42 research outputs found

    Single-Sample Finger Vein Recognition via Competitive and Progressive Sparse Representation

    Get PDF
    As an emerging biometric technology, finger vein recognition has attracted much attention in recent years. However, single-sample recognition is a practical and longstanding challenge in this field, referring to only one finger vein image per class in the training set. In single-sample finger vein recognition, the illumination variations under low contrast and the lack of information of intra-class variations severely affect the recognition performance. Despite of its high robustness against noise and illumination variations, sparse representation has rarely been explored for single-sample finger vein recognition. Therefore, in this paper, we focus on developing a new approach called Progressive Sparse Representation Classification (PSRC) to address the challenging issue of single-sample finger vein recognition. Firstly, as residual may become too large under the scenario of single-sample finger vein recognition, we propose a progressive strategy for representation refinement of SRC. Secondly, to adaptively optimize progressions, a progressive index called Max Energy Residual Index (MERI) is defined as the guidance. Furthermore, we extend PSRC to bimodal biometrics and propose a Competitive PSRC (C-PSRC) fusion approach. The C-PSRC creates more discriminative fused sample and fusion dictionary by comparing residual errors of different modalities. By comparing with several state-of-the-art methods on three finger vein benchmarks, the superiority of the proposed PSRC and C-PSRC is clearly demonstrated

    Palmprint identification using an ensemble of sparse representations

    Get PDF
    Among various palmprint identification methods proposed in the literature, sparse representation for classification (SRC) is very attractive offering high accuracy. Although SRC has good discriminative ability, its performance strongly depends on the quality of the training data. In particular, SRC suffers from two major problems: lack of training samples per class and large intra-class variations. In fact, palmprint images not only contain identity information but they also have other information, such as illumination and geometrical distortions due to the unconstrained conditions and the movement of the hand. In this case, the sparse representation assumption may not hold well in the original space since samples from different classes may be considered from the same class. This paper aims to enhance palmprint identification performance through SRC by proposing a simple yet efficient method based on an ensemble of sparse representations through an ensemble of discriminative dictionaries satisfying SRC assumption. The ensemble learning has the advantage to reduce the sensitivity due to the limited size of the training data and is performed based on random subspace sampling over 2D-PCA space while keeping the image inherent structure and information. In order to obtain discriminative dictionaries satisfying SRC assumption, a new space is learned by minimizing and maximizing the intra-class and inter-class variations using 2D-LDA. Extensive experiments are conducted on two publicly available palmprint data sets: multispectral and PolyU. Obtained results showed very promising results compared with both state-of-the-art holistic and coding methods. Besides these findings, we provide an empirical analysis of the parameters involved in the proposed technique to guide the neophyte. 2018 IEEE.This work was supported by the National Priority Research Program from the Qatar National Research Fund under Grant 6-249-1-053. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the Qatar National Research Fund or Qatar University.Scopu

    Quadratic Projection Based Feature Extraction with Its Application to Biometric Recognition

    Full text link
    This paper presents a novel quadratic projection based feature extraction framework, where a set of quadratic matrices is learned to distinguish each class from all other classes. We formulate quadratic matrix learning (QML) as a standard semidefinite programming (SDP) problem. However, the con- ventional interior-point SDP solvers do not scale well to the problem of QML for high-dimensional data. To solve the scalability of QML, we develop an efficient algorithm, termed DualQML, based on the Lagrange duality theory, to extract nonlinear features. To evaluate the feasibility and effectiveness of the proposed framework, we conduct extensive experiments on biometric recognition. Experimental results on three representative biometric recogni- tion tasks, including face, palmprint, and ear recognition, demonstrate the superiority of the DualQML-based feature extraction algorithm compared to the current state-of-the-art algorithm

    Edge-centric multimodal authentication system using encrypted biometric templates

    Get PDF
    Data security, complete system control, and missed storage and computing opportunities in personal portable devices are some of the major limitations of the centralized cloud environment. Among these limitations, security is a prime concern due to potential unauthorized access to private data. Biometrics, in particular, is considered sensitive data, and its usage is subject to the privacy protection law. To address this issue, a multimodal authentication system using encrypted biometrics for the edge-centric cloud environment is proposed in this study. Personal portable devices are utilized for encrypting biometrics in the proposed system, which optimizes the use of resources and tackles another limitation of the cloud environment. Biometrics is encrypted using a new method. In the proposed system, the edges transmit the encrypted speech and face for processing in the cloud. The cloud then decrypts the biometrics and performs authentication to confirm the identity of an individual. The model for speech authentication is based on two types of features, namely, Mel-frequency cepstral coefficients and perceptual linear prediction coefficients. The model for face authentication is implemented by determining the eigenfaces. The final decision about the identity of a user is based on majority voting. Experimental results show that the new encryption method can reliably hide the identity of an individual and accurately decrypt the biometrics, which is vital for errorless authentication

    Human Identification Based on Electrocardiogram and Palmprint

    Get PDF
    In this paper, a new approach in human identification is investigated. For this purpose, we fused ECG and Palm print biometrics to achieve a multimodal biometric system. In the proposed system for fusing biometrics, we used MFCC approach in order to extract features of ECG biometric and PCA to extract features of Palm print. The features undergo a KNN classification. The performance of the algorithm is evaluated against the standard MIT-BIH and POLYU databases. Moreover, in order to achieve more realistic and reliable results, we gathered Holter ECG recordings acquired from 50 male and female subjects in age between 18 and 54. The numerical results indicated that the algorithm achieved 94.7% of the detection rate.DOI:http://dx.doi.org/10.11591/ijece.v2i2.29

    Integrating simplified inverse representation and CRC for face recognition

    Full text link
    © Springer International Publishing Switzerland 2015. The representation based classification method (RBCM) has attracted much attention in the last decade. RBCM exploits the linear combination of training samples to represent the test sample, which is then classified according to the minimum reconstruction residual. Recently, an interesting concept, Inverse Representation (IR), is proposed. It is the inverse process of conventional RBCMs. IR applies test samples’ information to represent each training sample, and then classifies the training sample as a useful supplement for the final classification. The relative algorithm CIRLRC, integrating IR and linear regression classification (LRC) by score fusing, shows superior classification performance. However, there are two main drawbacks in CIRLRC. First, the IR in CIRLRC is not pure, because the test vector contains some training sample information. The other is the computation inefficiency because CIRLRC should solve C linear equations for classifying the test sample respectively, where C is the number of the classes. Therefore, we present a novel method integrating simplified IR (SIR) and collaborative representation classification (CRC), named SIRCRC, for face recognition. In SIRCRC, only test sample information is fully used in SIR, and CRC is more efficient than LRC in terms of speed, thus, one linear equation system is needed. Extensive experimental results on face databases show that it is very competitive with both CIRLRC and the state-of-the-art RBCM
    corecore