7,244 research outputs found

    Weaving aspects into web service orchestrations

    Get PDF
    Web Service orchestration engines need to be more open to enable the addition of new behaviours into service-based applications. In this paper, we illus- trate how, in a BPEL engine with aspect-weaving ca- pabilities, a process-driven application based on the Google Web Service can be dynamically adapted with new behaviours and hot-fixed to meet unforeseen post- deployment requirements. Business processes (the ap- plication skeletons) can be enriched with additional fea- tures such as debugging, execution monitoring, or an application-specific GUI. Dynamic aspects are also used on the processes themselves to tackle the problem of hot-fixes to long running processes. In this manner, composing a Web Service ā€™on-the-flyā€™ means weaving its choreography in- terface into the business process

    Supporting Semantically Enhanced Web Service Discovery for Enterprise Application Integration

    Get PDF
    The availability of sophisticated Web service discovery mechanisms is an essential prerequisite for increasing the levels of efficiency and automation in EAI. In this chapter, we present an approach for developing service registries building on the UDDI standard and offering semantically-enhanced publication and discovery capabilities in order to overcome some of the known limitations of conventional service registries. The approach aspires to promote efficiency in EAI in a number of ways, but primarily by automating the task of evaluating service integrability on the basis of the input and output messages that are defined in the Web serviceā€™s interface. The presented solution combines the use of three technology standards to meet its objectives: OWL-DL, for modelling service characteristics and performing fine-grained service matchmaking via DL reasoning, SAWSDL, for creating semantically annotated descriptions of service interfaces, and UDDI, for storing and retrieving syntactic and semantic information about services and service providers

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    A Dataflow Language for Decentralised Orchestration of Web Service Workflows

    Full text link
    Orchestrating centralised service-oriented workflows presents significant scalability challenges that include: the consumption of network bandwidth, degradation of performance, and single points of failure. This paper presents a high-level dataflow specification language that attempts to address these scalability challenges. This language provides simple abstractions for orchestrating large-scale web service workflows, and separates between the workflow logic and its execution. It is based on a data-driven model that permits parallelism to improve the workflow performance. We provide a decentralised architecture that allows the computation logic to be moved "closer" to services involved in the workflow. This is achieved through partitioning the workflow specification into smaller fragments that may be sent to remote orchestration services for execution. The orchestration services rely on proxies that exploit connectivity to services in the workflow. These proxies perform service invocations and compositions on behalf of the orchestration services, and carry out data collection, retrieval, and mediation tasks. The evaluation of our architecture implementation concludes that our decentralised approach reduces the execution time of workflows, and scales accordingly with the increasing size of data sets.Comment: To appear in Proceedings of the IEEE 2013 7th International Workshop on Scientific Workflows, in conjunction with IEEE SERVICES 201

    Distribution pattern-driven development of service architectures

    Get PDF
    Distributed systems are being constructed by composing a number of discrete components. This practice is particularly prevalent within the Web service domain in the form of service process orchestration and choreography. Often, enterprise systems are built from many existing discrete applications such as legacy applications exposed using Web service interfaces. There are a number of architectural configurations or distribution patterns, which express how a composed system is to be deployed in a distributed environment. However, the amount of code required to realise these distribution patterns is considerable. In this paper, we propose a distribution pattern-driven approach to service composition and architecting. We develop, based on a catalog of patterns, a UML-compliant framework, which takes existing Web service interfaces as its input and generates executable Web service compositions based on a distribution pattern chosen by the software architect
    • ā€¦
    corecore