616 research outputs found

    Social-Aware Stateless Forwarding in Pocket Switched Networks

    Get PDF
    Several social-aware routing protocols for pocket switched networks have been recently introduced in the literature. The main idea underlying these protocols is to exploit state information (e.g., history of past encounters) to deduce information on the social structure of the network, and to optimize routing based on this information. While social-aware routing protocols have been shown to have superior performance to social-oblivious, stateless routing protocols such as, e.g., BinarySW, the improvement comes at the cost of considerable storage overhead required on the nodes, which is instead not required for stateless approaches. So, whether the benefits of social-aware routing protocols would still be present when storage capacity at the nodes is constrained is not clear. In this paper we present SANE, the first forwarding mechanism that combines the advantages of both social-aware and stateless approaches. SANE is based on the observation-that we validate on real-world traces-that individuals with similar interests tend to meet more often. In our approach, individuals (network members) are characterized by their interest profile, a compact representation of their interests. By implementing a simple interest profile similarity based forwarding rule, SANE is free of network state information, thus overcoming the storage capacity problem with existing social-aware approaches. Through extensive experiments, we show the superiority of social-aware, stateless forwarding over existing stateful, social-aware and stateless, social-oblivious routing approaches. An important byproduct of our interest-based approach is that it easily enables innovative routing primitives, such as interest-casting. An interest-casting protocol is also introduced in this paper, and extensively evaluated through experiments based on both real-world and synthetic mobility traces

    Mobility-based routing algorithm in delay tolerant networks

    Get PDF

    Vitis: A Gossip-based Hybrid Overlay for Internet-scale Publish/Subscribe

    Get PDF
    Peer-to-peer overlay networks are attractive solutions for building Internet-scale publish/subscribe systems. However, scalability comes with a cost: a message published on a certain topic often needs to traverse a large number of uninterested (unsubscribed) nodes before reaching all its subscribers. This might sharply increase resource consumption for such relay nodes (in terms of bandwidth transmission cost, CPU, etc) and could ultimately lead to rapid deterioration of the system’s performance once the relay nodes start dropping the messages or choose to permanently abandon the system. In this paper, we introduce Vitis, a gossip-based publish/subscribe system that significantly decreases the number of relay messages, and scales to an unbounded number of nodes and topics. This is achieved by the novel approach of enabling rendezvous routing on unstructured overlays. We construct a hybrid system by injecting structure into an otherwise unstructured network. The resulting structure resembles a navigable small-world network, which spans along clusters of nodes that have similar subscriptions. The properties of such an overlay make it an ideal platform for efficient data dissemination in large-scale systems. We perform extensive simulations and evaluate Vitis by comparing its performance against two base-line publish/subscribe systems: one that is oblivious to node subscriptions, and another that exploits the subscription similarities. Our measurements show that Vitis significantly outperforms the base-line solutions on various subscription and churn scenarios, from both synthetic models and real-world traces

    Social-Aware Forwarding Improves Routing Performance in Pocket Switched Networks

    Get PDF
    Several social-aware forwarding strategies have been recently introduced in opportunistic networks, and proved effective in considerably in- creasing routing performance through extensive simulation studies based on real-world data. However, this performance improvement comes at the expense of storing a considerable amount of state information (e.g, history of past encounters) at the nodes. Hence, whether the benefits on routing performance comes directly from the social-aware forwarding mechanism, or indirectly by the fact state information is exploited is not clear. Thus, the question of whether social-aware forwarding by itself is effective in improving opportunistic network routing performance remained unaddressed so far. In this paper, we give a first, positive answer to the above question, by investigating the expected message delivery time as the size of the net- work grows larger

    On exploiting priority relation graph for reliable multi-path communication in mobile social networks

    Full text link
    © 2018 Elsevier Inc. A mobile social network (MSN) consists of certain amount of mobile users with social characteristics, and it provides data delivery concerning social relationships between mobile users. In MSN, ordinary people contact each other more frequently if they have more social features in common. In this paper, we apply a new topology structure–priority relation graph (PRG) to evaluate the data delivery routing in MSN on the system-level. By using the natural order of nodes’ representation, the diameter, the regular degree and the multi-path technology, we determine the priority relation graph-based social feature routing (PRG-SFR) algorithm to find disjointed multi-paths in MSN. Here, the multi-path technology can be exploited for ensuring that, between each pair of sender and receiver, the important information can be delivered through a highly reliable path. Then we calculate the tolerant ability of ‘faults’ and estimate the availability of MSN on the theoretical level. Finally, we analyze the efficiency of PRG-SFR algorithm from the numerical standpoint in terms of fault tolerance, forwarding number, transmission time and delivery rate. Moreover, we make comparisons between PRG-SFR algorithm and certain state-of-the-art technologies
    • 

    corecore