6 research outputs found

    Mobility support in Named Data Networking: a survey

    Get PDF

    Analytical modelling solution of producer mobility support scheme for named data networking

    Get PDF
    Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility. However, content producer mobility is not supported fundamentally and faces many challenges such as, high handoff latency, signaling overhead cost and unnecessary Interest packet losses. Hence, many approaches indirection-based approach, mapping-based approach, locator-based approach and control/data plane-based approach were proposed to address these problems. Mapping-based and control/data plane-based approach deployed servers for name resolution serveces to provide optimal data path after handoff, but introduces high handoff latency and signalling overhead cost. Indirection-based and locator-based approach schemes provide normal handoff delay, but introduces sub-optimal or tiangular routing path. Therefore, there is needs to provide substantial producer mobility support that minimizes the handoff latency, signaling cost and improve data packets delivery via optimal path once a content producer relocates to new location. This paper proposed a scheme that provides optimal data path using mobility Interest packets and broadcasting strategy. Analytical investigation result shows that our proposed scheme outperforms existing approaches in terms of handoff latency, signaling cost and path optimization

    Producer Mobility Support Schemes for Named Data Networking: A Survey

    Get PDF
    Mobile devices connectivity and data traffic growth requires scalable and efficient means of data distribution over the Internet. Thus, influenced the needs for upgrading or replacing the current Internet architecture to cater the situation as Named Data Networking (NDN) was proposed. NDN is clean-slate Internet architecture, proposed to replace IP with hierarchical named content that utilizes route aggregation to improve scalability and support mobility. Although, NDN provides supports for content consumer mobility with the help of catching capabilities, however, content producer faces many problems similar to mobility in IP architecture, such as, long handoff delay, unnecessary Interest packet losses and high bandwidth utilization. Hence, many concepts and schemes were proposed to address these problems. This paper reviewed and conceptually analyzed the schemes based on their fundamental design that broadly categorized into indirection-based approach, mapping-based approach, locator-based approach and control/data plane-based approach. In the review analysis, mapping-based approach schemes provide optimal path for packets delivery, high handoff delay Indirection-based and locator-based approach schemes provide normal handoff delay, but introduces tiangular routing path. The control/data plane-based approach schemes provide sub-optimal routing path and high handoff delay. The paper provided both strength and weakness of each scheme for further research

    Producer mobility support scheme for indirection-based mobility approach in named data networking

    Get PDF
    Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility by using hierarchical naming instead of IP addresses for routing. The hierarchical naming structure of NDN offers more benefits in supporting consumer mobility. However, the movements of producer inflict changes in routing name prefix hierarchy, which makes the entire network unaware of the new location of the producer. Thus, it causes some significant challenges, such as unnecessary Interest packet losses, high handoff latency, high signaling overhead cost, poor utilization of bandwidth, and path stretching. The aim of this research is to propose a Producer Mobility Support Scheme (PMSS) in order to minimize the handoff latency, signaling cost, improve data packets delivery via optimal path once a content producer relocated. The proposed PMSS model includes the formulated Mobility Weighted Function to incorporate movement behavior of the mobile producer. Also, Mobility Interest packet was designed to convey binding information and Broadcasting Strategy to facilitate handoff processes by updating the intermediate routers. Therefore, modeling and simulation methodologies were used in the design and performance evaluation of PMSS for rigorous investigation. The analytical result of PMSS scheme outperforms Optimal Producer Mobility for Larger-scale scheme with 50% lower handoff latency and signaling cost. Moreover, it minimizes 46% handoff signaling cost and improves 32% data path optimization as compared to the Kite scheme. The simulation results show that the proposed PMSS scheme minimizes 40% handoff latency, 28% packets delay, 28% unnecessary Interest packets loss, and improves 20% throughput. This study contributes to the development of the movement behavior model and mobility update packets. The findings have significant implication to support seamless mobility and the integration of NDN with other networks without additional mechanism

    PDRM : a proactive data replication mechanism to improve content mobility support in NDN using location awareness

    Get PDF
    The problem of handling user mobility has been around since mobile devices became capable of handling multimedia content and is still one of the most relevant challenges in networking. The conventional Internet architecture is inadequate in dealing with an ever-growing number of mobile devices that are both consuming and producing content. Named Data Networking (NDN) is a network architecture that can potentially overcome this mobility challenge. It supports consumer mobility by design but fails to offer the same level of support for content mobility. Content mobility requires guaranteeing that consumers manage to find and retrieve desired content even when the corresponding producer (or primary host) is not available. In this thesis, we propose PDRM, a Proactive and locality-aware Data Replication Mechanism that increases content availability through data redundancy in the context of the NDN architecture. It explores available resources from end-users in the vicinity to improve content availability even in the case of producer mobility. Throughout the thesis, we discuss the design of PDRM, evaluate the impact of the number of available providers in the vicinity and in-network cache capacity on its operation, and compare its performance to Vanilla NDN and two state-of-the-art proposals. The evaluation indicates that PDRM improves content mobility support due to using object popularity information and spare resources in the vicinity to help the proactive replication. Results show that PDRM can reduce the download times up to 53.55%, producer load up to 71.6%, inter-domain traffic up to 46.5%, and generated overhead up to 25% compared to Vanilla NDN and other evaluated mechanisms.O problema de lidar com a mobilidade dos usuários existe desde que os dispositivos móveis se tornaram capazes de lidar com conteúdo multimídia e ainda é um dos desafios mais relevantes na área de redes de computadores. A arquitetura de Internet convencional é inadequada em lidar com um número cada vez maior de dispositivos móveis que estão tanto consumindo quanto produzindo conteúdo. Named Data Networking (NDN) é uma arquitetura de rede que pode potencialmente superar este desafio de mobilidade. Ela suporta a mobilidade do consumidor nativamente, mas não oferece o mesmo nível de suporte para a mobilidade de conteúdo. A mobilidade de conteúdo exige garantir que os consumidores consigam encontrar e recuperar o conteúdo desejado mesmo quando o produtor correspondente (ou o hospedeiro principal) não estiver disponível. Nesta tese, propomos o PDRM (Proactive Data Replication Mechanism), um mecanismo de replicação de dados proativo e consciente de localização, que aumenta a disponibilidade de conteúdo através da redundância de dados no contexto da arquitetura NDN. Ele explora os recursos disponíveis dos usuários finais na vizinhança para melhorar a disponibilidade de conteúdo, mesmo no caso da mobilidade do produtor. Ao longo da tese, discutimos o projeto do PDRM, avaliamos o impacto do número de provedores disponíveis na vizinhança e a capacidade de cache na rede em sua operação e comparamos seu desempenho com NDN padrão e duas propostas do estado-da-arte. A avaliação indica que o PDRM melhora o suporte à mobilidade de conteúdo devido ao uso de informações de popularidade dos objetos e recursos extras na vizinhança para ajudar a replicação pró-ativa. Os resultados mostram que o PDRM pode reduzir os tempos de download até 53,55%, o carregamento do produtor até 71,6%, o tráfego entre domínios até 46,5% e a sobrecarga gerada até 25% em comparação com NDN padrão e os demais mecanismos avaliados
    corecore