7 research outputs found

    Shifted Jacobi spectral collocation method with convergence analysis for solving integro-differential equations and system of integro-differential equations

    Get PDF
    This article addresses the solution of multi-dimensional integro-differential equations (IDEs) by means of the spectral collocation method and taking the advantage of the properties of shifted Jacobi polynomials. The applicability and accuracy of the present technique have been examined by the given numerical examples in this paper. By means of these numerical examples, we ensure that the present technique is simple and very accurate. Furthermore, an error analysis is performed to verify the correctness and feasibility of the proposed method when solving IDE

    Numerical solution of fractional partial differential equations by spectral methods

    Get PDF
    Fractional partial differential equations (FPDEs) have become essential tool for the modeling of physical models by using spectral methods. In the last few decades, spectral methods have been developed for the solution of time and space dimensional FPDEs. There are different types of spectral methods such as collocation methods, Tau methods and Galerkin methods. This research work focuses on the collocation and Tau methods to propose an efficient operational matrix methods via Genocchi polynomials and Legendre polynomials for the solution of two and three dimensional FPDEs. Moreover, in this study, Genocchi wavelet-like basis method and Genocchi polynomials based Ritz- Galerkin method have been derived to deal with FPDEs and variable- order FPDEs. The reason behind using the Genocchi polynomials is that, it helps to generate functional expansions with less degree and small coefficients values to derive the operational matrix of derivative with less computational complexity as compared to Chebyshev and Legendre Polynomials. The results have been compared with the existing methods such as Chebyshev wavelets method, Legendre wavelets method, Adomian decomposition method, Variational iteration method, Finite difference method and Finite element method. The numerical results have revealed that the proposed methods have provided the better results as compared to existing methods due to minimum computational complexity of derived operational matrices via Genocchi polynomials. Additionally, the significance of the proposed methods has been verified by finding the error bound, which shows that the proposed methods have provided better approximation values for under consideration FPDEs

    Numerical Study of Soliton Solutions of KdV, Boussinesq, and Kaup-Kuperschmidt Equations Based on Jacobi Polynomials

    Get PDF
    In this paper, a numerical method is developed to approximate the soliton solutions of some nonlinear wave equations in terms of the Jacobi polynomials. Wave are very important phenomena in dispersion, dissipation, diffusion, reaction, and convection. Using the wave variable converts these nonlinear equations to the nonlinear ODE equations. Then, the operational Collocation method based on Jacobi polynomials as bases is applied to approximate the solution of ODE equation resulted. In addition, the intervals of the solution will be extended using an rational exponential approximation (REA). The KdV, Boussinesq, and Kaup–Kuperschmidt equations are studied as the test examples. Finally, numerical computation of the conservation values shows the effectiveness and stability of the proposed method
    corecore