2,430 research outputs found

    Resampling methods for parameter-free and robust feature selection with mutual information

    Get PDF
    Combining the mutual information criterion with a forward feature selection strategy offers a good trade-off between optimality of the selected feature subset and computation time. However, it requires to set the parameter(s) of the mutual information estimator and to determine when to halt the forward procedure. These two choices are difficult to make because, as the dimensionality of the subset increases, the estimation of the mutual information becomes less and less reliable. This paper proposes to use resampling methods, a K-fold cross-validation and the permutation test, to address both issues. The resampling methods bring information about the variance of the estimator, information which can then be used to automatically set the parameter and to calculate a threshold to stop the forward procedure. The procedure is illustrated on a synthetic dataset as well as on real-world examples

    Unsupervised robust nonparametric learning of hidden community properties

    Full text link
    We consider learning of fundamental properties of communities in large noisy networks, in the prototypical situation where the nodes or users are split into two classes according to a binary property, e.g., according to their opinions or preferences on a topic. For learning these properties, we propose a nonparametric, unsupervised, and scalable graph scan procedure that is, in addition, robust against a class of powerful adversaries. In our setup, one of the communities can fall under the influence of a knowledgeable adversarial leader, who knows the full network structure, has unlimited computational resources and can completely foresee our planned actions on the network. We prove strong consistency of our results in this setup with minimal assumptions. In particular, the learning procedure estimates the baseline activity of normal users asymptotically correctly with probability 1; the only assumption being the existence of a single implicit community of asymptotically negligible logarithmic size. We provide experiments on real and synthetic data to illustrate the performance of our method, including examples with adversaries.Comment: Experiments with new types of adversaries adde

    A new class of multiscale lattice cell (MLC) models for spatio-temporal evolutionary image representation

    Get PDF
    Spatio-temporal evolutionary (STE) images are a class of complex dynamical systems that evolve over both space and time. With increased interest in the investigation of nonlinear complex phenomena, especially spatio-temporal behaviour governed by evolutionary laws that are dependent on both spatial and temporal dimensions, there has been an increased need to investigate model identification methods for this class of complex systems. Compared with pure temporal processes, the identification of spatio-temporal models from observed images is much more difficult and quite challenging. Starting with an assumption that there is no apriori information about the true model but only observed data are available, this study introduces a new class of multiscale lattice cell (MLC) models to represent the rules of the associated spatio-temporal evolutionary system. An application to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, is investigated to demonstrate the new modelling framework

    Estimating Gene Interactions Using Information Theoretic Functionals

    No full text
    With an abundance of data resulting from high-throughput technologies, like DNA microarrays, a race has been on the last few years, to determine the structures and functions of genes and their products, the proteins. Inference of gene interactions, lies in the core of these efforts. In all this activity, three important research issues have emerged. First, in much of the current literature on gene regulatory networks, dependencies among variables in our case genes - are assumed to be linear in nature, when in fact, in real-life scenarios this is seldom the case. This disagreement leads to systematic deviation and biased evaluation. Secondly, although the problem of undersampling, features in every piece of work as one of the major causes for poor results, in practice it is overlooked and rarely addressed explicitly. Finally, inference of network structures, although based on rigid mathematical foundations and computational optimizations, often displays poor fitness values and biologically unrealistic link structures, due - to a large extend - to the discovery of pairwise only interactions. In our search for robust, nonlinear measures of dependency, we advocate that mutual information and related information theoretic functionals (conditional mutual information, total correlation) are possibly the most suitable candidates to capture both linear and nonlinear interactions between variables, and resolve higher order dependencies. To address these issues, we researched and implemented under a common framework, a selection nonparametric estimators of mutual information for continuous variables. The focus of their assessment was, their robustness to the limited sample sizes and their expansibility to higher dimensions - important for the detection of more complex interaction structures. Two different assessment scenaria were performed, one with simulated data and one with bootstrapping the estimators in state-of-the-art network inference algorithms and monitor their predictive power and sensitivity. The tests revealed that, in small sample size regimes, there is a significant difference in the performance of different estimators, and naive methods such as uniform binning, gave consistently poor results compared with more sophisticated methods. Finally, a custom, modular mechanism is proposed, for the inference of gene interactions, targeting the identi cation of some of the most common substructures in genetic networks, that we believe will help improve accuracy and predictability scores

    Critical values of a kernel density-based mutual information estimator

    Get PDF
    Copyright © 2006 IEEERecently, mutual information (MI) has become widely recognized as a statistical measure of dependence that is suitable for applications where data are non-Gaussian, or where the dependency between variables is non-linear. However, a significant disadvantage of this measure is the inability to define an analytical expression for the distribution of MI estimators, which are based upon a finite dataset. This paper deals specifically with a popular kernel density based estimator, for which the distribution is determined empirically using Monte Carlo simulation. The application of the critical values of MI derived from this distribution to a test for independence is demonstrated within the context of a benchmark input variable selection problem.http://www.okstate.edu/elec-engr/faculty/yen/wcci/WCCI-Web_ProgramList_F.htm
    • …
    corecore