steps, taking into account the prior 

contextual information. First, obstacles with a size proportional to a pedestrian are selected 

among the different obstacles, and the shape of the polyline is checked with a typical 

pedestrian pattern.  

Context information 

The size of pedestrian used in the present application to select possible pedestrians is 

based on the model of human body ([92] and [93]),  which  models the human body as an 

ellipse. [92] details a study of the physical dimension of human being. It is generally accepted 

that physical dimensions for pedestrians was given in the early 70’s in [93]. This value 

corresponds to an ellipse with two main axes with values (57.9cm x 33cm). The ellipse includes 

the body of a dressed human being. Other researches [94] use anthropological studies to 

conclude that this ellipse is (45.58 cm x 28.20 cm). Finally, both [92] and  [93] conclude that 

this dimension can be approximate to an ellipse, which main axes are 0.6 and 0.5 meters. This 

last assumption is the model used to perform the pedestrian detection in this thesis.  

Finally, a study of the different patterns given by pedestrians was performed (in Figure 4.8) 

giving the conclusions found in  Figure 4.9 (a). 
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Figure 4.8. Examples of different pedestrian’s patterns used to study the common pattern.  

Pattern Matching 

In this pattern, three polylines are presented, and the angles that connect the polylines are 

included within the limits of   
 

 
 . 

 

Figure 4.9. (a) Pattern for pedestrian detection. (b) Different examples of different patterns given by pedestrian 
with different leg positions with the information from laser scanner translated to the image. 

A pattern matching process computes the two angles and gives a similarity score where 1 

means 100% match. Equation (8) depicts this similarity score: 

           
   

 
 
   

 
 

(8) 

 

where           are the angles that connect two consecutive lines. 
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Similarity is computed between any two consecutive lines, in every obstacle in which the 

dimensions are within the limits of the human being described before. If the similarity is bigger 

than a given threshold, the obstacle is considered to be a pedestrian. 

It is assumed that previous patterns are very common when dealing with a laser scanner, 

thus, false positives are expected. Fusion is important at this point to overcome the limitation. 

d) Other obstacles 

These obstacles are those that can not be fixed with any other patterns previously 

presented. 

 

Figure 4.10. Laser scanner low level detection example (left) and real image of the environment (right). 

4.1.2 Stage 2. Higher Level Classification 

A higher-level stage is required to observe the behavior of different obstacles during a 

specific time period. Previously scanned obstacles are stored and verified using the new low-

level detection.  

a) Previous obstacle movement correction 

Movement correction is performed according to the movement of the vehicle in the same 

way as the low-level detection, explained in the previous section. Because of this correction, all 

the previously detected obstacles can be referenced to the current vehicle position. 

For obstacles labeled as possible vehicles, the velocity of the detected vehicle, according to 

previous scans, is computed, and the next position is calculated taking the movement of the 

car into account. If there is not enough information available from previous scans, the low-
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level speed detected from the previous scans (eq. (4) to (7)) is used to calculate this position. 

Once the vehicle has been detected during several scans, the velocity is corrected using this 

high level information. High-level velocity information is considered to be more accurate 

because it eliminates the laser rotation displacement, which leads to possible measurement 

errors. 

Once the movement of the vehicle has been corrected and the movement of possible 

vehicles is computed, obstacles are searched within a window, according to the size of the 

obstacles from previous scans. If an obstacle is found within this window of the current scan, a 

comparison algorithm is used to verify if the obstacle is the same. If several obstacles have 

been found, the obstacle with the most amount of similarities according to several 

parameters, is considered to be the same obstacle. 

b) Obstacle comparison 

The comparison process is carried out according to shape characteristics, such as the width 

and position (Figure 4.11) (eq. (9) to (11)). If all of the comparisons remain within certain 

values, they are considered to be the same obstacle. If a circumstance arises where there are 

several possible candidates, the one with the closest value is considered to be the same 

obstacle. 

                         (9) 

     (10) 

                (11) 

where all the values represent the values of a obstacle given in the Figure 4.11. 

These three parameters resulted in the most representatives. Ymax was also considered, 

but it resulted a parameter with excessive variation due to the nature of the laser scanner 

information (e.g. occlusions); therefore, it was discarded. 

If more than one obstacle is found as a previous scan obstacle, the one lower correlating 

factor is considered (12) to correspond to this obstacle. 

                                  (12) 

where   is the distance of the new obstacle’s parameter to the previous one, and    is the 

weight applied to each distance of the different parameters that have been considered.  
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Figure 4.11. Shape characteristics used to compare detected obstacles. 

c) Higher level classification  

The higher-level classification algorithm is based on a voting scheme (13) that uses the ten 

last movements and low-level classification to perform the final decision: 

        (13) 

where Vi represents the number of votes for each type of obstacle,    is a gain factor 

associated with each obstacle, and Ni is the number of times that an obstacle has been 

considered as being this type of obstacle during the low-level detection. The biggest Vi value 

represents the type of obstacle that has been detected.  

d) Final classification 

Before the final classification is carried out, several higher-level filters are used to correct 

possible false positives in the event of possible vehicle detection or pedestrians. These false 

detections can be avoided by computing the last ten movements stored. Some of the filters 

are associated with impossible velocity for vehicles or pedestrians. Also high lateral 

movements are considered false detections for vehicles.  
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4.2 Data Alignment 

The present section deals with data alignment problem. First, an introduction to the data 

alignment problem is mandatory to both provide theoretical formulation of the problem and 

explain the different possible solutions. Later, the solutions used in the present proposal are 

given. 

4.2.1 Alignment Problem 

Sensors involved in DF applications usually do not measure the same physical phenomena; 

they are not located in the same place nor do they measure using the same coordinate 

systems. Data alignment function provides a general frame of referencing. It can be applied 

whether to commensurate or non-commensurate information. In the second example it is a 

mandatory process before proceeding to DF. In this general frame of referencing, a common 

coordinate system (space and time) is found where the data from the different sensors, as well 

as the global knowledge, can be presented. 

Data Alignment is a sensor specific problem. It is very difficult and usually connected with 

the application, so no general mathematics or techniques can be found.  

Usually the most common data alignment problems related with DF applications are the 

different coordinate systems used by the sensors and time synchronization. First are regarding 

the sensors and that they are allocated in different positions. Consequently, coordinate system 

translations are mandatory to work with the detections of the different sensors at the same 

coordinate frame. Later, they are related with the time when the detections are performed. 

Usually the different sensors perform the detections at different times, so special care should 

be taken when fusing data, given the time delays. 

 There are other problems related to data alignment, as with measurements in different 

units. But for the present work, coordinate alignment and time synchronization are the main 

problems that should be taken into account. The next section depicts the different possibilities 

and solutions for these two problems. 

a) Time alignment 

Time alignment is very specific for the sensors used in each application, and usually this 

problem is very difficult to solve. Although there are no general techniques, some typical 

examples will be presented, as well as their typical solutions: 
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Figure 4.12. Sensors’ behavior where all sensors are periodic. Periods do not have to be equal. 

Two kinds of nodes or sensors can be differentiated according to the time scheduling, 

synchronous and asynchronous (or event-oriented). Periodic sensors give a detection every 

time. Asynchronous sensors, so called event-oriented, are those sensors in which it is not 

possible to know in advance when the detections are performed. Thus, the system is waiting 

for a detection or “event” at any time. According to this, the basic scenarios found are 

represented in figures Figure 4.13 and Figure 4.14: 

 

Figure 4.13. Sensors behavior when some sensors are event-oriented some other are periodical. 
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Figure 4.14. Sensors behavior when all sensors are event-oriented. 

When all sensors have synchronous behavior (Figure 2.14), depending on the time 

requirements (real time applications, delays, etc.) different procedures can be accomplished: 

 When real time performance is important, the highest acquisition frequency sensor is 

usually the main sensor and lower frequency ones are usually used for back up. This 

occurs because of the importance of the fast response time with these applications. 

 When the performance of detections is the key point, information from all the sensors 

is sensitive, highest sensor period can be used as an estimation point. In this case, 

detections performed by the fastest sensor can be translated to the time where 

lowest detection is performed (e.g. to use movement of a vehicle to infer where the 

delayed detection is in the current time). 

In systems where asynchronous detections are present, time alignment is less intuitive. The 

nature of the applications, and the sensors involved, subordinate the time alignment. When 

there is a sensor that periodically receives information (Figure 4.13), it is intuitive to use the 

period of the sensor as a time base for estimation purposes, since the time of the subsequent 

detections is known, and then use the events based sensors to corroborate or discard the 

detections. When no periodic sensors are available (Figure 4.14), a pre-established period can 

be utilized in case periodical updates are necessary or estimation methods that do not need 

periodical updates (e. g. Kalman Filters) can be used to estimate the position of targets in 

future situations.  
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b) Coordinate space alignment 

Sensors are located in different positions, angles, etc. Therefore, measurements are usually 

referenced to different coordinate systems. Figure 4.15 shows the different coordinate 

systems when dealing with two sensors, image and laser scanner.  Image coordinate system is 

based on pixels (u,v), and laser scanner coordinate is a 3D Cartesian coordinate system given in 

meters. Its origin and units are totally different (pixels vs meters).  

 

Figure 4.15. Two reference points for image and laser scanner. Laser scanner detections are shown, with 
pedestrian detection in horizontal rectangles. Vertical rectangles show the image detections. 

Coordinate changes are dependent on the situation of every sensor and the applications (e. 

g. sensors located in a different position in a vehicle), as well as the physical phenomenon that 

every sensor measures. Thus, the space alignment is application-oriented and no general 

algorithms can be found. 

4.2.2 Solution Proposed 

The obstacles detected by the laser scanner were translated to the camera coordinate 

system, creating bounding boxes, where the visual based classification is performed. To 

perform this coordinate change some processes were necessary. After obstacle clustering, 

performed by the laser scanner, the main properties of the obstacles were checked and a set 

of obstacles was created. Later, coordinate transformation was mandatory to translate these 

points to the visual coordinate system, this was a change of coordinates from 2D plane to 
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another 2D coordinate system, but the coordinates to transform are not the same, since the 

planes refer to different coordinates (x,y) vs (x,z). Figure 4.16 shows the different coordinate 

systems. All detections must be referred to the central part of the front bumper of the vehicle.  

 

Figure 4.16. Different coordinate systems: (xc,yc,zc) are camera coordinate system, (xl,yl,zl) is the laser coordinate 
system, and (xv,yv,zv) is the coordinate system of the vehicle. Coordinates (u,v) are the image coordinates. 

a) Coordinate change 

The coordinate changes are similar to the rotation and translation performed by the 

movement compensation of the vehicle in the laser scanner shown in (1), but with some 

changes, as is depicted in (14) . In this case, the rotation angles correspond to the angles of 

rotation between the different coordinate systems. The translation vector T corresponds to 

the distance from the laser scanner to the camera. 

 

  

  
  

     

  

  

  
     

  

(14) 

 

where R is the rotation matrix shown in (1) corresponding to the Euler angles that represent 

rotation between the different coordinate systems. T is the translation vector    

  

  

  
  that 

corresponds to the distance between the coordinate systems, shown in Figure 4.16 , (xc,yc,zc)  

are the camera coordinates and (xl,yl,zl) the laser scanner coordinates. 
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After changing the coordinate system to the camera coordinates, the ROIs have to be 

transformed to the camera coordinate system (u,v) through pin-hole model.  

  
 
 
 
   

    

    

   

  

  

  
  

  
(15) 

 

where     and   are the center coordinates of the camera coordinate system in pixels. (u,v) 

are the coordinates in the camera coordinate system in pixels. xc yc and zc are the Cartesian 

coordinates from camera. And f is the focal length. 

 

Figure 4.17. Bounding boxes (left) and laser scanner detection (right). For vehicles, small obstacles are filtered, 
thus only big obstacles are considered interesting to perform vehicle detection. 

After the coordinate changes, two different kinds of bounding box sets were created. First, 

bounding boxes of low and medium size obstacles were created. These bounding boxes were 

used to search for pedestrians using visual procedures. Later, higher sizes bounding boxes 

were used to perform vehicle classification based on visual procedures. These visual 

procedures will be explained in section 4.3. 

b) Extrinsic calibration 

Extrinsic parameters of both sensors had to be measured to allow an accurate coordinate 

translation. Intrinsic calibration was not necessary since both subsystems were provided with 

these parameters. 
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Before proceeding to an accurate extrinsic calculation, important extrinsic parameters had 

to be identified. According to equation (14) and Figure 4.16, the important extrinsic 

parameters are: 

 (xt,yt,zt) These correspond to the distances from the laser scanner to the camera in the 

coordinate system. The distances from the sensors to the center of the vehicle’s front 

bumper should also be measured. These distances could be measured manually. 

 Euler angles among the different coordinate system. The most important issue was the 

change from laser scanner to the camera coordinate systems, since this was a difficult 

task to measure accurately. To perform this, a supervised method was created, which 

allows performing this calibration by an online procedure. Images were taken with 

several obstacles that allow measurement of all angles and to check changes in the 

projection. By projecting the points of the image online, the difference between the 

points and the image could be measured. The results were stored in a configuration 

file to be loaded automatically in future executions (Figure 4.18). 

 

Figure 4.18. Example of two calibration sequences where the Euler angles are corrected, varying the parameters 
shown in the red circle (yaw,pitch,roll angles and x,y,z distances between coordinates axes). 

 Euler angles of the isolated laser scanner coordinate system should be accurately 

measured. The single layer scanner property creates a limitation not only due to the 

limited information, but also for the extreme dependence on the pitch angle. To avoid 

this inconvenience, first an accurate measurement of the Euler angles should be 

accomplished. Later, pitching movement should be monitored to detect extreme 
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changes caused by pitching variations that could lead to misdetections. Figure 4.19 

shows how accuracy in this pitching calibration should be accomplished. For a 

pedestrian of 1.80 meters at a distance of 50 meters (the laser scanner maximum 

distance configuration is at 82 meters), a pitching angle higher than 1.37 degrees 

means that the beam of the angle would go over the head of the pedestrian. As a 

consequence, no detection by any or both sensors would be performed. Manual 

calibration was performed to assure that the pedestrian was detected at maximum 

distance. 

 

Figure 4.19. Maximum pitching error angle allowed representation. According to the distance and the pedestrian 
height. 

Although other Euler angles’ error were considered irrelevant, inertial system 

mounted in the top of the laser was used both to check the other angles and to detect 

strong pitching movements. Since the inertial system returned angular movement, 

strong pitching movement could be detected, and in these situations, lasers scanner 

detection was discarded. 

 

Figure 4.20. Laser scanner detail with the inertial measurement system mounted in the top. Frontal view (left) 
and top view (right). 
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c) Time alignment 

Taking into account time constraints, the laser scanner period was used as a reference 

period since the scanning frequency is higher, giving a full scan every 52 milliseconds. The time 

consumed to perform the classification is insignificant enough to not add any delays in the 

process. The selected camera with the subsequent processing time was more time consuming, 

giving a variable time depending on the amount of ROIs. Detections given by the camera were 

translated to the next laser scanner detection as in Figure 4.21.  

Figure 4.21. depicts what happened every time an image or a laser scanner is received and 

processed. The fastest algorithm from the laser scanner allows it to be processed without 

delay. The camera, on the other hand, has more computational cost that could produce delays 

in the acquisition, giving a lower acquisition frequency than the expected (aprox. 100 

milliseconds). Besides, the divergence in the amount of bounding boxes and the computational 

cost algorithm causes a problem. Any vision detection that has a variable delay makes it more 

unreliable for synchronizing purposes than the laser scanner period.   

 

Figure 4.21. Temporal representation of a sequence, the laser scanner has a fixed temporized thanks to the faster 
algorithm and the faster period. Every lecture from the camera (in red) is extrapolated to the next lecture of the 

laser scanner (in blue). 

One extreme example of this non-synchronization is given in Figure 4.22. The size of the 

bounding boxes was designed to be big enough to take these delays into account.  
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Figure 4.22. Extreme example of the non-synchronization given by the laser and the image. Laser scanner 
performs the detection with some delay with the camera detection. 

4.3 Vision Based Classification 

Two kinds of obstacles were taken into account for vision-based classification: vehicles and 

pedestrians. As remarked in previous chapters, the scope of the present thesis is to prove that 

laser scanner and fusion can help overcome some of the limitations given by the classic vision 

based procedure. In the present section, these approaches used for vehicle and pedestrian 

classification are described. The basic explanation is provided, as well as the references for 

further information. Again it should be remarked that it is out of the scope of the present 

thesis to provide a novel approach based in vision, thus the present chapter is limited to an 

explanation of the algorithms used. 

Previous sections explained the laser scanned based bounding boxes creation process. 

Once these bounding boxes are provided for the visual module, each one of them is checked 

with the subsequent algorithms to check if the obstacles inside the box represent pedestrians 

or vehicles. 

4.3.1 Pedestrian Classification 

Pedestrian classification was based in the Histrograms of Oriented Gradients (HOG) that 

were originally used for human detection in [83]. The final classification is performed with 

Support Vector Machine classifier.  
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Histogram of Oriented Gradients 

The theory after the HOG feature description is based on local appearance and shape of all 

objects in an image, which can be described by the distribution of intensity gradients or edge 

directions. The implementation divides the image into small-connected regions (cells) that can 

have different shapes (circles or squares). For each cell a histogram of gradient directions (or 

edge orientations) for the pixels within the cell is compiled. The combination of all these 

histograms represents the descriptor of the image.  

Some improvements can be performed through the original algorithms to improve the 

accuracy of the method, such as changing the size or shape of the cells. Another typical 

improvement is to divide the image in blocks bigger than the cells where the intensity is 

measured to perform local histogram normalization within the cells of the block. This 

normalization results in better performance against illumination changes and shadowing. 

 The main advantage of HOG features over other descriptor methods is that it operates in 

local cells, which means that it is invariant to geometric and photometric variations. On the 

other hand, the main disadvantage is the object orientation is dependency. With pedestrians, 

the different orientations of the pedestrian could lead to some misdetections. To solve this 

problem authors (Dalai and Triggs) explained that fine orientation sampling, coarse special 

sampling and the previously explained photometric normalization could help to avoid these 

misdetections due to the movement of the pedestrians.  

The algorithms steps followed to perform the pedestrian detection based in HOG features 

is composed of a preprocessing stage, gradient computation, orientation binning, description 

blocks, blocks normalization and SVM classification . 

a) Preprocessing stage 

Any visual procedure first needs a preprocessing stage. In this case, this preprocessing is 

not such an important step. Dalal and Triggs pointed out that this preprocessing stage is not 

such an important step, achieving the same results even avoiding this stage. Authors tested 

Gaussian, smoothing the preprocessing stage, but no improvements were obtained. 

b) Gradient computation 

Since the preprocessing stage could be avoided, the first step usually consists of calculating 

the gradients. This is usually performed with a Sobel mask of 1-D centered point discrete mask 



4. OBSTACLE DETECTION AND CLASSIFICATION 

Fernando García Fernández 76 
 

in one or both of the horizontal and vertical directions. Other masks could be used, but for the 

specific case of human classification those masks did not show better performance. 

c) Orientation binning 

The next step contains the calculations of the cell histogram. Each pixel within this cells 

computes with a vote that is weighted (whether by the gradient magnitude itself or some 

function of the magnitude). These weighted votes compute for an orientation-based histogram 

channel consisting of the values found in the gradient computation performed before.  

As previously stated, these cells can have different shapes: rectangular or radial. The 

histograms channels can be spread over 0 to 180 degrees (unsigned) or 0 to 360 degrees 

(signed). 

Dalai and Triggs used unsigned gradients and 9 histogram channels for their approach.  

d) Description blocks 

In order to avoid errors due to illumination and contrasts, the gradient strengths should be 

locally normalized. The final descriptor is the vector of all components of the normalized cells 

from all the blocks in the detection windows. These blocks usually overlap; thus, cells 

contribute to more than one block to the descriptor.  

Two kinds of geometry blocks are used: R-HOG (rectangular) and C-HOG (circular).  The first 

is square grids represented by three parameters: number of cells per block, number of pixels 

per cell and number of channels per cell histogram. Dalal and Trigger optimal parameters in 

their experiments were 3x3 cellblocks of 6x6 pixels cells with 9 histograms. Later, this can be 

found in two variants: central cell and angularly divided central cell. Four parameters are used 

to describe these blocks: number of angular and radial bins, radius of the center bin, and the 

expansion factor for the radius of additional radial bins.  

e) Blocks normalization 

Up to four different approaches for the normalization process are given in [83], which all 

show the same performance more or less. 

f) SVM classification 

The final step is the classification process using Histogram Orient Gradient descriptors. The 

previously described descriptors were first trained for the Support Vector Machine (SVM) 
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classifier. SVM is a binary classifier that looks for the optimal hyperplane for a decision 

function. It is a machine-learning algorithm very spread in computer vision approaches.  

Figure 4.23 shows examples given by the author of the HOG features. 

 

Figure 4.23. Figure taken from the original paper of HOG features for pedestrian detection [83]. (a) The average 
gradient image over the training examples. (b) Each “pixel” shows the maximum positive SVM weight in the block 

centered on the pixel. (c) Likewise for the negative SVM weights. (d) A test image. (e) It’s computed R-HOG 
descriptor. (f,g) The R-HOG descriptor weighted by respectively the positive and the negative SVM weights. 

The approach used for the present work was based on the OpenCV 2.0 [95] (Open 

Computer Vision library) pedestrian detection Approach. Examples of pedestrian detections 

are found in Figure 4.24. 

 

Figure 4.24. Examples of the pedestrian detection (red boxes) in images using HOG features. 
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4.3.2 Vehicle Classification 

Vehicle classification system, used for the present approach, was based in the Haar-Like 

features presented by Viola and Jones [78]. This approach is based on the use of fast Adaboost 

classifiers and simple features that allow to classifying obstacles in a fast and reliable way. By 

checking a high amount of features in different training images, the algorithm can select those 

relevant features that provide reliable detection in a fast way, according to the obstacles to 

classify. 

Viola and Jones presented definitions of simple image based features. These features are 

obtained in a fast and sequential way using sums and subtractions of the values of pixels in 

certain regions. Finally, Adaboost selected the best features for machine-learning schemes 

[96]. Cascade classifiers, based on these simple features, are created, which result in a 

sequential classification. 

a) Feature creation and selection 

Viola and Jones remark in their work that even though the definition of the features used in 

their work is simple and primitive, compared to other more sophisticated approaches, it is one 

of the more positive points of theirs, since they can be calculated in a fast way, providing 

similar or even better results. Furthermore, these features offer a rich image representation. In 

the example application given by the authors, a facial detection is provided. Because of these 

features, regions of the image, important for facial detection such as eyes, mouth, etc., are 

identified in an efficient way. 

Four kinds of features were defined. Figure 4.25 presents these features. The pixels in the 

squares are summed. Then the values of the sums of different squares (with different colors in 

Figure 4.25) are subtracted. Two two-square features were created, a three-square feature and 

a four-square feature. 

Numerous features were created in the fixed window. For a simple image, the number of 

features is far greater than the number of pixels. Thus, to reduce the amount of features, a 

training process based on Adaboost reduces the number of features leaving only the ones that 

proved to be relevant in the training sequence. 
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Figure 4.25. Haar-like features defined by Viola and Jones [78]. 

The selection reduces the number of features and creates an Adaboost approach. This 

approach is based on small, very simple decisors, which separate detections into basic stages 

that check a simple feature within the limits. Therefore, a cascade classifier, which uses these 

simple decisors in a sequential way, checks for these features one by one. In each stage, if one 

feature fits the threshold, the next feature is checked; otherwise the candidate is rejected. This 

way the hierarchy of features can combine the recurrence of features to provide a fast and 

reliable classification. Figure 4.26 gives a scheme of one of these classifiers.  

 

Figure 4.26. Cascade classifier definition given in [78]. 

b) Adaboost classification 

Adaboost machine-learning algorithms is a method that divides the classify problem in 

small classifiers, weak classifiers. These weak classifiers commonly check the features 
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separately. Thus by combining several layers of weak classifiers in different ways, a more 

powerful and robust classifier is created.  

Viola and Jones proposed a weak classifier for a given feature:  

       
                     

                       
   (16) 

where       is the classifier,       is a given feature,   is the threshold and pi is the parity 

indicating the direction of the inequity sign. 

By combining these weak classifiers in a cascade, the classifier can select using these simple 

features in a robust way (Figure 4.26). 

Haar-like feature classifier was utilized to perform the vehicle classification. Here again 

OpenCV provides the tools to perform this classification. OpenCV was used both to train the 

classifier and to perform the classification. Figure 4.27 shows some examples of vehicle 

detection based on the Haar-like features. 

 

Figure 4.27. Example of Haar-Like feature based vehicle detection (red boxes). 
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CHAPTER 5.  
TRACKING AND DATA 
ASSOCIATION 

The present chapter deals with a common problem in Data Fusion application, Multiple 

Target Tracking (MTT). As explained in chapter 2, two main processes are related to this task.  

 Position estimation. This is one of the main issues when dealing with MTT applications 

since this estimation allows analyzing and inferring the movements of the different 

targets found. In the present chapter several approaches for estimation tracking are 

detailed. Chapter 6 provides results with comparison of the different approaches 

presented in this chapter. 

 Data association is mandatory. Usually data association has two processes: first, data 

association from the different sensors is necessary to recognize which detections 

correspond to the same obstacles. Second, the association of the new detection with 

past detections (so called tracks) helps to determine the trajectories of the different 

obstacles found along time in the environment.  

For the present approach, data association from different sensors is inherent to the 

algorithms explained in previous chapters. Both sensors perform the classification over 

the same set of obstacles, detected using laser scanners. Hence no special process is 

necessary for this purpose.  

Second association problem is going to be explained in present chapter, paying 

attention to the different possibilities implemented. Chapter 6 provides the 

comparison of the different association algorithms. 

Some other issues related with MTT will be described in the present chapter, target 

management, Gating procedures, distances, etc. First a theoretical explanation of the 

algorithms used is given, and later the implementation necessary to add Data Fusion to the 

basic approaches is detailed. 
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Finally, threat assessment is explained in the last section of the chapter. The danger that 

any of the detections represent is calculated using context information and inertial system, 

solving Fusion levels 2 and 3. 

5.1 Position Estimation 

Position estimation is a key point in target detection and tracking. The idea is to be able to 

estimate, according to measurements where the target is going to be after a given time, 

whether to predict the movement or to keep a track of the movement of the target. 

Formulation: 

Let it be a system in which the state is described by the state vector X. It evolves according 

to the following model: 

                  (17) 

where Xk is the state vector at time tk, Uk is a known input at time tk, Wk is a random system 

noise. Function f is called system transfer function and it is assumed to be known.  

At an instant k+1 a vector Zk+1 of measurements is received. These measurements are 

related to the state vector via the measurements equation:  

               (18) 

where Xk is the state vector at time tk and Vk is a white noise that affects the measures. It is 

assumed to be an uncorrelated random variables vector. The system model would be 

represented as follows: 

                  (19) 

             (20) 

where matrixes F is the state transition model matrix and H is the observation model matrix 

that matches the true state space into the observed space. Figure 5.1 shows the block diagram 

of the model. 

It has to be remarked that the discrete system presented in previous equations has some 

assumptions: 
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 It is considered that the future state of the system only depends on the current state 

and the new inputs. This is called a Markov process. 

 Transition and observation matrixes are considered to be known. 

 

Figure 5.1. Block diagram of the model of the general system. 

5.1.1 Classic Estimators 

In target tracking the model is usually adopted with input U=0. Since the models for targets 

have the information limited to the positions, and sometimes some extra information related 

to velocity is added [97]. This block diagram is represented in Figure 5.2. 

The classic estimation process is a recursive process, as it is shown in Figure 5.2. This 

recursive processing is also used in other estimator methods that will be explained later. 

1. Prediction. The state       is predicted according to the model. 

2. Correction. Here the predicted output Yk|k-1 is compared to the real measurements and 

the estimation matrix (Kk) is corrected according to this difference. The method 

depends on the algorithm used to perform this correction. Although all of them try to 

minimize the estimation error.  

The main disadvantage of the model is that it is weakly modeled against the uncertainty of 

the model, since both system and measurement noise are not taken into account in the 

estimation of the state. Therefore, classic estimators are only useful for observation or short 

time period tracking that avoids noise to diverge the estimations. 
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Figure 5.2. General block diagram for target tracking. 

5.1.2 Kalman Filter 

Kalman Filter (KF) was proposed in 1960 [98]. It is used to obtain the solution that 

minimized the estimation error by a recursive formulation of the classic estimator.  

Some restrictions are assumed: 

 The system model is assumed to be lineal. In case of no lineal model, some extension 

to the Kalman Filter has been proposed such as the Extended Kalman Filter [97] or 

Unscented Kalman Filtering [99], which are explained in this section. 

 The system and measurement noises are considered to be zero-mean, white, Gaussian 

processes with known covariance Qk and Rk respectively. Thus in this way, KF 

incorporates the uncertainty into the model, which lacked the classic estimators 

presented before. 

The two stages of the estimator for Kalman Filtering are: 

1. Prediction. 

In this stage, the state vector Xk at time tk is estimated according to the model and 

previous state at time tk-1, that is:         .  Also at this stage the covariance of the error 

is predicted (       ). Equation (21) and (22) depicts this prediction process. 

                          (21) 
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       (22) 

2. Update stage. 

According to the measure vector Zk , the model and the previously calculated 

      , the estimation matrix Kk, also called Optimal Kalman Gain, is calculated.  This 

Gain is used to actualize the state vector and the covariance matrix for the time tk. As 

it is described in equation (23) to (27): 

Innovation or measurement residual  

                  (23) 

Innovation (or residual) covariance  

              
     (24) 

Optimal Kalman gain  

            
      (25) 

Updated (a posteriori) state estimate  

                    (26) 

Updated (a posteriori) estimate covariance  

                (27) 

Although KF is a very well known tool that has proved through the years its utility, the 

above restrictions make that the accuracy obtained by the Kalman Filter is only obtained when 

the model fits these constraints. When dealing with non-lineal models, Extended Kalman Filter 

(EKF) and Unscented Kalman Filter (UKF) are the two main proposals that can solve the 

problem of dealing with linear filters tracking problem. 

Another problem related with Kalman Filtering is that it is an unimodal filter. It means it can 

only track a single target for each filter. Thus for MTT it is necessary to create a Kalman Filter 

for every target to track.  

In the next sections the different methodologies that try to solve the non-linearity problem 

related to the estimation filters are described i.e. EKF and UKF. 
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5.1.3 Extended Kalman Filter 

The extended Kalman Filter is the nonlinear version of the Kalman Filter which linealizes 

about an estimation of the current mean and covariance. In the case of well defined models it 

is considered the de-facto standard for nonlinear sate estimators, navigation systems and GPS.  

In the Extended Kalman Filters, state transition and observation models (f and h in 

equations (17) and (18) of the system models and repeated in (28) and (29) for self content) 

don’t need to be lineal functions, but differentiable functions.  

                  (28) 

             (29) 

The functions f and h can be used to predict the state in the next time k+1 and to compute 

the predicted measurement from the predicted state. But these functions cannot be applied to 

the covariance matrix directly; instead a matrix of partial derivatives (the Jacobian) is 

computed. In this way a linearization about the estimated mean and covariance is 

accomplished by performing multivariable Taylor Series expansion method (37) and (38). 

Thus the equations (19) to (27) of the Kalman Filter finally are calculated as follows: 

Prediction: 

 

                          (30) 

                          
       (31) 

Update stage 

Innovation or measurement residual  

                    (32) 

Innovation (or residual) covariance  

                
     (33) 

Optimal Kalman gain  

             
      (34) 

Updated (a posteriori) state estimate  
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                    (35) 

Updated (a posteriori) estimate covariance  

                 (36) 

where transition and observation matrixes are defined to be the following Jacobians: 

         

  
 
            

 
(37) 

       

  
 
       

 
(38) 

Although it has been proved to be the best and de facto standard for well modeled system 

with nonlinearities, several drawbacks are commonly accepted:  

 If the initial estimation of the state is wrong, or if the process is incorrectly 

modeled, the filter may quickly diverge.  

 Also, the estimated covariance matrix tends to underestimate the true covariance 

matrix; therefore, there are risks to become inconsistent in the statistical sense. 

Julier S.J. and Uhlmann [100] in the proposal of Unscented Kalman Filtering explained the 

drawbacks of the EKF as follows: 

“The extended Kalman filter (EKF) is probably the most widely used estimation algorithm for 

nonlinear systems. However, more than 35 years of experience in the estimation community 

has shown that is difficult to implement, difficult to tune, and only reliable for systems that are 

almost linear on the time scale of the updates. Many of these difficulties arise from its use of 

linearization."  

5.1.4 Unscented Kalman Filter 

When the previously presented functions f and h (state transition function and 

observational model) are highly non lineal, the EKF usually gives poor results. The reason for 

this bad performance is the propagation of the covariance through the linearization of a strong 

non-lineal model. The unscented Kalman Filter [100] is a deterministic based approximation 

method that is becoming popular in the latest years, providing more accurate results than EKF 

for strong non-linear models.  
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The UKF uses a deterministic sampling technique, the Unscented Transform, to create a 

minimal set of sample points (sigma points) around the mean of the state estimated. The 

sigma points are then propagated through the non-lineal functions from which the mean and 

the covariance of the estimate are then recovered. Besides the better performance obtained, 

the process followed has less computational cost since the calculation of the Jacobians is 

avoided. 

As with the EKF, the UKF prediction can be used independently from the UKF update, in 

combination with a linear (or indeed EKF) update, or vice versa. For the present approach the 

model used is a lineal model although the real movement of the pedestrians could present 

non-linealities. Thus, this last assumption was utilized, using a lineal model for the predictions, 

by means of the UKF the non-linealities under the model trying to be solved.  

Formulation of UKF 

Prediction:  

The estimated state and covariance are augmented with the mean and covariance of the 

process noise. 

  
             

            
   

 
 

(39) 

  
          

         

   
  

(40) 

A set of 2L+1 sigma points is derived from the augmented state and covariance where L is 

the dimension of the augmented state. 

  
           

         

  
           

                 
        

 

       
(41) 

  
           

                 
        

   

           
 

where          
        

 

 is the ith column of the matrix square root of        
        . 

The sigma points are propagated through the transition function f 

  
           

                (42) 

The weighted sigma points are recombined to produce the predicted state and covariance. 
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(43) 

           
   

      
     

           
 
     

         
  (44) 

where the weights for the state and covariance are given by: 

  
   

 

   
 

 

  
   

 

   
        

  
    

   
 

      
 

(45) 

             

  and k control the spread of the sigma points.   is related to the distribution of X. Normal 

values are       , k=0  and      if the true distribution of X is Gaussian ,     is optimal. 

For the present approach these normal values were used. 

Update 

The predicted state and covariance are augmented as before but this time with the 

mean and the covariance or the measurement error. 

  
           

          
   

 
 

 

 

(46) 

  
        

       

   
  

(47) 

As before, a set of 2L + 1 sigma points is derived from the augmented state and covariance 

where L is the dimension of the augmented state. 

  
           

         

  
           

                 
        

 

       

 

(48) 

  
           

                 
        

   

           
 

Alternatively, if the UKF prediction has been used, the sigma points themselves can be 

augmented along the following lines 
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(49) 

with    
    

  
   

  

The sigma points are projected through the observation function: 

  
       

              (50) 

The weighted sigma points are recombined to produce the predicted measurement and 

predicted measurement covariance. 

        
   

     
  (51) 

          
   

      
        

 
 
     

  (52) 

The state-measurement cross-covariance matrix,  

     
     

 

  

   

   
                

 
 
     

  

 

(53) 

is used to compute the UKF Kalman gain. 

        
     

   (54) 

And the updated covariance is the predicted covariance, minus the predicted measurement 

covariance, weighted by the Kalman gain. 

                   
    

  (55) 

5.1.5 Bayesian Estimators 

The main characteristics of these methods are that, as KF, they can deal with the 

uncertainty associated to the system and the measurements. Furthermore, the main 

advantage is that they are not as restricted as KF.  With KF the output of the filter is estimation 

with a Probability Density Function (PDF). The main difference with respect to KF is that in this 

case this PDF is a generic solution not specific for a parameterized Gaussian.   

The Bayesian methods are based in a different model than the presented before in 

equations (17) to (20) . In this case, the systems are defined by a PDF that characterizes the 

evolution of the state p(Xt|X1:t-1) vector and another for the measures vector p(Yt|Xt). Also the 

output of the estimator is not a deterministic value but a PDF associated to the estimation of 
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the estate vector, based only on the observed data p(Xk|Y1:k), It is also called the posterior 

distribution. Where k is the actual time tk and Y1:k are the measurements from the initial 

instant t=0 to the last measure tk. This value is calculated using the Bayes rule in the recursive 

Bayesian Filter. 

            
                           

            

 

 (56) 

Using the assumptions of the Markov model (state Xk is only dependant on the previous 

state and the input) and the fact that              is the normalization factor that usually is 

represented as ŋ. Equation (56) can be converted to: 

                                  (57) 

Thus the recursive formulation would be as follows: 

                                                 
(58) 

In equation (58) it is represented both stages prediction and correction: 

 Prediction 

Where the a priori probability of the state vector is obtained for the time tk 

this is obtained from the previous estimation                

             
                            

 
 

(59) 

 Correction 

The a priori probability in (59) and the observation model given in          

are used to obtain the estimation value in the time tk.  

Once the Bayes filter has been presented, it has to be remarked that there is no 

implementation of the Bayes Filter in the continuous space. This is because the integral that it 

includes makes it necessary to take into account all the possible states. Thus, there are 

different versions of the Bayes Filters according to the different assumptions done. Kalman 

Filter explained before it is the only implementation of the Bayes Filter in the continuous space 

and it is done thanks to the assumptions related to the nature of the model and the noise 

involved. 



5. TRACKING AND DATA ASSOCIATION 

Fernando García Fernández 92 
 

All the other implementations of the Bayes Filter are obtained by discretizing any of the 

PDF involved in the filter. Depending on the variable discretized, different algorithms that have 

been used to solve different problems can be found.  

One of the typical problems solved with the Bayes filter is Mapping, localization or 

Simultanous Mapping and Localization (SLAM), by using the discretization of the state space 

using cells in the mapping procedure. These cell maps or grid maps [101] are commonly found 

also for automotive and fusion applications [102] [31] [103][104] and [105]. 

Particle Filter is a discretized version of the Bayes Estimator that makes it more 

computationally efficient. It uses a discretized a posteriori probability using a space including 

only the most probable values of it. Thus, it is possible to give a robust and accurate estimation 

using Bayes Filter. 

The estimation given by the particle filter, using the classical approaches, is based in the 

uni-modal approach [106]; it means that a particle filter would be necessary for each target. 

This classic model was used in the present approach, test results are presented in chapter 6. 

Recent approaches try to give multimodal solution to the estimation problem, thus a single 

particle filter can be used to track all the targets at once [107].  

5.2 Association Methods  

New observations provided by the sensors should be correlated with the estimated from 

previous detections in order to track the movements of the targets. Association methods are 

crucial in Multiple Target Tracking mainly in clouded environments where it is difficult to 

differentiate among detections that correspond to the different targets. In this thesis, 

especially taking into account pedestrians and vehicle detections, the process in eventual 

situations can become very cloudy, thus this step has to be carefully taken into account. For 

this reason, several association methods were tested and they are detailed in the present 

chapter, providing several possible configurations. These configurations and the different 

estimation techniques that were tested provide a set of solutions based in Data Fusion, able to 

adapt to a wide variety of situations in road environments. 

The first step in any association method is to reduce the candidates for each association. 

This technique, called Gating, consists of the reduction of the association possibilities by 

reducing the candidates for a given association to the most likely. Not likely associations, such 



DATA FUSION ARCHITECTURE FOR INTELLIGENT VEHICLES 

Fernando García Fernández 93 
 

as distant or low probability ones, are discarded. As a result, the computational cost of the 

subsequent association algorithm is reduced. 

In this section, the theoretical definition of the association technique is provided. The next 

section depicts the Data Fusion implementations proposed for road environments. 

5.2.1 Gating Techniques 

The idea of gating is to reduce the amount of measurements taken into account when 

performing the association with old tracks. Using gating techniques, unlikely pairs are 

eliminated. The algorithm can then focus on the most likely pairs, reducing the computational 

costs.  

Basic tracking algorithms, mainly based on the Kalman Filter, use the measurement and 

standard deviations to create some of the simplest gating techniques determined by the 

accuracy of the measurements. These basic techniques are Rectangular Gates and Ellipsoidal 

Gates [15] and [16].  

Rectangular gates utilize a rectangle using the mentioned standard deviation. Hence, only 

new detections within the limits of the rectangles, calculated using equations (60) and (61), are 

taken into account for the association method.  

               (60) 

where yl is the new observation and     the estimated position of the tracks, thus only the 

observation which difference from the previous track match this inequity are taken into 

account in the data association process. And    is defined, taking into account the errors of the 

observation and the predictions (equation (61)). KGl is a constant value that is defined 

according to the application. Typically it’s chosen       3. 

      
    

  
(61) 

where    is the measurement error and   the appropriate diagonal element taken from the 

KF covariance matrix. 

Ellipsoidal Gates use ellipsoids based in standard deviation to perform the gating [15] and 

[16]. 

Once the Gating procedure is performed, next step in the association process is to perform 

the association according to the method selected.  
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5.2.2 Global Nearest Neighbor (GNN) 

This approach is also defined as single hypothesis tracking, this is due to the fact that only 

the most likely hypothesis in each detection is taken into account, and all other options are 

discarded. This is the simplest and probably the most widely applied method for tracking.  

Track association methods also have to deal with the track deletion and track creation. 

Here GNN can deal with scores that can be computed to creation and deletion, but the most 

common method used is a simple M/N rule for confirmation and a ND consecutive misses for 

track deletion. 

GNN’s main difficulty is the association of common or conflict situations. It is typically found 

in a cloudy situation when more than one observation is within the limit of the gating (Figure 

5.3).  

 

Figure 5.3. GNN uncertainty problem. Crosses represent new observations, and points the old tracks, circles are 
the Gating. This situation some of the new detections are difficult to assign to the old tracks because they fall in 

the gating of more than one track. 

To solve this problem, the metric, or cost, used to decide which is the most likely 

association is important. One example of it, presented in equation (62) is the generalized 

statistical distance that penalizes those tracks with less certainty [108] and [109]. 

    

     
            (62) 

 

where dij is the distance and           is the logarithm of the residual covariance . 
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Given this distance shown in equation (62), the typical approach uses a matrix, called 

assignment matrix, that combines the old tracks, detections and new tracks. The way of solving 

this assignment for a given matrix can vary and is dependent on the available information and 

the metric [15].  

5.2.3 Multiple Hypothesis Tracker (MHT) 

This method is based on the idea of tracking all the possible hypotheses along time [68]. 

This way each iteration gives a global solution at time tk.  

This association method implicit generates new targets; therefore, it is especially useful for 

MTT applications. But the main disadvantage is that the amount of tracks that it exponentially 

generates is impossible to deal with after a few iterations. Here is where simplifications of the 

basic method allow creating real time applications.  

 Pruning methods that allow eliminating or merging different tracks, whether or not 

likely to be real or to put together more similarly. 

 Temporal windows that allow eliminating those tracks that haven’t been found 

during the last iterations. This process can be included in the previously presented 

pruning process and are very common, not only in MHT but other association 

methods. 

 Gating. The idea is to use the gate to limit the amount of tracks. As a result, only the 

observation inside the gate (the most likely) will be added to the multiple hypotheses 

set of tracks. 

Kalman Filter is the most typical estimator that is used with this association method [68], 

[110] and [103].  

Once the estate vector is predicted for each track, and the association is done for the given 

observations, the estate is actualized for each track. When the model allows more than one 

association for each target, the state correction shown in equation (22) (so called innovation or 

residual measurement) is corrected through the combination of statistical values (e.g. mean) 

of all hypotheses. The resulting PDF is a Gaussian mixture because in this case, KF is being 

used. Where the system is not linear EKF [111] or PF [112]can be used. 
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5.2.4 Probabilistic Data Association (PDA) 

These methods calculate the probability that a given observation corresponds to a given 

object being tracked or does not correspond to it, and use it, not only to select which is the 

best option, but also to actualize the filter. 

Here we should introduce the clutter, it is a fake measurement that is usually added for 

mathematical integrity and represents a non-association. If a track is associated with the 

clutter, it means there is no association for a track in that given time. 

PDA is a process created to track a single object, where it checks the probability of an 

observation to be associated or not with the track. Joint Probabilistic Data Association, which 

will be explained later, is the extension of PDA that takes into account multiple target 

interactions. Another property of this algorithm is that on its original version it takes into 

account all the measurements from the beginning to a given time tk.  

Gating is usually introduced to reduce the computational costs as well as other assumptions 

that help the algorithms to be feasible for real time, even though it compromises the 

effectiveness of the algorithms. Some of these assumptions are pruning low probability values, 

or to use only the instantaneous values for a time tk instead of all of the historical or other 

values. 

Typically PDA is found in target applications with a Kalman Filter. This is called Probabilistic 

Data Association Filter (PDAF), and it is similar to MHT, described earlier. The main difference 

is that it is single target oriented and probabilistic, thus the measurements Y1:m (where m is the 

number of observations available in a time tk) are combined in the update stage associated by 

its probability p1:m that is generated by the PDA algorithm [97]. 

Equations (23) and (26) of the KF becomes equations (63) and (64): 

                        

 

   

 
(63) 

                   (64) 

In equation (63) and (64) the innovation or residual Rk is calculated, taking into account all 

the different possibilities according to their probabilities p1:m given by the PDA algorithm. 
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5.2.5 Joint Probabilistic Data Association (JPDA) 

PDA is object oriented, and thus approaches with multiple targets are not easily 

implemented. Extension using different PDAF for each target could be done, but the lack of 

interaction between tracks (e.g. track crossing) makes it an inefficient tool when dealing with 

multiple tracks.  

JPDA is the extension of the PDA, taking into account the interaction among tracks. Each 

probability value is calculated, conditioned to the rest of measures giving         solutions 

to the joined association, where n is the number of observations and m is the number of 

overall measures. It defines the k+1 association hypotheses to each target through the joining 

of probability values p1:m,0:k . 

The computational costs of these approaches are high due to the amount of variables taken 

into account. As PDA, several approaches have tried to overcome these limitations by gating 

and pruning, among other procedures. On the other hand, the accuracy of this approach 

makes it a very interesting option, when accuracy is the main goal over other limitations.  

Application of KF with JPDA is called Joint Probabilistic Data Association Filter JPDAF. This 

procedure is similar to the previously presented PDAF. The main difference is that in this case 

Kalman Filters are presented, one for each track, and in the update stage the joined probability 

           is used to obtain the residual measurement of each one. 

Blackman, in his book [15], gives an example that helps to describe the method in a fast and 

easy way: 

Given an association problem with three observations and two tracks, the distances of the 

observations to the predictions of the gates are represented in Table 3 and shown in Figure 

5.4.(  Refers to observations out of the gates). 

Observations \Tracks 1 2 

1 1   

2         

3 2    

Table 3. Distances from the observations to the predicted positions of the tracks in the JPDA example given by 
Blackman in [15].  
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Figure 5.4. Example representation. Two tracks and three observations.  

 Besides, assuming the likelihood function associated with the assignment observation j to 

track i: 

     
  

    
 

 

             

 

(65) 

where di,j is the distance between the prediction and the observation given in Table 3. M is the 

dimension and Si,j is the residual covariance matrix. In the example used, since a Cartesian 

example was used (as it is in the approach)             and M=2 .  

Besides two probabilities should be defined β and PD as follows: 

 β represents the false positive probability. For the example β=0.003 was considered, 

 PD is the probability of detection. In the example PD=0.7. 

 Table 4 depicts the results for the likehood of each of the hypotheses where a 0 

corresponds to an unassigned track in a given observation. A common factor of βN appears in 

the case (as it is in the example) where the number of observations is higher than the tracks 

and N is the difference between those numbers. In the case where the number of tracks is 

higher than the observations, the common factor would be (1- PD).  The normalized probability 

P(Hi) is obtained from the equation (66). 

       
      

       
 
   

 
(66) 
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#Hypothesis 

 

Track 0 

 

Track 1 

Likehood of the 

Hiphotnesis 

P’(Hi) 

Normalized 

probability 

P(Hi) 

1 0 0 (1- PD) 2β3 0.011 

2 1 0 g11 PD (1- PD) β2 0.086 

3 2 0 g12 PD (1- PD) β2 0.053 

4 3 0 g13 PD (1- PD) β2 0.019 

5 0 2 g22 PD (1- PD) β2 0.041 

6 1 2 g11 g22 PD
2 β 0.306 

7 3 2 g13 g22 PD
2 β 0.068 

8 0 3 g23 PD (1- PD) β2 0.032 

9 1 3 g11 g23 PD
2 β 0.239 

10 2 3 g12 g23 PD
2 β 0.145 

Table 4. Likehood values for the example. 

Finally, to compute the probability of a given observation i to be assigned to a track j, all of 

the hypotheses with this assumption should be taken into account: 

p10 = P(H1) + P(H5) + P(H8) = 0.084. 

p11 = P(H2) + P(H6) + P(H9) = 0.631. 

p12 = P(H1) + P(H10) = 0.198. 

p13 = P(H4) + P(H7)  = 0.087. 

p20 = P(H1) + P(H2) + P(H3) + P(H4) = 0.084. 

p21 =0; 

p22 = P(H5) + P(H6) + P(H7) = 0.415. 

p20 = P(H8) + P(H9) + P(H10) = 0.416. 

Finally the assignation would be observation 1 to track 1 and observation 2 or 3 to track 2.  

One of the main discussions of the JDPA methods is the track creations, since in the 

previously presented example two tracks were considered and neither creation nor deletion is 

taken into account. In the proposal explanation, novel track creation logic is proposed, taking 
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into account the Data Fusion nature of the proposal, using two kinds of tracks consolidated 

and non consolidated. 

Finally, after the association algorithms each one of the association possibilities, within the 

gate, is used to update the Kalman Filter used for a given track.  

                                

 

   

 
(67) 

where m is the number of observations within the range of the gate and j is the corresponding 

track.      is the corresponding probability that a given observation i corresponds to a track j, 

obtained in the association process. 

5.3 Tracking and Data Association Fusion Procedures 

for Road Environments 

After the previous explanation of the different methods available for the estimation and 

association process, the next section depicts the algorithms constructed following the previous 

explained methods. MTT application based in Data Fusion is intended by using previous 

algorithms and combining them in different configurations. Chapter 6 will provide an extent 

relation of the different test performed to the different algorithms that are described in this 

section. 

Before dealing with the research of the best association solution, estimation procedure 

should be checked. Three methods were developed and tested, KF, UKF and PF. All of these 

methods are based on the presented in this chapter. Later, using the GNN approach, these 

algorithms are tested and results are presented in chapter 6. Besides, in the estimation 

process three association methods were created. The first is based on GNN, which is the 

simplest, and represents the basis of the subsequent procedures. Later, the MHT and JPDA 

methods were created and tested to check the advantages or disadvantages of the different 

procedures by giving an extent comparison of the different possibilities available.  

5.3.1 Target Model  

Thanks to the high frequency of the laser scanner, a modeling of different obstacles using 

constant velocity model could be provided. This approach is not entirely efficient, mainly in the 

case of vehicles when performing lateral movements. But, for the scope of this application 
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where the vehicles detected were mainly in interurban scenarios, lateral movements are not 

common and the fast detection of the laser scanner made this approach reliable enough 

despite the limitations. A model to track pedestrians and vehicles using the constant velocity 

model is given, modeling accelerations as the system errors. Equations (68) and (69)  present 

the system error Q and measurement error R covariance matrixes. 

  

 
 
 
 
 
 
 
 

  
     

 
     

  
   

 
              

   

  
   

 
                  

 

 
 

                        
 
 

  
  

   

 
  

   

 

 
  

   

 
  

 

 
 
 
 
 
 
 
 

 

 

(68) 

   
  

    

   
   

  
(69) 

where   
    y   

    is the standard deviation for the measures in x, y coordinates. These 

deviations have been calculated using test sequences. As both systems share the ROI 

coordinates, the deviation in the measurements is considered equal for both detections. 

The values ax and ay in equation (69) is the maximum amplitude of the acceleration in every 

axe, In the case of human as it is pointed [113], it is  11m/s2. For vehicles it was estimated up 

to 3 m/s2. 

Constant velocity model equations are depicted in Equations (70) to (73). 
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where vx and vy are the speed of the pedestrian and t is the time elapsed,    is the state vector, 

   the measurements vector, H the transition matrix and A the state transition model. 
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5.3.2 Estimation Methods 

Estimation methods developed for the present thesis included the following three: Kalman 

Filter, Unscentered Kalman Filter and Particle Filter. The next chapter depicts the results 

provided for each method in the different test performed.  

Kalman Filter approach was created using the lineal model used. Unscented Kalman filter 

allows modeling the linearity errors thanks to the unscentered solution previously explained. 

Finally, particle filter formulation allows a more general solution, in exchange of computational 

costs. These three methods were tested using Global Nearest Neighbors solution that is 

explained in the following section. 

5.3.3 Global Nearest Neighbor Solution for Data Fusion in Road Environments 

The simplest solution when dealing with any fusion applications is a GNN approach. It 

consists, as it was explained before, in the selection of the most suitable solution at a given 

time and using them in the subsequent scans, discarding the less likely ones. 

This approach represented the basis of subsequent approaches that use more complexes 

solutions (i.e. MHT and JPDA) also created in the scope of the present work. This is the reason 

that in chapter 6 the different tests that are presented compare the results obtained with 

these two approaches with the basic GNN approach. Besides, the simplicity of the algorithm 

for both developing and configuring made it the best solution for testing the estimation filters. 

Thus, the GNN approach was used to test the estimation filters presented before, for the 

target model presented. 

a) Gating and data association 

Gating is performed using a square approach (74): 

      (74) 

where   is the residual standard deviation and     is a constant that was empirically chosen . 

After gating, association is performed using normalized distance and a stability factor, 

giving less priority to less stable measures: 

   
          

  
  

          

  
            

 

(75) 
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where d is the computed distance between previous and presented tracks to be associated. 

And (        the appropriate values of covariance matrix of Kalman Filter. 

Assignment Matrix was used to track association, following a least overall cost assignment 

[16] and [15].  

b) Track creation and deletion logic 

Track creation and deletion policy follows a logic that was found empirically, and depicted 

in the next table. Two kinds of tracks were defined, consolidated and non consolidated. First 

corresponds to track detected by both sensors whether concurrently or in subsequent scans. 

Later means that a track has been detected by a single sensor, thus it is not trustable enough 

since the other sensor have not corroborated it. 

Track vs New 
observation 

Single sensor Both sensors No match 

 

Non consolidated 

If  

sensor 1= detected 

 &  

sensor 2 =detected 

them 

track consolidated.  

Otherwise  

non consolidated.  

Track updated. 

Track  consolidated. 

Track updated. 

If  

#consecutive_no_d

etections > 4 

them 

Track eliminated. 

 

Consolidated 

Track updated. Track updated. If  

#consecutive_no_d

etections > 5 

them 

Track eliminated. 

 

No match 

New  

non consolidated track 

New consolidated 

track. 

 

Table 5. Track management logic for GNN solution, according to the sensors that detects it in the updating 
process. 

The use of consolidated and non consolidated tracks helps the system to add reliability. 

Only consolidated tracks are considered trustable detections. Hence, only they are reported. 

This way false positives, mainly from the laser scanner, are discarded because detections that 

are not corroborated by the vision system are not reported. Furthermore, the use of both 

sensors, once the track is consolidated, to update the tracks, allows that once a pedestrian is 
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detected it can be tracked, even if it is not detected by one of the subsystems, e.g. when it 

goes out of the camera field of view.  These implications of the Data Fusion algorithm are tried 

in section 6 where the different tests performed are detailed. The results of the fusion 

algorithm obtained enhance the basic performances of the different sensors independently.  

c) Estimation 

As it was explained before, the association methods used for the GNN solution were three, 

KF, UKF and PF. The solution to the different tests performed, and the conclusions are given in 

Chapter 6 and 7 respectively. 

5.3.4 Multiple Hypothesis Tracker approach for Data Fusion in Road Environment  

It was previously explained that MHT approaches take into account all the possible 

combinations of the tracks with the new observations.  

One of the advantages of this approach is that it tracks all possible combinations. Thus, if in 

one of the time steps one misassociation is produced, it can be corrected in subsequent steps 

because this combination is tracked along time.  It also provides the best global solution for a 

given time. Figure 5.5 represents the process that takes part in the MHT fusion procedure. 

 

Figure 5.5 Processes for MHT Data Fusion approach for road environments. 

But also an important drawback arises: to track all the solutions there is an increase the 

computational costs and the resources required. Also, misdetections can be tracked during 
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longer time, since all the solutions are taken into account. Thus, a mechanism to allow pruning 

the unlikely tracks is necessary. 

a) Gating and data association 

A similar procedure to the GNN Gating presented in equation (74) was used to reduce the 

number of pairs taken into account, and as a result reducing the computational cost of the 

algorithm.    

A single association per observation was allowed, thus only the selected association would 

be updated regarding to the fusion information (i.e. detections performed by each sensor). All 

of the remaining possibilities would not be considered updates, although for estimation 

purposes there is state actualization. This way even though non-optimal matches would keep 

track of it after some iterations, the non updated combinations are eliminated. 

As in GGN approach, the Assignment Matrix was used to associate a given observation to 

the tracks. The distance definition remains the same as depicted in equation (75). 

The association algorithm presented creates automatically new tracks, since every 

possibility creates a different track. The previously explained updating policy allows that those 

tracks, which have a probability of being a false match, are rapidly eliminated after a few 

iterations because every detection only computes for a single track. Although in the presence 

of several tracks it can become unstable, as it is explained in chapter 6. 

b) Track management 

An MHT algorithm implicit creates tracks. Only in those iterations where a given 

observation does not match any of the tracks a new tack is created.  

The track update follows the policy that was used in GNN approach and presented in Table 

5. Only consolidated tracks are considered to be real detection. In this approach the number of 

tracks to follow can be higher mainly in a cloudy environment, although it is an important 

drawback, the solution obtained at the given time can be considered closer to the global 

solution since it takes into account combinations of longer time window. 

c) Estimation 

The estimation method used for this approach was KF, since the results obtained for the 

different estimation techniques did not differ too much, and the KF approach represented a 
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fast and reliable procedure easy to be adapted to the MHT solution, explained in the previous 

section. Single association was allowed for each observation, thus no changed should be 

necessary to the standard KF approach explained. 

5.3.5 Joint Probabilistic Data Fusion Association Filter for Road Environments 

Data fusion approach using the JPDAF (JPDA Filter) was proposed to overcome the 

limitations of the basic GNN approach and given the instability of the solution proposed with 

MHT, obtained in the different test and that is explained in chapter 6. It is based on the 

previous explanation of JPDA and combined with DF problem for road environments.  

Three steps were created in the association algorithm created for the proposal. Following a 

loop similar to the presented in GNN and MHT approaches the three steps to follow are: 

 Assignation process. Where all the joint probabilities are calculated. And a single 

assignation is performed for each track.  

 Filter updating. Following equation (52) each track filter is updated with 

information of all the observation within the gate of the track. 

 Track management. New tracks are created and deleted following the logic given by 

the fusion procedure. 

a) Assignation process 

In this step the probabilities for all possible hypotheses are computed and the joined 

probabilities calculated. Thus, an assignation matrix is created, where each row represents an 

observation, and each column a track. As a result, probabilities for all the combinations are 

computed. The assignation is performed according to this matrix. Probabilities are calculated 

using (65) and (66). 

The assignation is performed following a 1/1 assignment. It means that only one track is 

assigned to a given observation. In this way, an observation only can be assigned to a single 

track, all tracks with no assignment would increase their counter for non-detection, and if the 

counter reaches to a given value, they are eliminated. 
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b) Filter update 

According to equation (52) all the possible associations for a given track should be taken 

into account in the actualization process; thus, the correction is performed using the joined 

probabilities calculated. 

This process of updating stage takes into account all the detections within the gate. It is 

possible that a given observation is used in the update stage of the filter for more than one 

track, although it is considered to belong to a single track for the track management process. 

Thus, for track management a single assignation policy is followed, a given observation is used 

only to update the track logic of a single track. This dual behavior is one of the main 

differences to the classic JPDA filter applications. 

c) Track management 

Track management logic follows logic equal to the logic created in the GNN approach, and a 

single observation can only update the status of a single track. Consolidated and non 

consolidated tracks are also used, but only consolidated tracks are reported because they are 

the only considered reliable enough. Thus only the assigned observation can contribute to 

change the current status of a single track from non consolidated to consolidated. Table 5 

depicts the logic of this updating process. 

Track creation logic is different in this case. Only when an observation is out of the gate of 

any track, a new track is created. This solution is interesting to avoid false positives related 

with more than one camera positive detection of the same pedestrian as it will be detailed in 

chapter 6. On the other hand, two very close pedestrians could represent a problem because 

this algorithm could have difficulties to differentiate among them. But two considerations 

should be taken in these situations:  

 First, the laser scanner itself already needs the pedestrian to be separated; otherwise it 

would consider it a single obstacle due to the segmentation process explained in 

chapter 4. 

 JPDA association process would use both observations to perform the tracking. Thus, 

although they both are considered to be a single pedestrian, both detections are used 

in the KF actualization process. Hence, the error is minimized. 
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A test demonstrated that a previously presented algorithm could, in certain situations, 

reach unstable behavior. This happens when several tracks compete for a single observation. 

In these situations, the cluster is the most powerful option due to the weight of the joined 

probabilities of the other options different from the track to be calculated in a given time (joint 

probabilities association process penalizes when there is going to be another track, with high 

probability, that is not going to be assigned to that observation). To overcome this problem, a 

special behavior was created, based on the fact that once the probabilities are assigned, a 

given track is eliminated from the assignation process, and once again all the joined 

probabilities are calculated with the remaining tracks. This way the problem is avoided by 

eliminating the weight of the already assigned solutions in subsequent assignations. In the 

case of several tracks pointing to a single observation, this solution would first assign cluster to 

the less probable and eliminate its weight in subsequent assignations until one of them is 

selected as more likely than the cluster. Different tests prove that the computational cost 

added because of the necessity to recalculate the joining probabilities is negligible and the 

system proved to be stable. 

5.4 Danger Estimation 

Previously presented detection and tracking procedures represent a step forward for 

pedestrian and vehicle detection systems for road safety applications, but to complete the 

fusion application Fusion Levels 2 and 3 must be detailed. In this section, situation and threat 

assessment is intended, using context information to augment the capacity of the system, 

creating a reliable and robust application. Both context information and GP-inertial device 

provide relevant information to estimate the danger involved in any detection. Later allows 

the current status of the vehicle e.g. velocity and position to be known. First, is important to 

know the real danger involved in any detection.  

The nature and the behavior of the two road users (vehicles and pedestrians) that the 

present approach tries to detect makes it mandatory to differentiate the danger and situation 

assessment calculation for each one. Therefore, the present section is divided in two parts. The 

first deals with the danger involved with pedestrian detected in the surroundings, and the 

second with the vehicles detected. 

5.4.1 Pedestrian  

Before giving an estimation of the danger that involves any pedestrian detection, two 

distances should be taken into account, breaking distance and response distance. These 
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distances represent context information that should be taken into account to calculate the 

danger that any detection involves. The first represents the elapsed space before the car is 

completely stopped, thus collision with any pedestrian farther than this distance can be totally 

avoided by stopping the car. The second distance represents the distance covered in the time 

that the driver needs to respond to a given stimulus. 

These distances are not the only context information used in this danger estimation. Other 

information relative to vehicle safety is necessary to calculate this danger. Response time for 

drivers and some traffic accident reconstruction mathematics are two examples of the context 

information necessary for danger estimation that will be explained in this section. 

a) Response distance 

Research generally accepts response times up to 0.66 seconds, as it was shown by 

Johansson and Rumar [114]. In this article, authors showed that the mean response time for 

human beings when driving by means of an auditory stimulus is 0.66 seconds. Other authors in 

recent works have done similar test with similar results [115]. Thus, response distance is the 

distance that a vehicle with a given velocity would cover during the response time of 0.66 

seconds. 

b) Braking distance 

It is the distance that the car would cover until it completely stops. Many different variables 

would affect this calculation. The present approach uses basic traffic accident reconstruction 

mathematics [116] based in the worst case scenario, when the vehicle is fully loaded. Weather 

conditions may also change the conditions (e.g. road coefficient). Here, some on-line 

contextual information that the inertial device provides could be useful, such as the 

temperature measurement. 

In a traffic accident reconstruction, worst case scenario means that only front wheels are 

blocked when braking, this fact displaces the weight of the car to the front of the vehicle. This 

weight displacement is represented as a change in the friction coefficient; this change is 

depicted in equation (76). 

  
  

    
 

 

(76) 

where   is the corrected and   the real friction coefficient,  b2 is the distance to the rear axis 

from the mass center, L the longitude of the vehicle and h the height of the mass center. Mass 
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center has to be calculated, but several authors  give an approximation of 0.4 the height of the 

car that was used for this application. Using this approximation, the distance of the vehicle to 

completely stop is shown in equation (77). 

          
  

   
 

(77) 

 

where v is the speed of the vehicle and g the gravity acceleration 

 But equation (77) is not the braking distance, since the response time presented before 

should be taken into account because it is the time before the driver starts pressing the brake 

pedal (equation (78)). 

                              (78) 

c) Danger zones 

Danger zones are created for pedestrian safety according to previous relevant distances. 

These zones help the system to quickly evaluate the degree of danger that any detection 

involves. Each one of the zones is created according to the different actions performed in case 

a pedestrian is found in the zone. Table 6 depicts the relation between the zones and the 

distances.  

 From to 

Safe zone 

 

Infinite Braking distance 

Danger zone 

 

Braking distance Response distance 

Imminent Collision zone Response distance 0 meters 

Table 6. Relation between danger zones and relevant distances. 

Safe zone detections are those pedestrians that are at a distance far enough to warn the 

driver and completely stop the vehicle before hitting the pedestrian. The danger zone 

represents the region where it is possible to warn the driver before hitting the pedestrian, but 

the vehicle is not going to be able to be stopped on time before hitting it. Finally imminent 

collision zone is the region in the environment where it is impossible warn or stop the car 

before colliding with the pedestrian.  
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Figure 5.6 provides a visual representation of the distances, to give a complete picture of 

the application the relevant distances are also depicted as well, as the field of view of the 

different devices. 

 

 Figure 5.6. Danger zones represented with the relevant distances and the fields of view of the different devices. 

The scope of this application is to detect and warn drivers giving an estimation of the 

danger involved in the detections. Thus, it is out of the scope the actions to perform in any of 

the detected cases. Further works should deal with this issue, but a first approximation should 

involve: 

 Safe zone: These detections involve no imminent danger, thus some visual or 

acoustic warning may be enough, paying attention to not to saturate the driver 

with irrelevant information. 

 Danger zone: Here it is important to warn both, driver and pedestrian to try to 

avoid the possible collision. Recent works try to determine the safest trajectory to 

perform automatic avoiding maneuvers, allowing the vehicle to take control over 

the driver and prevent to harm pedestrians.  

 Imminent collision zone: Here the only action to take is to trigger any automatic 

measure to mitigate the harm given to the pedestrian.  
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d) Danger estimation 

Taking previous zones as reference and with the purpose of giving danger estimation to 

upper layer applications that has to deal with the previously presented situation, a danger 

estimation function was created. The idea is to give an estimation of the danger involved in 

any detection. The estimation should grow exponentially the closer the pedestrian is to the 

vehicle. Furthermore, two values should be taken as reference: In the border between safe 

zone and danger zone (braking distance), this estimation should be bigger than 0.5 (it was 

chosen 0.6); second a prior assumption was that at closer distances this function should have a 

value of 1. Taking all these considerations into account, the following function was created: 

     

 
 

 

 
                                 

  
                                          

 

  

 

(79) 

 

where dr is the response distance, r the distance of the pedestrian to the vehicle, and λ was a 

value to calculate that would assure the previously presented assumptions (equation (80)) 

               , thus 

  
      

       
 

(80) 

 

where db is the braking distance. 

In Figure 5.7 an example for the danger estimation is given for a velocity of 40km/h 

depending on the distance in meters. 

 
Figure 5.7. Estimation danger example for a pedestrian at 40 km/h, depending on the distance in meters. 
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5.4.2 Vehicles 

Vehicles’ distances have some common aspects with pedestrians in danger estimation, 

mainly related to the physics of vehicles. The main problem related with the vehicles is that 

the movement of the target vehicle should also be taken into account; therefore, although the 

problem shares some common physics with the previously explained pedestrian, danger 

estimation, it represents a completely different solution.  

a) Relevant distances 

For vehicle safety, two distances are relevant: 

Braking distance again is the distance to completely stop the vehicle. It is important to 

check which of the detections that are in the surroundings of the vehicle should be considered. 

Other vehicles out of this distance should be tracked but since the interaction level with the 

vehicle is limited, the danger that involves these detections is limited.  

Safety distance is the distance that it is considered safe in relation to another vehicle that is 

in front of the vehicle. Between these vehicles, a distance lower than this safety distance 

should be considered a security threat.  

b) Braking distance 

Braking distance is the same used for pedestrian safety. It is depicted in previous section in 

equations (76), (77) and (78). 

c) Safety distance 

Safety distance is usually a subjective measure that depends among other things on the 

driver situation and road conditions. In [117], [118] and [119] a policy for safety distance in 

automatic vehicles is presented. This policy can easily be extrapolated to maneuvered vehicles. 

According to these researches a safe distance     is defined as following: 

         
    

           (81) 

where v1 is the velocity of the vehicle where the system is mounted (in m/s), v2 is the velocity 

of the target vehicle (in m/s). And   ,   and   are the constant that are defined as follows: 
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(82) 

      
     

    
 

(83) 

      
     

    
 

   
   

     

       
(84) 

where T is the reaction time presented before,      is the maximum acceleration and      

the maximum jerk.  

5.5 Conclusions 

In the present chapter all the different possibilities for tracking and data association were 

studied. Several solutions were adapted to the fusion problem for road applications, providing 

different algorithms that were tested in real conditions. Results of the tests are detailed in 

chapter 6, allowing to understand the advantages and drawbacks of each one. Conclusions of 

these tests are given in chapter 7. 

The tracking algorithms detailed and adapted for the Data Fusion solution for vehicles and 

pedestrians’ detection and tracking were: 

 Kalman Filter. 

 Unscented Kalman Filter. 

 Particle Filter. 

For the Data Association problem, three algorithms were adapted for Data Fusion in road 

applications: 

 Global Nearest Neighbor. 

 Multiple Hypothesis Tracker. 

 Joint Probabilistic Data Association. 

In the last part of the chapter, some estimation of the danger that any of the detection 

involves is given, providing an useful tool to estimate the danger that involves any detection, 
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and as a result providing situation assessment. This way the approach represents a multilevel 

solution for de Data Fusion problem. 
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CHAPTER 6.  
PRACTICAL RESULTS 

Different test were performed to check all the algorithms that are presented in the 

document. Given the nature of the approach, differentiation among vehicles and pedestrians 

should be done, allowing us to study the performance of the different algorithms in both 

cases. Thus, a different set of tests were performed for vehicles and pedestrians separately. 

It has to be remarked that the proposal presented an important innovation related to the 

laser scanner detection and classification, thus the present chapter depicts results for each 

subsystem independently besides the results of the complete system. This way, a complete 

comparison of the performance of basic approaches and the complete system can be done.   

Different tests were performed to check the viability of each of the different algorithms 

proposed. The different set of tests checked the viability of each algorithm independently and, 

finally, the viability of the whole fusion system. Four aspects should be checked for each 

obstacle to detect: 

 Each sensor’s algorithm performance. First an exhaustive test to the low-level 

approaches should be made, paying attention to the weakness of each algorithm and 

the setup of each system in order to provide the proper behavior for the further fusion 

algorithm. 

 Tracking algorithms presented in previous chapters should be tested in real conditions, 

in order to select the most suitable. 

 Once the low-level detection and the tracking algorithms have been tested, the next 

step is to test the different data association methods presented, in order to provide the 

one that adapts better in each situation. 

 Finally, the whole subsystem should be tested, providing results that prove that the 

fusion algorithm enhances the basic capacities of the system. 

Before performing any test, it is important to calibrate the reliability of the laser scanner 

and the distances provided by the system, since it is the basis of the coordinate system of both 
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sensor’s algorithms. A first test that checks the accuracy of the measurements provided by the 

laser scanner is performed, this way, standard deviation and correlation between the x,y 

provided by the laser can be calculated and used in subsequent tests. Besides these 

measurements, it was important to check the viability of the laser scanner to be used as 

vehicle detection. To check this viability test involving different kinds of vehicles in performing 

different movements were performed to check the performance of the laser scanner and 

proving its usability for vehicle detection. 

6.1 Calibration Tests 

Two kinds of tests were performed to calibrate the system. The first, regarding pedestrian 

detection, focuses on the capacity of the laser scanner to give accurate measurement of the 

pedestrians, providing standard deviation and coordinate correlation. The second test tried to 

check the viability of the laser scanner to detect moving vehicles. By testing the reflexion 

behavior under different kinds of vehicles, performing different maneuvers, it could check the 

viability of the laser scanner used to perform moving vehicle detection. 

The first test consisted of test sequences with a single pedestrian performing lateral and 

vertical movement.  In lateral movements y coordinate was fixed, so the system could measure 

the error in the y coordinate as the pedestrian moves along the x axes. For vertical 

movements, the pedestrian had x coordinate fixed and moved along the y axis, thus, deviation 

in x was measured (Figure 6.1). This test was necessary to determine the reliability of the laser 

scanner system and the capacity of locating pedestrians in the environment, as well as to 

measure the standard deviations of the measurements for the further estimations test.  

 

Figure 6.1. Experiments to measure the measurement errors. (a) x position is fixed. (b) y position is fixed. 
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In Figure 6.2, the results obtained for the test are presented, with the exact location of the 

laser scanner detections represend in a map, where horizontal axes represents x coordinates 

in the laser scanner field of view and vertical axes represents the distance to the pedestrian in 

y coordinate, all in meters. Different colors try to separate the different tests peformed at 

different distances. c and d are the absolute errors of all the masurements represented also in 

meters. The assumption of two independent errors for both measurements (x,y) was correct, 

since the error pattern is similar among the lateral movements and vertical movements, no 

matter the values in the other axis. Only lateral movements present higher error when a 

pedestrian is in the center that was negligible for the present application.   

Besides the previous conclusions, other information could be obtained from the present 

test, i.e. standard deviations, which were useful for subsequent tests and for tuning the 

algorithms. Table 7 depicts the results obtained for the standard deviation. 

σx[m] σy[m] 

0.441 0.29 

Table 7. Standard deviation measured for the laser scanner detections in meters. 

 

Figure 6.2 . Results of the experiments to measure the measurement of errors y (in meters) vs x (in meters). (a) 
Total measurements of the experiment for lateral movement. (b) Total measurement of the experiments for 
vertical movement. (c) y error vs x coordinates in lateral experiments. (d) x error vs y coordinate in vertical 

movement experiments. 



6. PRACTICAL RESULTS 

Fernando García Fernández 120 
 

For the case of the vehicles a test was performed to check the viability of the laser scanner 

to detect vehicles. This test was performed in a close circuit, with vehicles performing different 

movements that Figure 6.3 depicts. 

 

Figure 6.3. Test performed to check the viability of the laser scanner system. 

To perform the test to check the viability of the laser scanner as a vehicle detection system, 

two vehicles were used (Figure 6.4), a black one and a metal grey one. These two vehicles 

represent an easy scenario (metal grey has a high reflexivity) and worst case scenario (black). 

This way the laser performances could be checked in the two most representative scenarios. 

 

Figure 6.4. Vehicles used for the test. Green vehicle had mounted the laser scanner and metal grey and back 
vehicle were used to measure the reflexion of the laser scanner. 
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Results depicted give an idea of the error that the laser scanner commits when measuring 

the width of vehicle, in meters (Figure 6.5). The horizontal axis represents the distance in 

meters to the laser scanner and the vertical edge the error in absolute values to the real width. 

This way, the performance of the laser scanner in the task of representing silhouette of the 

vehicle can be checked. Furthermore, it was proved how even in worst case situations the 

laser scanner can measure a vehicle approaching with an expected error of 0.5 meters at a 

distance of 60 meters. It was also proved that the detection was better in moving away 

movements where the back of the vehicles resulted better for reflexion than the front of the 

vehicle. 

 

Figure 6.5. Error of the measurement of the width of the vehicle, obtained by laser scanner according to the 
distance.  

A detailed explanation of the test, with all the particulars and more information can be 

obtained in [120] where all the test performed and the results provided are reported. 

All presented tests were used to check the viability of the system as well as to collect some 

important information, such as standard deviation, which is mandatory in the estimation 

process. Also some of these tests were used to measure the performances of the laser scanner 

contributions, by measuring the positive detections in each scenario. The results of these tests, 

related with the performance of the different algorithms, are detailed in the next section.  

In the following sections, the performances of the different algorithms for each sensor 

independent and for the fusion system are studied. Different tests used to check the different 

algorithms are depicted, providing comparison for each system independently and for the 
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complete system. To provide complete comparison of each algorithm a division according to 

the obstacle to find should be performed. The next sections provide results for pedestrians and 

vehicles respectively. 

6.2 Pedestrians 

For the pedestrian up to 52 different sequences with more than 10.000 frames were tested. 

Three sets of sequences were created: 

- Test sequences were created with single pedestrian performing lateral and vertical 

movements in an easy environment. The environment, a parking lot, can be described 

as a sensor friendly scenario, since the number of other obstacles that could represent 

possible false positives (lampposts, trees…), whether for vision and for laser scanner 

systems, is limited. These tests helped to setup and check each system independently, 

and the fusion process itself. They were also very useful for testing the tracking 

algorithms, since the absence of other obstacles and the limitation of the number of 

pedestrians helped to avoid misleads, and therefore, check the degree of accuracy of 

each tracking procedure independently. Figure 6.6 (A).  

- Inter-urban scenarios were the number of pedestrians is limited, as well as other 

obstacles that could lead to misdetections. Although they represented real 

environment tests, the number of misdetections expected is limited. Thus, the level of 

stress of the test is also limited. Figure 6.6 (B). 

- Urban scenarios the scenarios represent the worst case scenarios, where the vehicle 

performs numerous changes in directions as well as the number of obstacles is high, 

resulting in more misdetections expected by the sensors. Figure 6.6 (C) and (D). 

6.2.1 Low Level Algorithms Performance for Pedestrian Detection 

During the above detailed tests, more than 4,000 possible pedestrian detections were 

tested, divided in the different sets of tests, in different conditions. In the tests, any pedestrian 

in a given frame is considered a positive detection if it is detected, or no detection in case of 

negative result. On the other hand, if a positive is given for a non-pedestrian obstacle, it is 

considered a misdetection; the percentage of misdetection is the number of misdetection per 

100 frames: 
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Figure 6.6. Example frames of the different tests performed for pedestrian detection. Test sequences were 
performed in a parking lot (A), Inter-urban scenarios (B) and urban scenarios (C) and (D). 

 % of positive detection % of misdetections (per frame) 

Test 78.01 5.19 

Interurban 73.19 3.91 

Urban 67.72 6.72 

Total: 72.97 5.27 

Table 8. Results for the computer vision-based pedestrian detection. 

 % of positive detection % of misdetections (per frame) 

Test 79.71 6.23 

Interurban 70.35 16.96 

Urban 73.61 16.72 

Total: 74.56 13.3 

Table 9. Laser Scanner pedestrian detection performance. 

Given the above results some conclusion can be obtained from the low level approaches: 

 Laser Scanner is a novel approach giving very good performance, although the results 

obtained lack reliability since a percentage of 13.3 % of false positives means that less 

than every ten frames a false positive is provided. Consequently, false positives are 

frequent. Here it has to be remarked that these false positives are limited to the space 

in the image, thus even more false positives appear in the higher field of view of the 
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laser scanner. However, since they are not relevant for the algorithm proposed, they 

were not taken into account.   

 Performance of the computer vision system is high and reliable, mainly in more 

structured scenarios, but in more complex scenarios such as urban environment this 

reliability decreases highly due to the abundant information present in this 

environment that can lead to misdetection.  

 It has to be remarked that the setup of the system was performed taking into account 

these situations, i.e. The threshold for positive detection of the computer vision was 

increased to add reliability to the detections of the laser scanner during the fusion 

process. 

 False positives provided by the camera were mainly unrelated to the HOG features 

algorithm presented in chapter 4, but related to the nature of the entire algorithm that 

was based in the ROIS selected by the laser scanner. As explained before, The ROIs are 

chosen according to the lectures form the laser; thus, if a spurious observation is 

returned by the laser, and a pedestrian is included in more than one ROI, all of them 

are going to be considered pedestrian, and as a result a false positive is returned. Figure 

6.7 gives an example of this situation. Although they could be considered positive 

detection for the computer vision algorithm itself, the approach provided here is based 

on both sensors, and therefore, they were included in false positive detection. 

 

Figure 6.7. Example of misdetections of the camera due to multiple ROIs pointing to a single pedestrian. Two 
laser scanners point to the pedestrian, thus both of them return positive detections. In these situations it could 

be considered a positive detection by the basic HOG feature approach, although they were considered 
misdetections of the vision system in the present approach that uses laser scanner ROI detection. 
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 It is also clear that the performance of the laser scanner detection is better in easier 

environments, where the laser scanner suffers fewer problems with the errors due to 

pitching calibration errors, caused by strong movements. As explained in chapter 4, the 

beam of the laser has to be accurately measured, and in real road conditions details 

such as differences in the weight of the vehicle, strong braking maneuvers, etc. provoke 

that the desired part of the pedestrian to be detected (legs) are not easy to find due to 

the calibrations errors. Despite this problem, the ratio of positive detections remains in 

a 70% in the worst situations. 

Some examples of typical pedestrian detections and misdetection by each subsystem are 

provided in subsequent figures. Complete examples of full sequences are given in further 

sections of the present chapter. 

 

Figure 6.8. Positive detections examples. Blue boxes represent laser scanner positive detections. Red boxes the 
image positives. Also laser scanner polyline reconstructions are showed in the image. 
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Figure 6.9. Example of errors in the tests.  Blue boxes represent laser scanner positive detections. Red boxes the 
image positives. Also laser scanner polyline reconstructions are showed in the image. 

6.2.2 Tracking Algorithms Performance 

Tracking algorithms tested are explained in chapter 5, three estimation algorithms were 

used in the test: Kalman Filter, Unscentered Kalman Filter and Particle Filter. The three of them 

were tested using the Global Nearest Neighbor approach presented also in chapter 5 and using 

the test sequences with the movements depicted in Figure 6.1, that represent classic 

movements of pedestrians. In this way, the model and the performance of the different 

estimations were tested and the most suitable selected for the subsequent test. Results are 

depicted in Table 10. 

Due to this test it was proved that the visual algorithm performed detections up to 15 

meters, farther distances were not covered due to the lack of information. This problem was 

inherent to the device used and not to the algorithm. A higher performance camera able to 

provide better quality images should provide longer distance detections.  

To measure the accuracy of the tracking algorithm Global Nearest Neighbor (GNN) fusion 

algorithm presented in chapter 5 was used. The test consisted of situations where 

consolidated tracks find new observations, and the differences with the predictions of the 

estimation filters are calculated. The results are depicted in the Table 10. The reason of 

selecting the GNN algorithm is the simplicity of the algorithm that does not require changes in 

the classic estimation filter Table 10 depicts the standard deviations of the predictions.  
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σ KF σ UKF σ PF 

0.2058 [m] 0.1591 [m] 0.1486  [m] 

Table 10. Tracking algorithms’ standard deviations. 

 During the test also the amount of positive detections were checked to see if the selection 

of different approaches reached different results. The test showed that the results provided by 

the different algorithms were similar. Thus, the selection of any of the estimation methods did 

not change the final results related to the ratio of positive detections. Only in the case of the 

particle filter, with not enough particles the system did not reach to a stable prediction leading 

to a loss of the performance of the overall system. Finally, it was possible to tune the particle 

filter with up to 200 particles reaching to same positive results and the performance showed in 

Table 10. 

According to Table 10, the results for the KF are very accurate, therefore, we can consider 

that the movement model presented in equations (68) to (73) a valid model for pedestrian 

movement. Since the mean detection error is around 20 centimeters.  

It also was proved that the UKF presented a mean improvement of approximately 4 

centimeters as well as PF. The results showed that the UKF was useful to overcome the 

limitations of the lineal model, by correcting the nonlinearities of the movement or the 

detections inexactitudes. However, it should be remarked that the PF efficiency result was 

limited because the amount of particles needed to reach to this value results were too big to 

allow real time performances. UKF on the other hand, proved to be an important 

improvement given the results to overcome the limitations of the lineal model. 

Thus the overall conclusion of the tracking algorithm tested can be summarized in the 

following points. 

 The model presented assumed in chapter 5 resulted a valid model for the present 

approach since Kalman Filter presented accurate results. 

 UKF can help to overcome the nonlinearities of the movement of the pedestrians even 

though the variations are not significant.  

 The PF approach resulted more accurately, but practically, it´s not feasible since the 

nonlinearities presented were not significant (thus the improvement of the accuracy is 

limited), and the amount of particles needed to reach to this accuracy was not optimal 

for a real time application. 



6. PRACTICAL RESULTS 

Fernando García Fernández 128 
 

 UKF for GNN can be considered the best solution for this problem, since the PF 

performances resulted to be limited due to the amount of resources consumed with a 

very limited improvement. However, the linearity of the model used and the simplicity 

of the Kalman Filter approach make it a suitable solution, easy to apply, with good 

performances and easy to adapt to other approaches, such as JPDA or MHT, which 

were tested subsequently using this KF approach. 

6.2.3 Association Methods Performance 

Chapter 5 depicts three association methods that could be used in the present approach. 

GNN, MHT and JPDA. As it was mentioned before, Kalman Filter is the most suitable solution 

for MHT and JPDA, and the previous section proves that KF solution for pedestrian tracking is 

suitable to provide accurate estimation. Therefore, the implementation of both MHT and JPDA 

was performed using KF approach. 

 The simplicity of the GNN algorithms makes it one of the most widely used algorithms for a 

great variety of applications, and therefore, it is considered the base of the present approach. 

It was the first algorithm tested and used to check both the viability of the different subsystem 

(laser scanner and vision based detection system) independently and the different tracking 

possibilities performance. Thus, for the present test it is considered the base algorithm, so it 

was compared with the MHT and JPDA to check the viability of these new algorithms and the 

degree of improvement that they supposed. 

Test sequences in easy environments, used in previous tests, did not provide an important 

challenge for any of the algorithms, since the performances were similar. In these tests the 

absence of false positives and difficult situations such as crosses, changes in the directions, 

etc., limited the stress degree that the algorithms could suffer. As a result, the core of the test 

performed to check the viability of the different algorithms was based in the inter-urban and 

urban scenarios. 

a) MHT vs. GNN tests 

As mentioned before, test sequences did not create major challenge for any of the two 

subsystems, providing similar performances. Figure 6.10 shows a pedestrian moving laterally. 

Both systems give similar results, since in the sequence there are no false positives, and thus 

there is a single track from the beginning to the end of the sequence. In the figure green circles 

represent the estimations with no detection (no matches) and black circles represent that the 

track was found and actualized (the circle is placed in the exact coordinates where the 
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pedestrian is detected). Vertical and horizontal axes correspond to y and x coordinates 

respectively from the laser scanner in meters. Only consolidated tracks are shown. 

 

Figure 6.10. Basic test sequence with a pedestrian performing lateral movement. Left is the GNN approach, right 
MHT. 

Problems with MHT arise when a false positive appears when dealing with more complex 

situations. When false positives appear new tracks are created, and although the false 

positives are not propagated along time, due to the pruning rules explained in chapter 5, the 

new tracks created grow exponentially. Consequently, the amount of tracks to track grows 

exponentially, although they are not considered consolidated. This way the delay that the 

system needs to give solution grows reaching to several seconds per frame. Figure 6.11 shows 

a sequence with two pedestrians in an inter-urban scenario walking through a pedestrian 

crossing. The colors and axis are equal to the depicted in Figure 6.10. Here, in Figure 6.11, we 

can see how the false positives are propagated through time in the right image (MHT). 

In conclusion, through the different test performed, some of which were presented in 

Figure 6.10 and Figure 6.11, the rules followed to prune and reduce the amount of tracks to 

follow were not enough to limit this amount. The algorithms, although theoretically would 

represent the best solution along time, are not suitably in this environment due to the real 

time requirements. As we can see in Figure 6.11, the track of all possible hypotheses leads to 

misdetections and the maintenance of false positives for longer time. These results lead to the 

conclusion that MHT is not a suitable method for the present application, or in case of future 

implementations. Special care should be taken and modifications made to the pruning 

algorithms should be carried out. 



6. PRACTICAL RESULTS 

Fernando García Fernández 130 
 

 

Figure 6.11 Inter-urban scenario with two pedestrians moving from left to right crossing the road. Left GNN 
approach; right MHT. The circle highlights part of the sequences where the false positives are propagated. 

b) JPDA vs. GNN tests 

JPDA is a method that requires higher computational costs due to the necessity of 

implementing the calculation of the joint probabilities. As explained in chapter 5, it has to be 

performed several times per frame, which can lead to high computations costs, mainly in 

cloudy environments. Therefore, the prior expectation was a more time consuming approach. 

But the sophisticated calculation of the association, thanks to the joint probabilities, lead to 

the expectation of better performances mainly in special situations such as crossing 

trajectories. 

To perform this comparison, several tests were performed, mainly in inter-urban and urban 

environments, since the test sequences, as with MHT, provided similar performances in all the 

sequences. Besides, the simplicity of these test sequences with no more than two pedestrians 

per frame was not helpful to check the performance of the algorithm in environments where 

the number of tracks could lead to delays. But it was proved that the numbers of false 

positives were lower in these tests due to the fact that false positives produced by the camera 

and depicted in Figure 6.7 were avoided with the track management, which will be detailed 

later. 

Three sequences are going to be detailed to give a brief comparison of the performances of 

the algorithms in the most difficult situations.  
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 First a pedestrian crossing in inter-urban scenarios is used to provide a real 

comparison of the performances of the system in one of the most classical situations, 

two pedestrians crossing the road, with trajectories crossing in the field of view.  

 Second an urban complex situation is provided, where up to three pedestrians 

performing the highest variety of movements are presented. In this sequence the 

number of false positives expected is higher due the amount of pedestrians involved 

and the urban scenario. 

 Finally the system is checked in a scenario with two pedestrian walking very close (a 

child and an adult). This situation is especially difficult for the laser scanner because 

both pedestrians are walking very close to each other, thus in certain moments is 

difficult to separate them. Although the main purpose of the application was the 

detection of single pedestrian, this sequence was added to check the performance of 

the two algorithms in the most difficult situation for the sensors. 

Test 1 

Figure 6.12 depicts the low-level detections of both subsystems and also depicts the 

movement of the pedestrians in the pedestrian crossing. The blue boxes represent the laser 

scanner and the red boxes the visual detection. Figure 6.13 depicts the detection in the 

environment by the fusion system using a GNN approach left (left) and the JPDA (right). The 

complete sequence is presented in A and B, and detailed comparison is given in C and D for the 

farthest pedestrian and in E and F for the closest. 

 

Figure 6.12. Frames of the sequence for testing GNN vs JDPA with two pedestrians crossing the road with 
trajectories that cross 
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Figure 6.13. Results of the sequence with two pedestrians crossing the road. A is the overall result for GNN and B 
for the JPDA. C and D give details of the moment where both pedestrians cross. E and F finally give details of the 

closest pedestrian in the moment where both pedestrian cross. At right results for JPDA and left for GNN. 

Detailed study of the sequence depicts that the JPDA approach (Figure 6.13 right) gives a 

better performance in the case of crossing trajectories, mainly because the estimation of the 

movement of the pedestrian presents a better behavior in the absence of detection, which 

leads to tracking the farthest pedestrian better. Although in this case, both algorithms are able 

to track both pedestrians with certain accuracy giving similar results. 

 

Test 2 
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In this sequence, up to three different pedestrians were presented. Again the trajectories of 

both cross at a certain point, and at this time a third static pedestrian is presented. Figure 6.14 

depicts the movements of the pedestrians in the sequence and Figure 6.15 the results of the 

tests. 

 

Figure 6.14. Frames of the test 2 for testing GNN vs JDPA in urban environments with three pedestrians involved. 

Figure 6.15 (below) highlights the two main points of the sequence. First is the false 

positive that appears in (a), at this moment a false positive appears in GNN approach while in 

the JPDA the algorithms is able to overcome the problem. In (b), although both systems have 

the same false positive, the JPDA stays where the obstacle is, while GNN estimation is worst in 

comparison to the GNN. Therefore, according to the results given in this test, behavior of the 

test in the crosses, although similar, resulted in better results in the case of JPDA algorithm. 
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Figure 6.15. Results of the sequence three pedestrians in interurban scenario. At right results for JPDA and left for 
GNN. First, the results sequences are depicted (up). The same results are shown down with the main differences 

highlighted in (a) and (b). 
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Test 3 

In this last test, as previously explained, two pedestrians performed vertical movements. 

These two pedestrians were close, as shown in Figure 6.16, which makes it difficult for the 

laser to differentiate among them. In this situation, the JPDA is especially useful since it takes 

into account all the variables plausible to perform the actualization, thus whether the system 

detects one or two pedestrian, they are always present in the actualization process. 

 

Figure 6.16. Frames of the sequence that was used to compare the behavior of the GNN and the JDPA with two 
close pedestrians. As shown in the figure, it is difficult for the laser scanner to differentiate among them.  

Results depicted in Figure 6.17 (up) show that the performances of the system is similar, 

although the JDPA approach (right) provide a better solution in special circumstances, as is 

highlighted in Figure 6.17 (below). The fact that the JPDA takes into account any possible 

measurement within the gate of the track makes it very suitable for these situations, where 

even in the case of a single track with several measurements it uses both measurements to 

update the filter, with the likely function as a weight. 

 



6. PRACTICAL RESULTS 

Fernando García Fernández 136 
 

 

 

Figure 6.17. Results of the sequence with two pedestrians walking close to each other. At right results for JPDA 
and left for GNN. First the results sequences are depicted (above). The same results are shown down with the 

main differences highlighted with a red circle. 
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The entire test demonstrated that the JDPA approach represented a more accurate 

approach; the improvements offered to the previously presented GNN approach are 

summarized in the following points: 

 Better estimation, as can be seen in the different tests presented before, the JPDA 

methods allow tracking the pedestrian, even when the track has been lost for several 

frames thanks to the improved estimation presented before. 

 Improvements against misdetections. Figure 6.7 depicts the typical error of 

misdetections when dealing with the camera, these errors can be overcome in the JDPA 

approach since, as it was explained in chapter 5, the new tracks are created only if an 

observation is outside any gate of the tracks. This way when two pedestrian are 

detected very close and only one of them corresponds to the same pedestrian, no new 

track is created and the new track is used according to the respective joint probability 

in the Kalman Filter. This behavior is very useful in these kinds of approaches given the 

nature of the laser scanner, as shown in Figure 6.17. It also can be used in future  

approaches that should try to detect groups of pedestrians where pedestrians can split 

or merge into groups, in these situations the JDPA association method seems to be 

perfect since it implicitly uses these detections to actualize the Kalman Filter.  

It is also remarkable that all the above improvements were obtained without an increment 

of the processing time; although the system should calculate the joint probabilities, the system 

was able to work with the same speed than the GNN approach. 

6.2.4 Fusion System Performance 

Results obtained in different scenarios, as well as the whole set of tests, are depicted in 

Table 11. Previously presented performances of the different subsystems are also included 

independently to allow contrasting of the performance of the whole system and each system 

independently. The test regarding the fusion system was used applying the KF and the JPDA 

approaches. 

As depicted in Table 11, the results obtained increased and demonstrated the viability of 

the fusion and how it improves the overall performance of the system. The improvements of 

the system are summarized in the following points: 
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 The rate of positive detection is increased in the entire test. This increment is even 

better in the worst case scenarios for the laser scanner such as urban or inter-urban 

environments. 

 It is also remarkable the improvements in the false positive rate. The results reach to 

1%, providing the proof that the system fulfills the main requirements of a safety 

application: reliability. It is in this point where the improvement of the fusion process is 

most remarkable.  

 Camera 

 

Laser Scanner Fusion 

 % of 

positive 

detections 

% miss 

(per frame) 

% of positive 

detections 

% miss 

(per frame) 

% positive 

detections 

% miss 

(per 

frame) 

Test 78.01 5.19 79.71 6.23 82.42 0.89 

Interurban 73.19 3.91 70.35 16.96 78.90 6.53 

Urban 67.72 6.72 73.61 16.72 81.76 1.95 

Total 72.97 5.27 74.56 13.3 82.29 1.11 

Table 11. Results of the sensors subsystems and overall fusion subsystem, divided in the sets of tests used and 
overall performance. 

6.3 Vehicles 

To check the viability of each algorithm independently as well as the fusion system, 

different tests were performed in real road conditions. These tests included a single vehicle 

performing all kinds of maneuvers, such as overtaking maneuvers, being overtaken, driving in 

front of the test vehicle (IVVI 2.0) and performing turnings (including roundabouts). All those 

tests were mainly performed in inter-urban scenarios, although some of the tests were 

performed in urban scenarios. 

6.3.1 Low Level Algorithms Performance for Vehicle Detection 

A first test of the laser scanner based vehicle detection algorithm performance was 

performed, results are depicted in [84]. Results showed that in the best conditions (no vehicle 

movement) and with direct vision, the algorithm can reach to a 100% of detection up to 35 

meters in approaching movements and 62 meters in moving away movements. As it was 

explained in the paper, these lower results in approaching movements were due to the lower 

reflectivity of front parts of vehicles.  
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The results of the subsequent test performed in different environments for real road 

conditions are depicted in Table 12 and Table 13 for camera and laser respectively. 

Camera 

 % of positive detection % of misdetections( per frame) 

Total: 47.72 1.13 

Table 12. Visual based vehicle detection performance. 

Laser Scanner 

 % of positive detection % of misdetections( per frame) 

Total: 91.03 8.19 

Table 13. Laser scanner based vehicle detection performance. 

Some details should be highlighted before analyzing the above results:  

Laser scanner detection presents a high amount of false positives. Here, only those that are 

in the camera field of view were taken into account. These errors were frequent in movements 

involving lateral movements, strong braking or acceleration movements. The inertial device 

resulted insufficient to avoid these errors. As a result it is in these situations where the fusion 

process has special importance. Thus, the high positive rate of the laser scanner is important. 

However, special attention should be taken to the amount of false positives: in one of every 

ten frames a false positive is returned. Consequently, it is clear that fusion approach is 

necessary to overcome these problems related to this technology. 

Vision approach, on the other hand, has a small positive detection rate (aprox. 50%). It is 

mainly because the training stage was performed keeping in mind further fusion stages. It was 

rather interesting having a small positive rate which provides a small false positive rate. It also 

has to be remarked that this system lacks of tracking that could help to provide better 

performances.  

The results showed that if the camera is able to give a positive detection of a vehicle every 

2 or 3 frames, with enough reliability due to the low false positives, it should help to create a 

trustable and reliable fusion system. 

After analyzing the results, the conclusions obtained from these tests are summarized in 

next points: 
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 Laser scanner detection algorithms provide a high amount of positives as well as 

false positives, that later should be avoided in subsequent fusion stage. 

 Vision approach can be used to add trustability to these laser scanner detections 

due to its low false positive rate. However, the low positive rate means that this 

algorithm is not robust enough, and fusion is necessary to add robustness. 

6.3.2 Tracking Algorithm Performance 

Again three different tracking algorithms were tested using the basic GNN approach. The 

tests to check the viability of the system were performed with a single vehicle performing 

different movements (e.g. overtaking, turning in roundabouts and being overtaken). Three 

possible estimation filters were tested (KF, UKF and PF) and the results are provided in Table 

14. As in the case of the pedestrians, the difference between the predicted position and the 

observation are checked and the standard deviation calculated. 

σ KF σ UKF σ PF 

0.4542 [m] 0.4448 [m] 0.4409 [m] 

Table 14. Estimation filters performance comparison (Standard deviation measured). 

The results obtained with the tracking algorithms were similar to the expected, and they 

did not differ much to those obtained with pedestrians. The result is that PF is the most 

accurate but with small improvements in respect to the KF approach. In this case the 

improvements of the different approaches, such as PF or UKF were negligible, and thus it was 

considered that the model used for the vehicles as well as the KF, the optimal solution for this 

approach, was good enough. Besides the similar accuracy, the KF solution is easier to 

implement and consumes less computational costs. Hence, all these advantages lead to the 

conclusion that KF was a good approach for the application, so subsequent algorithms such as 

MHT and JPDAF were implemented using this KF estimation method. 

6.3.3 Association Methods Performance 

Three association methods were implemented and compared for the vehicle detection 

approach, (GNN), (MHT) and Joint (JPDA). All of them were implemented using Kalman Filter 

estimation method as it was explained in chapter 5 and according to the good results provided 

in the previously presented tests. 

As it was done in the pedestrian detection algorithm, several tests were performed to 

check the differences in the algorithms presented. In the present section each one of them is 
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going to be compared with the classic GNN method. Performances with single vehicle 

detections, as occurred in the previous pedestrian approach, were similar, but special 

attention should be made to particularly difficult situations, with several cars. 

a) MHT vs. GNN test 

Similar to what happened in the pedestrian approach, the procedure for pedestrian 

detection using MHT provided similar results in the different approaches tested. Problems 

arise when several obstacles were found in the same gate of a track, the amount of tracks start 

to grow exponentially, thus the measures created to avoid this problem were insufficient. The 

consequence of this exponential growth of the number of tracks is an unstable algorithm that 

consumes a high amount of resources, making it unviable for real time performances.  

Figure 6.18 depicts an example of the performances of the system where the performance 

of the MHT system is clearly lower. These errors are probably due to the fact that a higher 

amount of tracks consumes the observations faster, not allowing a single track to perform the 

whole tracking of a single vehicle. Therefore, besides the high computational costs, the track 

management policy is clearly insufficient and leads to the conclusion that the MHT solution is 

not suitable for these applications. For this reason, the MHT approach was rejected and the 

JPDA approach was developed to improve the performance of GNN system. 

 

Figure 6.18. MHT (right) performance vs. GNN (left). In green the estimation with no observation matches and in 
black matches. 
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b) JPDA vs. GNN test 

After the conclusions obtained by the tests with MHT showed in the previous section, the 

effort focused on a more powerful approach that was able to overcome the limitations of the 

basic GNN and adapt to the special behavior of the tools. As it happened in the case of 

pedestrians, and given the good results obtained there, JPDA method seemed to be a good 

solution for this situation.  

In the case of vehicles, the limitations of the bounding boxes to big obstacles that fit into 

the constraints of the size of a vehicle restrict the visual errors that we found in the pedestrian 

approach shown in Figure 6.7. Furthermore, in the case of vehicles, the laser scanner errors, 

due to two very close obstacles, were not as common as with the pedestrians where they 

converge and separate during the process of walking. Thus, given all these assumptions, the 

prior expectation of the improvement of the JDPA algorithm over the classic GNN approach 

was limited. 

Several tests were performed, providing results that clarify the advantages and 

disadvantages of each of the systems. To give an idea of the differences in performances of the 

algorithms, three different sequences are going to be detailed.  

 The first consists of basic movements, where the IVVI 2.0 was moving following 

another vehicle, performing straight movements, and turning in a roundabout.  

 The second sequence involves a more complex movement. IVVI 2.0 performs an 

overtaking maneuver over two cars. 

 The third sequence is the most difficult one, with two vehicles entering in the field 

of view, one of them performing incorporation to a road, and the other moving 

inside this road. 

Test 1 

Behavior in this test, depicted in Figure 6.20, gives an interesting result. As can be observed 

in the figure, both sequences´ results are identical, as well as the time consumed to perform 

the detection. This situation was interesting to demonstrate that both algorithms can be 

considered equivalent when there is a single obstacle in the environment. Some false positives 

were given from the single scanner algorithms, mainly from laser scanner, but both algorithms 

were able to eliminate them. 
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Figure 6.19. Frame examples of the test performed with the IVVI 2.0 following a vehicle. The movement involved 
turnings inside a roundabout. 

 

Figure 6.20. Results of the tracking of a single vehicle after several movements, including a roundabout. JDPA 
results are shown in right and GNN in left image. Green detections represent estimation with no match, black are 

matching observations. 

Test 2 

In this sequence, the test platform (IVVI 2.0) performs an overtaking maneuver over two 

vehicles (Figure 6.21) the results depicted in Figure 6.22 show similar results for both 

subsystems. Detection performed by the JPDA approach was able to follow the vehicle even 

outside the field of view of the camera (red circle). It is important to point that the delays to 

perform the assignations in this test were similar. 
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Figure 6.21. Frames of the test sequence with the vehicle (IVVI 2.0) performing an overtaking maneuver. 

 

Figure 6.22. Results of the test sequence with the vehicle (IVVI 2.0) performing an overtaking maneuver. JDPA 
and GNN results are shown (right and left respectively).  Green detections represent estimation with no match, 

black are matching observations. 

Test 3 

This sequence presents more difficulties, for having more than one vehicle in the sequence, 

and the fact that one of them occludes the other one. Also, it is important to notice that the 

IVVI 2.0 platform is performing a high turn that leads to a high number of false positives in the 

laser scanner algorithm, but thanks to the vision system, these false positives are discarded. 

However, the problem is that all those false positives introduce new tracks to perform the 

algorithm, which lead to certain delays in the assignment. Besides this problem, the algorithm, 

as it is shown in Figure 6.24, gives better results, even though the difference between both 
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algorithms is small. The delays presented could easily be overcome with more powerful 

computers or a parallel programming approach. 

 

Figure 6.23. Frames of the test sequence with two vehicles crossing. 

 

Figure 6.24. Results of the test sequence with two vehicles in a crossing. JDPA results are shown at right and GNN 
at left in the image.  Green detections represent estimation with no match, black are matching observations. 

The conclusion of the present test was that the best algorithm is the JPDA in both providing 

better results and also giving smoother behavior in the tracking process. According to the test, 
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the latter is the cause that allows keeping the track, even in these situations where the GNN 

approach loses it. On the other hand, it is important to point out that this algorithm has the 

drawback of the computation costs, so special care should be taken to avoid situations with 

lots of tracks in case of the use of JDPA approach. It should also be remarked that the GNN 

approach showed good performances; hence, this algorithm should also be taken into account 

in case of the necessity of a less cost demanding algorithm with good performances.  

6.3.4 Fusion System Performance 

Results obtained by the whole set of tests are depicted in Table 15. As was done in 

pedestrian results, previously presented performance of the different subsystems 

independently are also included to allow contrasting the performances of the whole system 

and each system independently. The fusion algorithm consisted of a JPDA approach with KF 

estimation. 

 Camera 

 

Laser Scanner Fusion 

 % of 

positive 

detections 

% miss 

(per frame) 

% of positive 

detections 

% miss 

(per frame) 

% positive 

detections 

% miss 

(per 

frame) 

Total: 47.72 1.13 91.03 8.19 92.03 0.59 

Table 15. Overall results for the test of the vehicle algorithms. 

Table 15 depicts the overall results of the complete system in the 28 tests performed over a 

total of more than 4000 frames. The following points summarize the results obtained. 

 The main goal for the fusion system in this approach was to maintain the good results 

of the laser scanner system providing reliability to the detection by reducing the 

amount of false positives. As it is depicted in the table, it was possible to accomplish 

these requirements due to the fusion procedure. 

 Given high positive rates of the laser scanner, the task of increasing the positive rate of 

the overall system in comparison to the laser scanner system was very difficult. Even 

though it proved extremely difficult, it was slightly increased. 
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CHAPTER 7.   
CONCLUSIONS 

7.1 Conclusions 

As t was depicted in both chapters 1 and 3, the main goal of the present thesis was to 

provide fusion architecture for intelligent vehicles, which were able to overcome the limitation 

of each sensor to enhance the basic capacities of each one separately, providing a robust and 

reliable safety application for road environment. The results provided in the previous chapter 

show that by fusing the information of the computer camera and a laser scanner, and using 

other information sources (i.e. context and inertial system) it was possible to accomplish the 

task. The systems presented also give the possibility to increase the set of sensors thanks to its 

scalability. 

Even though there is still a long way to go to reach the perfect safety application, this thesis 

represents a step forward in road safety. It provides a complete tool for the safety of the main 

road users by implementing a complete fusion system that fulfills all the requirements of these 

kinds of applications. The proposed algorithms use the Data Fusion theory to enhance the 

capacity of two widely used sensors in the automobile environment.  

7.2 Contributions 

Among all the works presented in this document it is possible to find several contributions 

that represent steps forward in different techniques and researching topics. The next points 

summarize the contributions given in the present work: 

 Laser scanner pedestrian detection. It was pointed in several occasions during the 

present document that although the laser scanner provides limited information, it 

can be used to perform obstacle classification. The present thesis gives a step 

forward providing a model that combined with a higher level stage can be used to 

perform pedestrian detection. 
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 Laser scanner vehicle detection. It was demonstrated that the special behavior of 

the laser can be used to detect vehicles with a high degree of certainty. But, it 

must be remarked that the nature of the application that requires the laser 

scanner to be mounted in a moving vehicle, adds complexity to this detection, 

requiring accurate systems that correct the movement of the vehicle where the 

device is mounted. 

 Complete fusion solution for road safety application. This document gives a 

complete solution of fusion architecture for road safety. Including all the levels 

that involve any fusion solution and based in the classic JDL model. 

 Danger estimation. The situation assessment depicted in chapter 5 represents a 

novel study of the danger that involves any road situation, allowing the system to 

estimate the degree of danger that represents any detection. 

 Novel GNN fusion based approach is presented. It uses KF estimation filter and 

both computer and laser scanner technology to detect and track pedestrians and 

vehicles. Although it was improved by the JPDA algorithm, this approach proved to 

be a reliable application able to work in real time in complex environments. The 

approach represented a novel contribution that subsequent studies improved by 

the use of JPDA association method. The test proved that this approach provide 

better performances than the MHT approach that was presented in the thesis 

 The studies and tests that were presented also proved that MHT approach is not 

suitable for these kinds of applications. Thus, other approaches proposed and 

tested are more recommendable due to their better performances for both 

detection performance and computational costs. 

 Finally, a novel JPDA fusion algorithm for road safety application was presented. It 

uses both laser scanner and visual technology enhancing their capacities, proving 

to be the most powerful algorithm for the purpose of the thesis. 

All the above contribution proved that the main purpose of the thesis was fulfilled, such as 

to enhance the capacities of basic sensors in road environment by using data fusion. 
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7.3 Future Works 

Several limitations to the system were found during the research process that finishes with 

the present thesis. Each one of them opens a new opportunity to perform future researching 

works, complementing the present project and providing the tools necessary to create the 

“perfect safety application”. These possible improvements or future investigations lines could 

be: 

 New laser scanner (already available in the laboratory) that improves information 

provided by the present laser scanner. New sensors available in the market provide 

more than a single layer of information, incrementing the possibilities of the system 

presented here, mainly those related with the necessity of an accurate calibration of 

the system.  

 Night vision approaches, such as far infrared cameras could complement the system for 

situations with low light. Future works should include both daylight and night vision. 

 Stereovision system (already available in IVVI 2.0) can be used to complete the 

information given by the laser scanner and the camera with the disparity map. 

 The inertial measurements lacks of reliability, mainly when the vehicle is performing 

turns. A more robust system that monitors the movement of the vehicle should be 

developed to avoid misdetections or errors in the reconstruction of the environment. 

 Estimation models used for the present approach proved to be useful when performing 

tracking, but future works should try to anticipate the movement of both pedestrians 

and other vehicles. To perform such a difficult task, new, more complex and robust 

models should be used. These models should be able to adapt to the nonlinearities of 

the movement of the obstacles and predict the movement to give better estimations. 

 Context is a new issue in Data Fusion. The present approach intended to add context as 

a new information source but lot of work is still to be done in this field. Future works 

should take advantage of the context with new information e.g. GPS and map 

information with relevant information such as zebra crossings and strong corners.  
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