2,003 research outputs found

    A statistical network analysis of the HIV/AIDS epidemics in Cuba

    Get PDF
    The Cuban contact-tracing detection system set up in 1986 allowed the reconstruction and analysis of the sexual network underlying the epidemic (5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168 edges), shedding light onto the spread of HIV and the role of contact-tracing. Clustering based on modularity optimization provides a better visualization and understanding of the network, in combination with the study of covariates. The graph has a globally low but heterogeneous density, with clusters of high intraconnectivity but low interconnectivity. Though descriptive, our results pave the way for incorporating structure when studying stochastic SIR epidemics spreading on social networks

    HIV with contact-tracing: a case study in Approximate Bayesian Computation

    Full text link
    Missing data is a recurrent issue in epidemiology where the infection process may be partially observed. Approximate Bayesian Computation, an alternative to data imputation methods such as Markov Chain Monte Carlo integration, is proposed for making inference in epidemiological models. It is a likelihood-free method that relies exclusively on numerical simulations. ABC consists in computing a distance between simulated and observed summary statistics and weighting the simulations according to this distance. We propose an original extension of ABC to path-valued summary statistics, corresponding to the cumulated number of detections as a function of time. For a standard compartmental model with Suceptible, Infectious and Recovered individuals (SIR), we show that the posterior distributions obtained with ABC and MCMC are similar. In a refined SIR model well-suited to the HIV contact-tracing data in Cuba, we perform a comparison between ABC with full and binned detection times. For the Cuban data, we evaluate the efficiency of the detection system and predict the evolution of the HIV-AIDS disease. In particular, the percentage of undetected infectious individuals is found to be of the order of 40%

    Modeling secondary level of HIV contact tracing: its impact on HIV intervention in Cuba

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Universal HIV testing/treatment program has currently been suggested and debated as a useful strategy for elimination of HIV epidemic in Africa, although not without practical issues regarding the costs and feasibility of a fully implemented program.</p> <p>Methods</p> <p>A mathematical model is proposed which considers two levels of detection of HIV-infectives through contact tracing of known infectives in addition to detections through other means such as random screening. Simulations based on Cuban contact tracing data were performed to ascertain the potential impact of the different levels of contact tracing.</p> <p>Results</p> <p>Simulation studies illustrate that: (1) contact tracing is an important intervention measure which, while less effective than random screening, is perhaps less costly and hence ideal for large-scale intervention programs in developing countries with less resources; (2) the secondary level of contact tracing could significantly change the basic disease transmission dynamics, depending on the parameter values; (3) the prevalence of the epidemic at the time of implementation of contact tracing program might be a crucial factor in determining whether the measure will be effective in preventing disease infections and its eventual eradication.</p> <p>Conclusions</p> <p>Our results indicate that contact tracing for detection of HIV infectives could be suitably used to remedy inadequacies in a universal HIV testing program when designing timely and effective intervention measures.</p

    Reconstructing the Timing and Dispersion Routes of HIV-1 Subtype B Epidemics in The Caribbean and Central America: A Phylogenetic Story.

    Get PDF
    The Caribbean and Central America are among the regions with highest HIV-1B prevalence worldwide. Despite of this high virus burden, little is known about the timing and the migration patterns of HIV-1B in these regions. Migration is one of the major processes shaping the genetic structure of virus populations. Thus, reconstruction of epidemiological network may contribute to understand HIV-1B evolution and reduce virus prevalence. We have investigated the spatio-temporal dynamics of the HIV-1B epidemic in The Caribbean and Central America using 1,610 HIV-1B partial pol sequences from 13 Caribbean and 5 Central American countries. Timing of HIV-1B introduction and virus evolutionary rates, as well as the spatial genetic structure of the HIV-1B populations and the virus migration patterns were inferred. Results revealed that in The Caribbean and Central America most of the HIV-1B variability was generated since the 80 s. At odds with previous data suggesting that Haiti was the origin of the epidemic in The Caribbean, our reconstruction indicated that the virus could have been disseminated from Puerto Rico and Antigua. These two countries connected two distinguishable migration areas corresponding to the (mainly Spanish-colonized) Easter and (mainly British-colonized) Western islands, which indicates that virus migration patterns are determined by geographical barriers and by the movement of human populations among culturally related countries. Similar factors shaped the migration of HIV-1B in Central America. The HIV-1B population was significantly structured according to the country of origin, and the genetic diversity in each country was associated with the virus prevalence in both regions, which suggests that virus populations evolve mainly through genetic drift. Thus, our work contributes to the understanding of HIV-1B evolution and dispersion pattern in the Americas, and its relationship with the geography of the area and the movements of human populations

    Coupled effects of local movement and global interaction on contagion

    Full text link
    By incorporating segregated spatial domain and individual-based linkage into the SIS (susceptible-infected-susceptible) model, we investigate the coupled effects of random walk and intragroup interaction on contagion. Compared with the situation where only local movement or individual-based linkage exists, the coexistence of them leads to a wider spread of infectious disease. The roles of narrowing segregated spatial domain and reducing mobility in epidemic control are checked, these two measures are found to be conducive to curbing the spread of infectious disease. Considering heterogeneous time scales between local movement and global interaction, a log-log relation between the change in the number of infected individuals and the timescale τ\tau is found. A theoretical analysis indicates that the evolutionary dynamics in the present model is related to the encounter probability and the encounter time. A functional relation between the epidemic threshold and the ratio of shortcuts, and a functional relation between the encounter time and the timescale τ\tau are found

    Epidemics and Economics

    Get PDF
    This paper discusses the links between income and infectious disease epidemics and asks how such links are affected by changing global circumstances. Having money and living in a prosperous society protects individuals against health setbacks in general and epidemics in particular. Healthy people get more education, are more productive in the work force, attract foreign investment, and save more. As better health leads to de-creases in family size, the consequent change in a country's age structure can boost eco-nomic growth. Epidemics can obstruct these effects by changing expectations about how well an economy will function and by deterring investment and tourism. In many instances, the immediate costs of an epidemic are apparent, while the long-term costs are unclear. However, when we include the value of human life in the cost, it becomes clear that epidemics are extremely costly. Preventing epidemics requires overcoming a range of obstacles, as does responding to an epidemic once it begins. Globally, long-term vulnerability to epidemics may decrease as development standards rise, but a more highly interconnected world may actually promote the occurrence of infectious disease epidemics.Epidemics, growth, development

    Epidemiological study of phylogenetic transmission clusters in a local HIV-1 epidemic reveals distinct differences between subtype B and non-B infections

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The number of HIV-1 infected individuals in the Western world continues to rise. More in-depth understanding of regional HIV-1 epidemics is necessary for the optimal design and adequate use of future prevention strategies. The use of a combination of phylogenetic analysis of HIV sequences, with data on patients' demographics, infection route, clinical information and laboratory results, will allow a better characterization of individuals responsible for local transmission.</p> <p>Methods</p> <p>Baseline HIV-1 <it>pol </it>sequences, obtained through routine drug-resistance testing, from 506 patients, newly diagnosed between 2001 and 2009, were used to construct phylogenetic trees and identify transmission-clusters. Patients' demographics, laboratory and clinical data, were retrieved anonymously. Statistical analysis was performed to identify subtype-specific and transmission-cluster-specific characteristics.</p> <p>Results</p> <p>Multivariate analysis showed significant differences between the 59.7% of individuals with subtype B infection and the 40.3% non-B infected individuals, with regard to route of transmission, origin, infection with <it>Chlamydia </it>(p = 0.01) and infection with Hepatitis C virus (p = 0.017). More and larger transmission-clusters were identified among the subtype B infections (p < 0.001). Overall, in multivariate analysis, clustering was significantly associated with Caucasian origin, infection through homosexual contact and younger age (all p < 0.001). Bivariate analysis additionally showed a correlation between clustering and syphilis (p < 0.001), higher CD4 counts (p = 0.002), <it>Chlamydia </it>infection (p = 0.013) and primary HIV (p = 0.017).</p> <p>Conclusions</p> <p>Combination of phylogenetics with demographic information, laboratory and clinical data, revealed that HIV-1 subtype B infected Caucasian men-who-have-sex-with-men with high prevalence of sexually transmitted diseases, account for the majority of local HIV-transmissions. This finding elucidates observed epidemiological trends through molecular analysis, and justifies sustained focus in prevention on this high risk group.</p

    Using Community Structure Networks to Model Heterogeneous Mixing in Epidemics, and a Potential Application to HIV in Washington, D.C.

    Get PDF
    Using models, mathematicians can better understand and analyze the factors that influence the dynamic spread of infectious disease through a population. The most fundamental epidemiological model is the SIR model, originally proposed by Kermack and McKendrick. In this model individuals in a population are categorized as Susceptible (S), Infected (I), or Removed (R), and differential equations are used to analyze the flow of people from one compartment to another. Many epidemiological models use the SIR model as a foundation, building complexities into it. Modeling HIV, for example, is complex because not all people in a population are at equal risk for infection. Many SIR-like models assume that each member of a population is equally likely to interact with any other member of the population. However, in reality, there are many factors such as race, neighborhood, profession, socio-economic status, religion, education, and more that impact how likely one person is to interact with another. One increasingly popular way to analyze the effects of heterogeneous mixing is by using networks. Inspired by data suggesting that HIV incidence in Washington, D.C. is skewed by race and neighborhood, this paper explores the effects of community structure in networks on transmission dynamics
    corecore