2,882 research outputs found

    Stochastic Signal Processing and Power Control for Wireless Communication Systems

    Get PDF
    This dissertation is concerned with dynamical modeling, estimation and identification of wireless channels from received signal measurements. Optimal power control algorithms, mobile location and velocity estimation methods are developed based on the proposed models. The ultimate performance limits of any communication system are determined by the channel it operates in. In this dissertation, we propose new stochastic wireless channel models which capture both the space and time variations of wireless systems. The proposed channel models are based on stochastic differential equations (SDEs) driven by Brownian motions. These models are more realistic than the time invariant models encountered in the literature which do not capture and track the time varying characteristics of the propagation environment. The statistics of the proposed models are shown to be time varying, and converge in steady state to their static counterparts. Cellular and ad hoc wireless channel models are developed. In urban propagation environment, the parameters of the channel models can be determined from approximating the band-limited Doppler power spectral density (DPSD) by rational transfer functions. However, since the DPSD is not available on-line, a filterbased expectation maximization algorithm and Kalman filter to estimate the channel parameters and states, respectively, are proposed. The algorithm is recursive allowing the inphase and quadrature components and parameters to be estimated on-line from received signal measurements. The algorithms are tested using experimental data, and the results demonstrate the method’s viability for both cellular and ad hoc networks. Power control increases system capacity and quality of communications, and reduces battery power consumption. A stochastic power control algorithm is developed using the so-called predictable power control strategies. An iterative distributed algorithm is then deduced using stochastic approximations. The latter only requires each mobile to know its received signal to interference ratio at the receiver

    Multi-user spatial diversity techniques for wireless communication systems

    Get PDF
    Multiple antennas at the transmitter and receiver, formally known as multiple-input multiple-output (MIMO) systems have the potential to either increase the data rates through spatial multiplexing or enhance the quality of services through exploitation of diversity. In this thesis, the problem of downlink spatial multiplexing, where a base station (BS) serves multiple users simultaneously in the same frequency band is addressed. Spatial multiplexing techniques have the potential to make huge saving in the bandwidth utilization. We propose spatial diversity techniques with and without the assumption of perfect channel state information (CSI) at the transmitter. We start with proposing improvement to signal-to-leakage ratio (SLR) maximization based spatial multiplexing techniques for both fiat fading and frequency selective channels. [Continues.

    Third-order Complex Amplitudes Tracking Loop for Slow Flat Fading Channel On-Line Estimation

    No full text
    12 pagesInternational audienceThis paper deals with channel estimation in tracking mode over a flat Rayleigh fading channel with Jakes' Doppler Spectrum. Many estimation algorithms exploit the time-domain correlation of the channel by employing a Kalman filter based on a first-order (or sometimes second-order) approximation model of the time-varying channel. However, the nature of the approximation model itself degrades the estimation performance for slow to moderate varying channel scenarios. Furthermore, the Kalman-based algorithms exhibit a certain complexity. Hence, a different model and approach has been investigated in this work to tackle all of these issues. A novel PLL-structured third-order tracking loop estimator with a low complexity is proposed. The connection between a steady-state Kalman filter based on a random walk approximation model and the proposed estimator is first established. Then, a sub-optimal mean-squared-error (MSE) is given in a closed-form expression as a function of the tracking loop parameters. The parameters that minimize this sub-optimal MSE are also given in a closed-form expression. The asymptotic MSE and Bit-Error-Ratio (BER) simulation results demonstrate that the proposed estimator outperforms the first and second order Kalman-based filters reported in literature. The robustness of the proposed estimator is also verified by a mismatch simulation

    Resource allocation in realistic wireless cognitive radios networks

    Get PDF
    Cognitive radio networks provide an effective solution for improving spectrum usage for wireless users. In particular, secondary users can now compete with each other to access idle, unused spectrum from licensed primary users in an opportunistic fashion. This is typically done by using cognitive radios to sense the presence of primary users and tuning to unused spectrum bands to boost efficiency. Expectedly, resource allocation is a very crucial concern in such settings, i.e., power and rate control, and various studies have looked at this problem area. However, the existing body of work has mostly considered the interactions between secondary users and has ignored the impact of primary user behaviors. Along these lines, this dissertation addresses this crucial concern and proposes a novel primary-secondary game-theoretic solution which rewards primary users for sharing their spectrum with secondary users. In particular, a key focus is on precisely modeling the performance of realistic channel models with fading. This is of key importance as simple additive white Gaussian noise channels are generally not very realistic and tend to yield overly optimistic results. Hence the proposed solution develops a realistic non-cooperative power control game to optimize transmit power in wireless cognitive radios networks running code division multiple access up-links. This model is then analyzed for fast and slow flat fading channels. Namely, the fading coefficients are modeled using Rayleigh and Rician distributions, and closed-form expressions are derived for the average utility functions. Furthermore, it is also shown that the strategy spaces of the users under realistic conditions must be modified to guarantee the existence of a unique Nash Equilibrium point. Finally, linear pricing is introduced into the average utility functions for both Rayleigh and Rician fast-flat fading channels, i.e., to further improve the proposed models and minimize transmission power for all users. Detailed simulations are then presented to verify the performance of the schemes under the proposed realistic channel models. The results are also compared to those with more basic additive white Gaussian noise channels

    Joint signal detection and channel estimation in rank-deficient MIMO systems

    Get PDF
    L'évolution de la prospère famille des standards 802.11 a encouragé le développement des technologies appliquées aux réseaux locaux sans fil (WLANs). Pour faire face à la toujours croissante nécessité de rendre possible les communications à très haut débit, les systèmes à antennes multiples (MIMO) sont une solution viable. Ils ont l'avantage d'accroître le débit de transmission sans avoir recours à plus de puissance ou de largeur de bande. Cependant, l'industrie hésite encore à augmenter le nombre d'antennes des portables et des accésoires sans fil. De plus, à l'intérieur des bâtiments, la déficience de rang de la matrice de canal peut se produire dû à la nature de la dispersion des parcours de propagation, ce phénomène est aussi occasionné à l'extérieur par de longues distances de transmission. Ce projet est motivé par les raisons décrites antérieurement, il se veut un étude sur la viabilité des transcepteurs sans fil à large bande capables de régulariser la déficience de rang du canal sans fil. On vise le développement des techniques capables de séparer M signaux co-canal, même avec une seule antenne et à faire une estimation précise du canal. Les solutions décrites dans ce document cherchent à surmonter les difficultés posées par le medium aux transcepteurs sans fil à large bande. Le résultat de cette étude est un algorithme transcepteur approprié aux systèmes MIMO à rang déficient

    A Space Communications Study Final Report, Sep. 15, 1965 - Sep. 15, 1966

    Get PDF
    Reception of frequency modulated signals passed through deterministic and random time-varying channel

    UNDERWATER COMMUNICATIONS WITH ACOUSTIC STEGANOGRAPHY: RECOVERY ANALYSIS AND MODELING

    Get PDF
    In the modern warfare environment, communication is a cornerstone of combat competence. However, the increasing threat of communications-denied environments highlights the need for communications systems with low probability of intercept and detection. This is doubly true in the subsurface environment, where communications and sonar systems can reveal the tactical location of platforms and capabilities, subverting their covert mission set. A steganographic communication scheme that leverages existing technologies and unexpected data carriers is a feasible means of increasing assurance of communications, even in denied environments. This research works toward a covert communication system by determining and comparing novel symbol recovery schemes to extract data from a signal transmitted under a steganographic technique and interfered with by a simulated underwater acoustic channel. We apply techniques for reliably extracting imperceptible information from unremarkable acoustic events robust to the variability of the hostile operating environment. The system is evaluated based on performance metrics, such as transmission rate and bit error rate, and we show that our scheme is sufficient to conduct covert communications through acoustic transmissions, though we do not solve the problems of synchronization or equalization.Lieutenant, United States NavyApproved for public release. Distribution is unlimited

    Wavelet-Coding for Radio over Fibre

    Get PDF
    • …
    corecore