933 research outputs found

    Dealiasing techniques for high-order spectral element methods on regular and irregular grids

    Get PDF
    High-order methods are becoming increasingly attractive in both academia and industry, especially in the context of computational fluid dynamics. However, before they can be more widely adopted, issues such as lack of robustness in terms of numerical stability need to be addressed, particularly when treating industrial-type problems where challenging geometries and a wide range of physical scales, typically due to high Reynolds numbers, need to be taken into account. One source of instability is aliasing effects which arise from the nonlinearity of the underlying problem. In this work we detail two dealiasing strategies based on the concept of consistent integration. The first uses a localised approach, which is useful when the nonlinearities only arise in parts of the problem. The second is based on the more traditional approach of using a higher quadrature. The main goal of both dealiasing techniques is to improve the robustness of high order spectral element methods, thereby reducing aliasing-driven instabilities. We demonstrate how these two strategies can be effectively applied to both continuous and discontinuous discretisations, where, in the latter, both volumetric and interface approximations must be considered. We show the key features of each dealiasing technique applied to the scalar conservation law with numerical examples and we highlight the main differences in terms of implementation between continuous and discontinuous spatial discretisations

    Least squares based finite element formulations and their applications in fluid mechanics

    Get PDF
    In this research, least-squares based finite element formulations and their applications in fluid mechanics are presented. Least-squares formulations offer several computational and theoretical advantages for Newtonian as well as non-Newtonian fluid flows. Most notably, these formulations circumvent the inf-sup condition of Ladyzhenskaya-Babuska- Brezzi (LBB) such that the choice of approximating space is not subject to any compatibility condition. Also, the resulting coefficient matrix is symmetric and positive-definite. It has been observed that pressure and velocities are not strongly coupled in traditional leastsquares based finite element formulations. Penalty based least-squares formulations that fix the pressure-velocity coupling problem are proposed, implemented in a computational scheme, and evaluated in this study. The continuity equation is treated as a constraint on the velocity field and the constraint is enforced using the penalty method. These penalty based formulations produce accurate results for even low penalty parameters (in the range of 10-50 penalty parameter). A stress based least-squares formulation is also being proposed to couple pressure and velocities. Stress components are introduced as independent variables to make the system first order. The continuity equation is eliminated from the system with suitable modifications. Least-squares formulations are also developed for viscoelastic flows and moving boundary flows. All the formulations developed in this study are tested using several benchmark problems. All of the finite element models developed in this study performed well in all cases. A method to exploit orthogonality of modal bases to avoid numerical integration and have a fast computation is also developed during this study. The entries of the coefficient matrix are calculated analytically. The properties of Jacobi polynomials are used and most of the entries of the coefficient matrix are recast so that they can be evaluated analytically

    Analysis of fractional step, finite element methods for the incompressible navier-stokes equations

    Get PDF
    En la presente tesis se han estudiado métodos de paso fraccionado para la resolución numérica de la ecuación de Navier-Stokes incompresible mediante el método de los elementos finitos; dicha ecuación rige el movimiento de un fluido incompresible viscoso. Partiendo del análisis del método de proyección clásico, se desarrolla un método para el problema de Stokes (lineal y estacionario) con iguales propiedades en cuanto a discretizacion espacial que aquel, explicando así sus propiedades de estabilización de la presión. Se da también una extensión del nuevo método a la ecuación de Navier-Stokes incompresible estacionaria (no lineal).En la segunda parte de la tesis, se desarrolla un método de paso fraccionado para el problema de evolución que supera un inconveniente del método de proyección relativo a la imposición de las condiciones de contorno.Para todos los métodos desarrollados, se demuestran teoremas de convergencia y estimaciones de error, se proponen implementaciones eficientes y se proporcionan numerosos resultados numéricos

    Implementation of a stabilized finite element formulation for the incompressible Navier-Stokes equations based on a pressure gradient projection

    Get PDF
    We discuss in this paper some implementation aspects of a finite element formulation for the incompressible Navier-Stokes which allows the use of equal order velocity-pressure interpolations. The method consists in introducing the project of the pressure gradient and adding the difference between the pressure Laplacian and divergence of this new field to the incompressibility equations, both multiplied by suitable algorithmic parameters. The main purpose of this paper is to discuss how to deal with the new variable in the implementation of the algorithm. Obviously, it could be treated as one extra unknown, either explicitly or as a condensed variable. However, we take for granted that the only way or another. Here we discuss some iterative schemes to perform this uncoupling of the pressure gradient projection (PGP) from the calculation of the velocity and the pressure, both for stationary and the transient of the linearization loop and the iterative segregation of the PGP, whereas in the second the main dilemma concerns the explicit or implicit treatment of the PGP. &nbsp

    Adaptive mesh simulations of compressible flows using stabilized formulations

    Get PDF
    This thesis investigates numerical methods that approximate the solution of compressible flow equations. The first part of the thesis is committed to studying the Variational Multi-Scale (VMS) finite element approximation of several compressible flow equations. In particular, the one-dimensional Burgers equation in the Fourier space, and the compressible Navier-Stokes equations written in both conservative and primitive variables are considered. The approximations made for the VMS formulation are extensively researched; the design of the matrix of stabilization parameters, the definition of the space where the subscales live, the inclusion of the temporal derivatives of the subscales, and the non-linear tracking of the subscales are formulated. Also, the addition of local artificial diffusion in the form of shock capturing techniques is included. The accuracy of the formulations is studied for several regimes of the compressible flow, from aeroacoustic flows at low Mach numbers to supersonic shocks. The second part of the thesis is devoted to make the solution of the smallest fluctuating scales of the compressible flow affordable. To this end, a novel algorithm for h−h-refinement of computational physics meshes in a distributed parallel setting, together with the solution of some refinement test cases in supercomputers are presented. The definition of an explicit a-posteriori error estimator that can be used in the adaptive mesh refinement simulations of compressible flows is also developed; the proposed methodology employs the variational subscales as a local error estimate that drives the mesh refinement. The numerical methods proposed in this thesis are capable to describe the high-frequency fluctuations of compressible flows, especially, the ones corresponding to complex aeroacoustic applications. Precisely, the direct simulation of the fricative [s] sound inside a realistic geometry of the human vocal tract is achieved at the end of the thesis.Esta tesis investiga métodos numéricos que aproximan la solución de las ecuaciones de flujo compresible. La primera parte de la tesis está dedicada al estudio de la aproximación numérica del flujo compresible por medio del método multiescala variacional (VMS) en elementos finitos. En particular, se consideran la ecuación de Burgers unidimensional descrita en el espacio de Fourier y las ecuaciones de Navier-Stokes de flujo compresible escritas en variables conservativas y primitivas. Las aproximaciones hechas para plantear la formulación VMS son ampliamente investigadas; el diseño de la matriz de parámetros de estabilización, la definición del espacio donde viven las subescalas, la inclusión de las derivadas temporales de las subescalas y el seguimiento no lineal de las subescalas son particularidades de la formulación que se analizan para cada una de las ecuaciones consideradas. Además, se incluye la adición de difusión artificial local en forma de técnicas de captura de choque. La precisión de las formulaciones se estudia para varios regímenes del flujo compresible, desde flujos aeroacústicos a bajos números de Mach hasta choques supersónicos. La segunda parte de la tesis está dedicada a hacer asequible la solución de las escalas fluctuantes más pequeñas del flujo compresible. Con este fin, se presenta un algoritmo novedoso para el refinamiento hh de las mallas de física computacional usadas en computación distribuida en paralelo. Además, se demuestra la solución en superordenadores de algunos casos de prueba del refinamiento de mallas. También se desarrolla la definición de un estimador de error explícito a posteriori que se puede usar en las simulaciones adaptativas de refinamiento de malla de flujos compresibles; la metodología propuesta emplea las subescalas variacionales como una estimación de error local que induce el refinamiento de la malla. Los métodos numéricos propuestos en esta tesis son capaces de describir las fluctuaciones de alta frecuencia de los flujos compresibles, especialmente los correspondientes a aplicaciones aeroacústicas complejas. Precisamente, la simulación directa del sonido consonántico fricativo [s] dentro de una geometría realista del tracto vocal humano se demuestra al final de la tesis
    • …
    corecore